Person:
UZUN, BÜŞRA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

UZUN

First Name

BÜŞRA

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Longitudinal vibration analysis of FG nanorod restrained with axial springs using doublet mechanics
    (Taylor & Francis, 2021-10-26) Civalek, Ömer; Uzun, Büsra; Yaylı, Mustafa Özgür; UZUN, BÜŞRA; YAYLI, MUSTAFA ÖZGÜR; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0002-7636-7170; 0000-0003-2231-170X; AAJ-6390-2021; ABE-6914-2020
    In the current paper, the free longitudinal vibration response of axially restrained functionally graded nanorods is presented for the first time based on the doublet mechanics theory. Size dependent nanorod is considered to be made of functionally graded material consist of ceramic and metal constituents. It is assumed that the material properties of the functionally graded nanorod are assumed to vary in the radial direction. The aim of this study is that to investigate the influences of various parameters such as functionally graded index, small size parameter, length of the nanorod, mode number and spring stiffness on vibration behaviors of functionally graded nanorod restrained with axial springs at both ends. For this purpose, Fourier sine series are used to define the axial deflection of the functionally graded nanorod. Then, an eigenvalue approach is established for longitudinal vibrational frequencies thanks to Stokes' transformation to deformable axial springs. Thus, the presented eigenvalue solution method is attributed to both rigid and deformable boundary conditions for the axial vibration of the functionally graded nanorod. With the help of the results obtained with the presented eigenvalue problem, it is observed that the parameters examined cause significant changes in the frequencies of the functionally graded nanorod.
  • Publication
    Size-dependent free vibration of silicon nanobeams with different boundary conditions and beam theories
    (Polish Acad Sciences Inst Physics, 2021-08-01) Uzun, Büşra; Yayli, Mustafa Özgür; UZUN, BÜŞRA; YAYLI, MUSTAFA ÖZGÜR; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-7636-7170; 0000-0003-2231-170X; ABE-6914-2020; AAJ-6390-2021
    This paper aims to investigate the size effect on the free vibration responses of nanobeams with various boundary conditions, especially guide supported boundary conditions. It is seen that the boundary conditions examined in the previously published articles are mostly clamped-clamped, simply supported at both ends and clamped-simply supported. The difference of this article is that it examines the size effect based on the modified couple stress theory on vibrations of nanobeams with guide supported boundary conditions as well. In addition, the influences of the cross-section and the rotary inertia effect change on the vibrational responses of the nanobeams are pursued as a case study. A finite element method procedure is utilized to calculate the free vibrational frequencies of nanobeams.