Publication:
İkinci mertebeden lineer olmayan adi diferensiyel denklemlerin simetri indirgemeleri

dc.contributor.advisorYaşar, Emrullah
dc.contributor.authorGiresunlu, İlker Burak
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.date.accessioned2020-01-10T10:55:52Z
dc.date.available2020-01-10T10:55:52Z
dc.date.issued2013
dc.description.abstractBu çalışmada ikinci mertebeden lineer olmayan adi diferensiyel denklemlerin (ADD) Lie grup teorisi ve bazı yarı-algoritmik metotlarla çözümlerinin nasıl elde edilebileceği gösterilmiştir. Söz konusu denklem sınıfının şayet Lie grup üreteci mevcutsa mertebesinin nasıl düşürülebileceği gösterilmiştir. Özellikle göz önüne alınan ADD in en az iki Lie üreteci mevcutsa dört farklı kanonik gruptan birine nasıl girebileceği 33. Painlevé-Gambier denklemi üzerinde ayrıntılı bir şekilde gösterilmiştir. Öte yandan her diferensiyel denklemin Lie üreteci mevcut değildir. Lie üretecinin mevcut olmadığı ya da aşikar olduğu hallerde mertebenin düşürülmesi ve çözüme nasıl ulaşılabileceği, teorinin genelleştirilmesi olan lambda simetri metodu ile gösterilmiştir. 2000 li yılların başlarında ortaya atılan ve büyük bir gelişim gösteren bu yeni teorinin uygulanabilirliği üzerinde durulmuştur. Bu bağlamda lineer olmayan salınım denklemi göz önüne alınmış ve lambda simetri metodu ile denklemin integral çarpanı, indirgemesi ve çözümü elde edilmiştir. Bu metodun kapsayıcılığı iki yarı-algoritmik metot olan Prelle-Singer (P-S) ve eşlenik (adjoint) simetri metotları ile karşılaştırılarak gösterilmiştir.
dc.description.abstractIn this thesis, solution of second-order nonlinear ordinary differential equations are obtained by Lie group theory and some semi-alghoritmic methods. If it comes to the class of equation is the Lie group generator, then it?s shown that how to reduce order of the equation. Especially, when at least two Lie generator of the equation under consideration is present, how the equations can enter one of the four different canonical group is shown in detail on 33. Painlevé-Gambier equation. On the other hand, Lie generator of each diferential equations is not available. If any Lie generator is not available or is trivial, then it?s shown that reduction order and how to obtain solution with symmetry method. This new theory which comes out in the early stages 2000 and there are lots of improvement so far, focused on the applicability. In this respect, the nonlinear oscillation equation is considered and integrating factor, reduction and solution of the equation are obtained by symmetry method. Its shown that the comprehensiveness of this method compared with semi-algorithmic methods which are Prelle-Singer (P-S) method and adjoint symmetry method.
dc.format.extentVI, 45 sayfa
dc.identifier.citationGiresunlu, İ. B. (2013). İkinci mertebeden lineer olmayan adi diferensiyel denklemlerin simetri indirgemeleri. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/5667
dc.language.isotr
dc.publisherUludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLie grup teorisi
dc.subjectSimetri
dc.subjectPrelle-singer metodu
dc.subjectEşlenik simetri
dc.subjectSimetri indirgemeleri
dc.subjectİlk integraller
dc.subjectLie group theory
dc.subjectSymmetry
dc.subjectPrelle-singer method
dc.subjectAdjoint symmetry
dc.subjectSymmetry reductions
dc.subjectFirst integrals
dc.titleİkinci mertebeden lineer olmayan adi diferensiyel denklemlerin simetri indirgemeleri
dc.title.alternativeSymmetry reductions of nonlinear second-order ordinary differential equations
dc.typemasterThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Matematik Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
343173.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: