Person:
UZUN, BÜŞRA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

UZUN

First Name

BÜŞRA

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Finite element formulation for nano-scaled beam elements
    (Wiley, 2021-12-02) Civalek, Ömer; Uzun, Buşra; Yaylı, Mustafa Özgür; YAYLI, MUSTAFA ÖZGÜR; UZUN, BÜŞRA; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0003-1907-9479; 0000-0003-2231-170X; ABE-6914-2020; AAJ-6390-2021
    In the present study, size-dependent buckling and free vibration behaviors of single-walled boron nitride nanotube (SWBNNT) are performed in conjunction with various size-dependent elasticity theories. Modified couple stress theory (MCST) and Eringen's nonlocal elasticity theory are used for size-dependent models of SWBNNT. Also, the buckling loads and frequencies are obtained by using local theory to emphasize the effects and differences of these size-dependent theories. Consequently, three different elasticity theories (two non-classical and one classical) are utilized to achieve the detailed buckling and vibration analyses of SWBNNT. In this study, the buckling loads and frequencies of SWBNNTs are obtained via presented finite element formulation. In the finite element procedures based on two different size-dependent elasticity theories, matrices containing the small size parameter are derived. With these matrices containing the small size parameters, eigenvalue problems for buckling and free vibration analyses are formed. The buckling loads and frequency values of the SWBNNTs under the size effect are obtained. The influences of the dimensionless nonlocal parameter, dimensionless material length scale parameter, length-to-diameter ratio and boundary conditions on nanotube's buckling and vibration characteristics are investigated. In addition to these influences, the rotary inertia effect neglected in many other studies is also examined.
  • Publication
    Buckling analysis of nanobeams with deformable boundaries via doublet mechanics
    (Springer, 2021-09-07) Civalek, Ömer; Uzun, Büşra; Yaylı, Mustafa Özgür; UZUN, BÜŞRA; YAYLI, MUSTAFA ÖZGÜR; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-7636-7170; 0000-0003-2231-170X; AAJ-6390-2021; ABE-6914-2020
    Buckling analysis of nanobeams with deformable boundary conditions is researched within the framework of doublet mechanics. This theory is an alternative nanomechanics theory for continuum modeling of the granular micromaterials. Doublet mechanics theory takes into consideration the small size parameter due to dealing with also granular nanosized structures. In many studies, rigid supporting conditions are explored in the nanomechanical analysis of beams. Even though the supporting conditions are accepted as undeformable, it is not possible to provide the desired rigidity in practice. A few studies have been conducted to explore the effects of deformable boundaries. In the present work, Fourier sine series as well as Stokes' transformation are utilized to attain the eigenvalue formulation and eigenvector characteristics of the problem. The combination of these two methods is a new approach in applied mechanics; at the same time, it is planned to create a bridge between rigid and deformable boundary conditions. By solving various examples, the accuracy of the proposed method has been tested and an excellent agreement has been achieved with the literature. In addition, the effect of the springs in the boundaries on the critical buckling load has been examined and given in a series of graphs.