Publication:
1st and 2nd law characteristics in a micropipe: Integrated effects of surface roughness, heat flux and reynolds number

dc.contributor.buuauthorÖzalp, A. Alper
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0002-4976-9027tr_TR
dc.contributor.researcheridABI-6888-2020tr_TR
dc.contributor.scopusid6506131689tr_TR
dc.date.accessioned2022-01-14T06:09:51Z
dc.date.available2022-01-14T06:09:51Z
dc.date.issued2009
dc.description.abstractA computational study of the integrated effects of surface roughness, heat flux, and Reynolds number on the 1st and 2nd law characteristics of laminar-transitional flow in a micropipe is presented. Analyses are carried by solving the variable fluid property continuity, Navier-Stokes, and energy equations for the surface roughness, heat flux, and Reynolds number ranges of 1-50 m, 5-100 W/m2, and 1-2000, respectively. Computations put forward that surface roughness not only accelerates transition to lower Reynolds number but also augments heat transfer rates, such that the transitional Reynolds numbers and intermittency values are evaluated as 1650, 575, and 450 and 0.132, 0.117, and 0.136 for the surface roughness cases of 1, 20, and 50 m, respectively. Thermocritical Reynolds numbers are identified by determining the viscous dissipation rates, which characterize the heating/cooling behavior and the related Reynolds number range. Surface roughness comes out to have no role on entropy generation at low Reynolds numbers; moreover, entropy generation is found to be inversely proportional with mean temperature variation, where the trends become almost asymptotic at the lower limit of the investigated Reynolds number range. Being independent of surface roughness, heat flux, and Reynolds number, radial irreversibility distribution ratio is determined to be negligible at the pipe centerline, indicating that the frictional entropy is minor and the major portion of the total entropy generation is thermal based.en_US
dc.identifier.citationÖzalp, A. A. (2009). "1st and 2nd law characteristics in a micropipe: Integrated effects of surface roughness, heat flux and reynolds number". Heat Transfer Engineering, 30(12), 973-987.en_US
dc.identifier.endpage987tr_TR
dc.identifier.issn0145-7632
dc.identifier.issue12tr_TR
dc.identifier.scopus2-s2.0-67651248026tr_TR
dc.identifier.startpage973tr_TR
dc.identifier.urihttps://doi.org/10.1080/01457630902837467
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/01457630902837467
dc.identifier.urihttp://hdl.handle.net/11452/24087
dc.identifier.volume30tr_TR
dc.identifier.wos000265857600007
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherTaylor&Francisen_US
dc.relation.journalHeat Transfer Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLaminar forced-convectionen_US
dc.subjectEntropy generationen_US
dc.subjectNumerical-analysisen_US
dc.subjectPressure-dropen_US
dc.subjectFlowen_US
dc.subjectMicrochannelsen_US
dc.subjectWallen_US
dc.subjectFrictionen_US
dc.subjectSimulationen_US
dc.subjectChannelsen_US
dc.subjectThermodynamicsen_US
dc.subjectEngineeringen_US
dc.subjectMechanicsen_US
dc.subjectEntropyen_US
dc.subjectHeat fluxen_US
dc.subjectMetal analysisen_US
dc.subjectNavier Stokes equationsen_US
dc.subjectSurface propertiesen_US
dc.subjectSurface roughnessen_US
dc.subjectCenterlineen_US
dc.subjectComputational studiesen_US
dc.subjectDistribution ratioen_US
dc.subjectEnergy equationen_US
dc.subjectEntropy generationen_US
dc.subjectHeat transfer rateen_US
dc.subjectIntegrated effectsen_US
dc.subjectIntermittencyen_US
dc.subjectLow Reynolds numberen_US
dc.subjectLower limitsen_US
dc.subjectMean temperatureen_US
dc.subjectMicropipeen_US
dc.subjectNavier Stokesen_US
dc.subjectTotal entropyen_US
dc.subjectTransitional flowen_US
dc.subjectVariable fluid propertiesen_US
dc.subjectViscous dissipation rateen_US
dc.subjectReynolds numberen_US
dc.subject.scopusKnudsen Flow; Microchannels; Brinkman Numberen_US
dc.subject.wosThermodynamicsen_US
dc.subject.wosEngineering, mechanicalen_US
dc.subject.wosMechanicsen_US
dc.title1st and 2nd law characteristics in a micropipe: Integrated effects of surface roughness, heat flux and reynolds numberen_US
dc.typeArticle
dc.wos.quartileQ2 (Engineering, mechanical)en_US
dc.wos.quartileQ3en_US
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümütr_TR

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: