NOMA tabanlı bilişsel radyo sistemlerinde sinir ağı yöntemleri ile ergodik kapasite tahmini ve başarım analizi
Files
Date
2023-01-24
Authors
Namdar, Mustafa
Güney, Abdulkadir
Bardak, Fatma Kebire
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Bu çalışmada, bilişsel radyo (BR) tabanlı dikgen olmayan çoklu erişim tekniği (NOMA) kullanılarak, yakın kullanıcıya ait toplam ergodik kapasite değerinin, önerilen ileri beslemeli geri yayılımlı yapay sinir ağı (YSA) ve doğrusal olmayan dışsal girdili otoregresif ağ (Nonlinear Autoregressive Network with Exogenous Inputs, NARX) modeli ile farklı eğitim algoritmaları yoluyla yüksek doğruluk oranında ve hızlı eğitim sürelerinde tahmin edilmesi amaçlanmıştır. Sinir ağında kullanılan veri seti, üstel sönümleme kanalı karakteristiği ile modellenen BR-NOMA sistem modelinden elde edilmiştir. Denetimli öğrenme yöntemi kullanılarak tasarlanan YSA’ya girdi ve çıktı verileri öğretilerek yakın kullanıcıya ait ergodik kapasite tahmini yapılmıştır. YSA ve NARX sinir ağları başarımı değerlendirilirken eğitim süresi, iterasyon sayısı, ağın doygunluğa ulaşmaması durumları göz önünde bulundurulmuştur. Yakın kullanıcıya ait gerçek ergodik kapasite değeri ile ileri beslemeli geri yayılımlı YSA ve NARX ağlarının tahmin etmiş olduğu değerler karşılaştırılmıştır. Önerilen sinir ağlarının Levenberg-Marquardt, Bayesian ve Scaled-Conjugate eğitim algoritmaları altındaki performans analizi, hatanın minimuma ulaştığı epok değer grafiği, hata histogram analizi ve eğitim durum analizi açılarından incelenmiştir.
In this study, using the cognitive radio (CR)-based non-orthogonal multiple access (NOMA) technique, the total ergodic capacity value of the close user is estimated with high accuracy and fast training times through different training algorithms with the proposed feedforward backpropagation artificial neural network (ANN) and nonlinear autoregressive network with exogenous inputs (NARX) model. The data set used in the neural network was obtained from the CR-NOMA system model, which was modeled with the exponential fading channel characteristic. By training the input and output data to the ANN, which was designed using the supervised learning method, ergodic capacity estimates of the close user were made over the test data. While evaluating the performance of ANN and NARX neural networks, the training time, the number of iterations, and the conditions of the network not reaching saturation were taken into consideration. The actual ergodic capacity value of the close user and the predicted values of feedforward backpropagation ANN and NARX networks were compared. The performance analysis of the proposed neural networks under Levenberg-Marquardt, Bayesian and Scaled-Conjugate training algorithms has been examined in terms of epoch value graph, error histogram analysis, and training state analysis where the error reaches the minimum.
In this study, using the cognitive radio (CR)-based non-orthogonal multiple access (NOMA) technique, the total ergodic capacity value of the close user is estimated with high accuracy and fast training times through different training algorithms with the proposed feedforward backpropagation artificial neural network (ANN) and nonlinear autoregressive network with exogenous inputs (NARX) model. The data set used in the neural network was obtained from the CR-NOMA system model, which was modeled with the exponential fading channel characteristic. By training the input and output data to the ANN, which was designed using the supervised learning method, ergodic capacity estimates of the close user were made over the test data. While evaluating the performance of ANN and NARX neural networks, the training time, the number of iterations, and the conditions of the network not reaching saturation were taken into consideration. The actual ergodic capacity value of the close user and the predicted values of feedforward backpropagation ANN and NARX networks were compared. The performance analysis of the proposed neural networks under Levenberg-Marquardt, Bayesian and Scaled-Conjugate training algorithms has been examined in terms of epoch value graph, error histogram analysis, and training state analysis where the error reaches the minimum.
Description
Keywords
Bayesian, Bilişsel radyo, Levenberg Marquardt, NARX, NOMA, Yapay sinir ağları, Cognitive radio, Artificial neural networks
Citation
Namdar, M. vd. (2023). ''NOMA tabanlı bilişsel radyo sistemlerinde sinir ağı yöntemleri ile ergodik kapasite tahmini ve başarım analizi''. Uludağ Üniversitesi Mühendislik Dergisi, 28(1), 253-272.