Person:
TAŞDEMİR, YÜCEL

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

TAŞDEMİR

First Name

YÜCEL

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Levels, distributions, and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in ambient air and pine components
    (Springer, 2021-05-01) Eleren, Sevil Çalışkan; Taşdemir, Yücel; ÇALIŞKAN ELEREN, SEVİL; TAŞDEMİR, YÜCEL; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Çevre Mühendisliği Bölümü; AAH-1297-2021; GFK-4579-2022
    Pine tree (Pinus pinea) components have been used as passive air samples for determining atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations. Our results indicated that pine needles and branches were found to be statistically successful in describing the ambient air. Monthly pine needles, branches (1- and 2-year-old) and ambient air samples were collected for 1 year to identify molecular distributions and temporal concentrations of PAHs in a suburban-industrial area. Annual average sigma(14)PAH concentrations for pine needles, 1- and 2-year-old branches, and ambient air were 756 +/- 232 ng/g DW, 685 +/- 350 ng/g DW, 587 +/- 361 ng/g DW, and 28.29 +/- 32.33 ng/m(3), respectively. The order of average sigma(14)PAH concentrations in the pine tree components was determined as needle > 1-year-old branch > 2-year-old branch. In general, concentrations increased with the rise in the surface area of tree components. In the samples, 3- and 4-ring PAHs were dominant compounds in the ambient air, pine needles, and branches. The annual total fraction of 3- and 4-ring PAHs in the air was 98.5%, while the fraction of 5- and 6-ring PAHs was 1.5%. On the other hand, 3- and 4-ring PAHs in pine needles and branches were 30% or more. The fraction and level of PAHs change with the season. Although needle samples did not show any seasonal trend, PAH levels in other tree components changed with the air temperature. Generally, lower values were observed in warmer seasons in the branch samples. Similarly, ambient air PAH concentrations were higher in the winter season due to heating and adverse meteorological conditions.
  • Publication
    Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations
    (Elsevier, 2021-01-01) Sarı, Mehmet Ferhat; Esen, Fatma; Taşdemir, Yücel; Sarı, Mehmet Ferhat; ESEN, FATMA; TAŞDEMİR, YÜCEL; 0000-0001-7114-7286; AAG-8469-2021; AAG-9468-2021; AAK-1254-2020
    Both quantitative and qualitative evaluation of pollutants can be achieved by biomonitoring, enabling the determination of persistent organic pollutants (POPs) with a natural substance. Similarly, passive air samplers (PASs) are among the commonly used methods for the determination of atmospheric POPs. However, in the literature, there are few studies in which both methods (Biomonitoring and PASs) are evaluated together. This study aims to determine the relationship between concentration values and sources of polychlorinated biphenyls (PCBs) measured by PASs and biomarkers (honeybee, honey, and pollen). The total concentrations of 50 PCB congeners (Sigma(50)PCBs) in PASs (n = 10) were 2259.63 +/- 647.18 pg m(3) for the urban area and 2685.65 +/- 708.45 pg m(3) for the semi-urban area. Sigma(50)PCBs in the honeybee (n = 10), honey (n = 7), and pollen (n = 10) samples were 114.44 +/- 20.36, 104.89 +/- 31.48 and 65.89 +/- 13.54 ng g(-1) dry weight (dw) for the urban sampling area, respectively, and 119.41 +/- 45.13, 112.75 +/- 21.57 and 46.52 +/- 8.85 ng g(-1) dw for the semi-urban sampling area, respectively. Similar homologous group distributions between biomarkers and PASs were obtained. The plant/air partitioning coefficient (K-PA) was used to determine the exchange between pollen samples and PASs. The results indicated that high-molecular-weight PCBs moved from air to pollen media (deposition) and low-molecular -weight PCB congeners passed from pollen media to air (volatilization) in both sampling areas.
  • Publication
    Pah levels in a furniture-manufacturing city atmosphere
    (Elsevier, 2020-02-01) Çalışkan, Burak; Küçük, Aleyna; Taşdemir, Yücel; Cindoruk, Sabahattin Sıddık; ÇALIŞKAN, BURAK; Küçük, Aleyna; TAŞDEMİR, YÜCEL; CİNDORUK, SABAHATTİN SIDDIK; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Çevre Mühendisliği Bölümü; 0000-0002-8729-9441; 0000-0002-6192-8609; 0000-0001-7536-0332; AAT-6526-2020; AAG-9468-2021; JHH-5032-2023; GBB-7012-2022
    In this study, in order to determine atmospheric PAH concentrations in Inegol/Turkey, ambient air samples were collected from two different sites representing industrial and uncontrolled furniture manufacturers regions. Sampling campaign took place between December 2017 and November 2018. Air samples were collected using high volume air samplers (HVAS) and PAH concentrations were determined in both gas and particulate phases. The mean of the atmospheric PAH concentrations obtained in the gas phase in the furniture workshops (FW) and industrial district (ID) regions were 697.82 +/- 637 ng/m(3) and 772.92 +/- 864.23 ng/m(3), respectively. The concentrations in the particulate phase in the regions were 413.52 +/- 430.23 ng/m(3) and 342.40 +/- 527.48 ng/m(3), respectively. The average total (gas + particlulate phases) concentration of Sigma(16)PAH determined in the site of FW was 1111.34 +/- 1045.24 ng/m(3) while that was 772.92 +/- 864.23 ng/m(3) in ID. These values are over the ambient levels reported for urban sites wherein big industries exist around the world. Additionally, the average of particle phase percentage was 30% because of nearby combustion sources. The determination of possible sources of PAHs in the regions was performed using principal component analysis (PCA). PCA results showed that the main sources of pollutants of the regions are intertwined (combustion, traffic, industries). However, the most effective source is thought to be uncontrolled combustion of furniture wastes as fuel for residential heating. Health risks for the citizens were calculated for both regions and were found not to be at high-class risk.