Publication:
Performance measurements of 12 different machine learning algorithms that make personalized psoriasis treatment recommendations with a database of psoriasis patients responding to treatment

dc.contributor.authorAltıparmak, Hamit
dc.contributor.authorYazici, Serkan
dc.contributor.authorYılmaz, İzel
dc.contributor.authorBaşkan, Emel Bülbül
dc.contributor.authorOral, Haluk Barbaros
dc.contributor.authorAydoǧan, Kenan
dc.contributor.authorTemel, Şehime Gülsün
dc.contributor.authorErgören, Mahmut Çerkez
dc.contributor.authorAl-Turjman, Fadi
dc.contributor.buuauthorYAZİCİ, SERKAN
dc.contributor.buuauthorYılmaz, İzel
dc.contributor.buuauthorBÜLBÜL BAŞKAN, EMEL
dc.contributor.buuauthorORAL, HALUK BARBAROS
dc.contributor.buuauthorAYDOĞAN, KENAN
dc.contributor.buuauthorTEMEL, ŞEHİME GÜLSÜN
dc.contributor.departmentTıp Fakültesi
dc.contributor.departmentDermatoloji Ana Bilim Dal
dc.contributor.departmentTıbbi Genetik Ana Bilim Dalı
dc.contributor.orcid0000-0001-6407-0962
dc.contributor.orcid0000-0003-0463-6818
dc.contributor.orcid0000-0002-9802-0880
dc.contributor.scopusid25925620000
dc.contributor.scopusid57204663988
dc.contributor.scopusid6602518817
dc.contributor.scopusid7004498001
dc.contributor.scopusid9739755800
dc.contributor.scopusid6507885442
dc.date.accessioned2025-05-12T22:35:18Z
dc.date.issued2024-01-01
dc.description.abstractThe improvements in the performance of parallel processors have contributed greatly to the rapid increase in artificial intelligence (AI) applications. Compared to traditional processors, parallel processors can perform artificial learning operations within a minute that will last for months. AI revolution has been made in many fields today. AI is also frequently used in the field of health. In this study, psoriasis patient data collected by our doctors who contributed to the article were trained with 12 different machine learning methods. There are eight inputs and three outputs in our dataset consisting of 100 patients. The main purpose here is to obtain the highest accuracy for the right treatment method to be applied to future patients. The outputs in the dataset used for training indicate which type of patient is cured with which treatment method. Our input values in the dataset are age, disease type, family history, arthritis, pitting, smoking, stress, and gender. The results obtained in this study with less patient data lay the foundation of a system that will be created with much higher accuracy with more data in the future.
dc.identifier.doi10.1016/B978-0-443-13268-1.00014-5
dc.identifier.endpage95
dc.identifier.isbn[9780443132681, 9780443132742]
dc.identifier.scopus2-s2.0-85193360294
dc.identifier.startpage85
dc.identifier.urihttps://hdl.handle.net/11452/51381
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.journalComputational intelligence and blockchain in complex systems: System security and interdisciplinary applications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPsoriasis
dc.subjectAncology
dc.subjectMedical genetics
dc.subjectMachine learning
dc.subjectDermatology
dc.subjectClassification
dc.subject.scopusFuzzy Logic Applications in Neural Network Design
dc.titlePerformance measurements of 12 different machine learning algorithms that make personalized psoriasis treatment recommendations with a database of psoriasis patients responding to treatment
dc.typeBook Chapter
dspace.entity.typePublication
local.contributor.departmentTıp Fakültesi/Dermatoloji Ana Bilim Dal
local.contributor.departmentTıp Fakültesi/Tıbbi Genetik Ana Bilim Dalı
relation.isAuthorOfPublication9bc5c730-985b-47f5-a6ce-72d472c96078
relation.isAuthorOfPublication5bd3accb-bb59-411b-8d6c-46d06d35b5a4
relation.isAuthorOfPublicationbc853dab-a811-42b9-b03b-6d5fe067efe8
relation.isAuthorOfPublication25c8c1ea-a743-4c4b-b62f-8b4f6a11ef75
relation.isAuthorOfPublicationf513efaa-a54e-4cfa-840f-28e2fbdc001a
relation.isAuthorOfPublication.latestForDiscovery9bc5c730-985b-47f5-a6ce-72d472c96078

Files

Collections