Person: TAVASLI, MUSTAFA
Loading...
Email Address
Birth Date
3 results
Search Results
Now showing 1 - 3 of 3
Publication Carbazole-based D-π-A molecules: Determining the photophysical properties and comparing ICT effects of π-spacer and acceptor groups(Elsevier, 2021-04-11) Altınölçek, Nuray; Battal, Ahmet; Vardallı, Cemre Nur; Tavaslı, Mustafa; Yu, Holly A.; Peveler, William J.; Skabara, Peter J.; ALTINÖLÇEK GÜLTEKİN, NURAY; Vardalli, Cemre Nur; TAVASLI, MUSTAFA; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Bölümü.; 0000-0002-9466-1111; JCN-8292-2023 ; EDG-8300-2022 ; AAB-1630-20204-(9'-Hexylcarbazol-3'-yl)benzaldehyde (Cz-Ph-CHO: 4 ) and 4-(9'-hexylcarbazol-3'- yl)benzylidenemalononitrile (Cz-Ph-CN: 5 ) were synthesised with the structure of D-pi-A,where carbazole, phenylene and formyl/dicyanovinyl groups act as electron donor (D), pi-spacer (pi) and electron acceptor (A) units, respectively. The thermal, electrochemical, optical and intramolecular charge transfer (ICT) properties of compounds 4 and 5 were investigated. Compounds 4 and 5 , in particular their ICT behaviour, were also compared with the closely related structure, 2-(9'-hexylcarbazol-3'-yl)-5-pyridinecarbaldehyde (Cz-Py-CHO: 7 ). For the purpose of tuning chemical structure to obtain targeted properties, electrochemical data and absorption and emission measurements suggest that the dicyanovinyl unit in compound 5 is a better acceptor than formyl in compound 4, and that pyridine in compound 7 is a better pi-spacer than benzene in compound 4 , in exerting ICT characteristics such as fluorosolvatochromism and Stokes shifts.Publication A red-orange carbazole-based iridium(III) complex: Synthesis, thermal, optical and electrochemical properties and OLED application(Elsevier Science, 2021-07-21) Altınölçek, Nuray; Battal, Ahmet; Tavaslı, Mustafa; Cameron, Joseph; Peveler, William J.; Yu, Holly A.; Skabara, Peter J.; Fairbairn, Nicola J.; Hedley, Gordon J.; ALTINÖLÇEK GÜLTEKİN, NURAY; TAVASLI, MUSTAFA; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Bölümü.; 0000-0002-9466-1111; JCN-8292-2023; AAB-1630-2020A novel heteroleptic iridium(III) acetylacetonate (acac) complex, (L-5-CHO)(2)Ir(acac) (3b), was synthesised from 2-(9'-hexylcarbazole-3'-yl)-5-formylpyridine (L-5-CHO) (1b). The complex 3b was determined to be thermally and electrochemically stable. The photoluminescence properties of the compound were studied, with a dichloromethane solution of 3b giving structureless emission at 662 nm, showing that the formyl group red-shifted the emission by 151 nm compared to the parent complex. Complex 3b was also shown to possess a moderate photoluminescence quantum yield (67%) and a short emission lifetime (tau = 280 ns). Organic light-emitting diodes (OLEDs) were fabricated with a solution-processed emissive layer (EML) consisting of poly(N-vinylcarbazole) (PVK), 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and iridium complex (3b). The OLEDs containing complex 3b showed red-orange electroluminescence (EL) at 624 nm. The influence of the host materials was studied and the best performance was achieved with both PVK and PBD in the emissive layer, with the resulting OLEDs exhibiting a current efficiency of 0.84 cd/A, a power efficiency of 0.20 lm/W, and an external quantum efficiency (EQE) of 0.66% at a brightness of 2548 cd/m(2).Publication A reaction-based carbazole-dicyanovinyl conjugated colorimetric and ratiometric fluorescent probe for selective detection of cyanide ions(Pergamon-Elsevier Science Ltd, 2023-09-07) Battal, Ahmet; Kassa, Solomon Bezabeh; Gültekin, Nuray Altınolçek; Tavaslı, Mustafa; Onganer, Yavuz; ALTINÖLÇEK GÜLTEKİN, NURAY; TAVASLI, MUSTAFA; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Bölümü.; 0000-0002-9466-1111 ; HNL-5314-2023; AAB-1630-2020In the present work, 4-(9'-hexylcarbazol-3'-yl)benzylidenemalononitrile 5 (probe L) was tested as a colorimetric and ratiometric fluorescent probe in dimethyl sulfoxide (DMSO) medium towards anions, cations and neutral molecules. The sensing properties of probe L were investigated by using UV-Vis absorption and fluorescence spectroscopy techniques. Probe L showed selectivity and sensitivity towards cyanide ions (CN-) in the presence of analytes used. Upon the addition of CN-, intramolecular charge transfer (ICT) band at 425 nm in UV spectrum disappeared. In addition, ICT emission intensity at 593 nm decreased and ligand-centred (LC) emission intensity at 480 nm increased. These findings indicate that nucleophilic conjugate addition of CN- to the dicyanovinyl group of probe L successfully occurs, hence forming a new adduct between probe L and CN-. In this adduct, pi-conjugation was partially blocked, and the ICT transfer was hindered. Adduct formation was proved by Job's plot, H-1 NMR and FT-IR analysis. Probe L showed very low limit of detection (LOD) value of 1.467 nM towards CN-. Probe L was also applied to the CN- detection in real-world water samples by the spike and recovery method. The maximum relative standard deviation (RSD) value was 4.24, indicating this method works successfully. Therefore, probe L could find a potential use in detection of CN- in liquid media.