A clinical decision support system for femoral peripheral arterial disease treatment

dc.contributor.buuauthorYurtkuran, Alkın
dc.contributor.buuauthorTok, Mustafa
dc.contributor.buuauthorEmel, Erdal
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-9220-7353tr_TR
dc.contributor.orcid0000-0003-2978-2811tr_TR
dc.contributor.researcheridN-8691-2014tr_TR
dc.contributor.researcheridAAH-1410-2021tr_TR
dc.contributor.scopusid26031880400tr_TR
dc.contributor.scopusid6506976035tr_TR
dc.contributor.scopusid6602919521tr_TR
dc.date.accessioned2023-06-23T11:17:29Z
dc.date.available2023-06-23T11:17:29Z
dc.date.issued2013
dc.description.abstractOne of the major challenges of providing reliable healthcare services is to diagnose and treat diseases in an accurate and timely manner. Recently, many researchers have successfully used artificial neural networks as a diagnostic assessment tool. In this study, the validation of such an assessment tool has been developed for treatment of the femoral peripheral arterial disease using a radial basis function neural network (RBFNN). A data set for training the RBFNN has been prepared by analyzing records of patients who had been treated by the thoracic and cardiovascular surgery clinic of a university hospital. The data set includes 186 patient records having 16 characteristic features associated with a binary treatment decision, namely, being a medical or a surgical one. K-means clustering algorithm has been used to determine the parameters of radial basis functions and the number of hidden nodes of the RBFNN is determined experimentally. For performance evaluation, the proposed RBFNN was compared to three different multilayer perceptron models having Pareto optimal hidden layer combinations using various performance indicators. Results of comparison indicate that the RBFNN can be used as an effective assessment tool for femoral peripheral arterial disease treatment.en_US
dc.identifier.citationYurtkuran, A. vd. (2013). "A clinical decision support system for femoral peripheral arterial disease treatment", Computational and Mathematical Methods in Medicine, 2013.en_US
dc.identifier.issn1748-670X
dc.identifier.issn1748-6718
dc.identifier.pubmed24382983tr_TR
dc.identifier.scopus2-s2.0-84893808260tr_TR
dc.identifier.urihttps://doi.org/10.1155/2013/898041
dc.identifier.urihttps://www.hindawi.com/journals/cmmm/2013/898041/
dc.identifier.urihttp://hdl.handle.net/11452/33150
dc.identifier.volume2013tr_TR
dc.identifier.wos000328767000001tr_TR
dc.indexed.pubmedPubMeden_US
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherHindawien_US
dc.relation.journalComputational and Mathematical Methods in Medicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematical & computational biologyen_US
dc.subjectChonic obstructive pulmonaryen_US
dc.subjectAcute myocardial-infarctionen_US
dc.subjectFunction neural networksen_US
dc.subjectMultilayer perceptronen_US
dc.subjectDiabetes diseaseen_US
dc.subjectHeart-failureen_US
dc.subjectDiagnosisen_US
dc.subjectClassificationen_US
dc.subjectAlgorithmsen_US
dc.subjectStenosisen_US
dc.subjectCardiovascular surgeryen_US
dc.subjectDecision support systemsen_US
dc.subjectDiagnosisen_US
dc.subjectFunctionsen_US
dc.subjectHeat conductionen_US
dc.subjectImage segmentationen_US
dc.subjectK-means clusteringen_US
dc.subjectMultilayer neural networksen_US
dc.subjectPareto principleen_US
dc.subjectRadial basis function networksen_US
dc.subjectAssessment toolen_US
dc.subjectClinical decision support systemsen_US
dc.subjectHealthcare servicesen_US
dc.subjectPatient recorden_US
dc.subjectPerformance indicatorsen_US
dc.subjectPeripheral arterial diseaseen_US
dc.subjectRadial basis function neural networksen_US
dc.subjectRadial basis functionsen_US
dc.subjectDiseasesen_US
dc.subject.emtreeAdulten_US
dc.subject.emtreeArticleen_US
dc.subject.emtreeArtificial neural networken_US
dc.subject.emtreeCardiovascular surgeryen_US
dc.subject.emtreeClinical decision makingen_US
dc.subject.emtreeClinical studyen_US
dc.subject.emtreeDecision support systemen_US
dc.subject.emtreeFemaleen_US
dc.subject.emtreeFemoral arteryen_US
dc.subject.emtreeHealth serviceen_US
dc.subject.emtreeHumanen_US
dc.subject.emtreeMajor clinical studyen_US
dc.subject.emtreeMaleen_US
dc.subject.emtreeMedical recorden_US
dc.subject.emtreeMiddle ageden_US
dc.subject.emtreePerceptronen_US
dc.subject.emtreePeripheral occlusive artery diseaseen_US
dc.subject.emtreeRadial based functionen_US
dc.subject.emtreeUniversity hospitalen_US
dc.subject.emtreeValidation processen_US
dc.subject.emtreeAgeden_US
dc.subject.emtreeAlgorithmen_US
dc.subject.emtreeArea under the curveen_US
dc.subject.emtreeArtificial intelligenceen_US
dc.subject.emtreeCluster analysisen_US
dc.subject.emtreeDecision treeen_US
dc.subject.emtreeFemuren_US
dc.subject.emtreeNormal distributionen_US
dc.subject.emtreePathologyen_US
dc.subject.emtreePeripheral occlusive artery diseaseen_US
dc.subject.emtreePredictive valueen_US
dc.subject.emtreeReproducibilityen_US
dc.subject.emtreeSensitivity and specificityen_US
dc.subject.meshAgeden_US
dc.subject.meshAlgorithmsen_US
dc.subject.meshArea under curveen_US
dc.subject.meshArtificial intelligenceen_US
dc.subject.meshCluster analysisen_US
dc.subject.meshDecision support systemsen_US
dc.subject.meshClinicalen_US
dc.subject.meshDecision treesen_US
dc.subject.meshFemaleen_US
dc.subject.meshFemuren_US
dc.subject.meshHumansen_US
dc.subject.meshMiddle ageden_US
dc.subject.meshMaleen_US
dc.subject.meshNeural networks (computer)en_US
dc.subject.meshNormal distributionen_US
dc.subject.meshPeripheral arterial diseaseen_US
dc.subject.meshPredictive value of testsen_US
dc.subject.meshReproducibility of resultsen_US
dc.subject.meshSensitivity and specificityen_US
dc.subject.scopusPhenylketonurias; Judgments; Lensesen_US
dc.subject.wosMathematical & computational biologyen_US
dc.titleA clinical decision support system for femoral peripheral arterial disease treatmenten_US
dc.typeArticle
dc.wos.quartileQ3en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yurtkuran_vd_2013.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: