Person:
ÇAKIR, AYŞEN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ÇAKIR

First Name

AYŞEN

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Anti-apoptotic and anti-oxidant effects of systemic uridine treatment in an experimental model of sciatic nerve injury
    (Türk Nöroloji Derneği, 2021-01-01) Khezri, Marzieh Karimi; Turkkan, Alper; Khezri, Marzieh Karimi; Koç, Cansu; KOÇ, CANSU; Salman, Berna; SALMAN, BERNA; Levent, Pinar; Cakir, Aysen; Kafa, Ilker Mustafa; Cansev, Mehmet; Bekar, Ahmet; ÇAKIR, AYŞEN; KAFA, İLKER MUSTAFA; CANSEV, MEHMET; BEKAR, AHMET; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Farmakoloji Anabilim Dalı.; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Anatomi Anabilim Dalı.; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Fizyoloji Anabilim Dalı.; 0000-0002-6097-5585; 0000-0001-8309-0934; 0000-0003-2918-5064; AAA-4754-2022; ABX-9081-2022; A-6819-2018
    AIM: To investigate the anti-apoptotic and anti-oxidant effects of systemic uridine treatment in a rat model of sciatic nerve injury.MATERIAL and METHODS: Thirty-two adult male rats were equally randomized to Sham, Control, U100, and U500 groups. Sham rats received a sham operation by exposing the right sciatic nerve without transection, while those in the Control, U100, and U500 groups underwent right sciatic nerve transection followed by immediate primary anostomosis. Sham and Control groups received saline (0.9% NaCl) injections intraperitoneally (i.p.), while U100 and U500 groups received 100 mg/kg and 500 mg/kg uridine injections (i.p.), respectively, once a day for 7 days after the surgery. Rats in all the groups were sacrificed on the eighth day; sciatic nerve samples were analyzed for apoptosis by Western Blotting and for oxidation parameters including myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) by Enzyme-Linked Immunosorbent Assay (ELISA).RESULTS: Uridine treatment at the dose of 500 mg/kg significantly decreased as apoptosis determined by Caspase-3/Actin ratio and exhibited significant anti-oxidant effects as determined by decreased levels of MPO and MDA as well as increased levels of SOD, GPx, and CAT compared to controls. Uridine at 100 mg/kg was only found to decrease the Caspase-3/Actin ratio, although it significantly decreased MDA and increased CAT levels compared to controls.CONCLUSION: Treatment with uridine reduces apoptosis and oxidation in a rat model of sciatic nerve injury dose-dependently. Thus, uridine may be beneficial in peripheral nerve regeneration by exhibiting anti-apoptotic and anti-oxidant effects.
  • Publication
    Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury
    (TÜBİTAK, 2020-05-31) Al, Nevin; Çakir, Aysen; Koç, Cansu; Cansev, Mehmet; Alkan, Tülin; ÇAKIR, AYŞEN; KOÇ, CANSU; CANSEV, MEHMET; ALKAN, TÜLİN; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Fizyoloji Anabilim Dalı.; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Farmakoloji Anabilim Dalı.; 0000-0002-6097-5585; 0000-0003-2918-5064; 0000-0001-6466-5042; AAA-4754-2022; A-6819-2018; M-9071-2019; AAH-1792-2021
    Background/aim: Premature birth is a major problem that results in an increased risk of mortality and morbidity. The management of such infants consists of supraphysiological oxygen therapy, which affects brain development due, in part, to the deterioration caused by reactive oxygen species (ROS). We showed previously that exogenously administered uridine provides neuroprotection in a neonatal rat model of hyperoxic brain injury. Hence, the aim of the present study was to investigate the effects of uridine on ROS in the same setting.Materials and methods: Hyperoxic brain injury was induced by subjecting a total of 53 six-day-old rat pups to 80% oxygen (the hyperoxia group) for a period of 48 h. The pups in the normoxia group continued breathing room air (21% oxygen). Normoxia + saline or hyperoxia + saline or hyperoxia + uridine 100 mg/kg or hyperoxia + uridine 300 mg/kg or hyperoxia + uridine 500 mg/kg was injected intraperitoneally (i. p.) 15 min prior to the hyperoxia procedure. The pups were decapitated and the brains were homogenized to analyze superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), myeloperoxidase (MPO), and malondialdehyde (MDA) enzymes as well as DJ-1 (protein deglycase DJ-1) - an oxidative stress-sensitive protein.Results: Hyperoxia-induced may cause overproduction of oxygen radicals and the oxidant/antioxidant balance may be disturbed in the brain. Brain MPO and MDA levels were significantly increased in saline-receiving pups exposed to hyperoxia. Brain SOD and GSH-Px levels were significantly decreased in saline-receiving pups exposed to hyperoxia. Our results showed that uridine administration prevented the hyperoxia-induced decrease in SOD and GSH-Px while counteracting the hyperoxia-induced increase in MPO and MDA in a dose-dependent manner. Uridine also increased the DJ-1 levels in brains of rat pups subjected to hyperoxia.Conclusion: These data suggest that uridine exhibits antioxidative properties which may mediate the protective effects of uridine in a neonatal rat model of hyperoxic brain injury.