Person:
CANDOĞAN, BURAK NAZMİ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

CANDOĞAN

First Name

BURAK NAZMİ

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    The effects of different irrigation levels and nitrogen doses on growth, quality and physiological parameters of warm-season turfgrasses
    (Galenos, 2023-01-01) Yonter, Fikret; Zere Taskin, Sinem; Kesici, Muge; Candogan, Burak Nazmi; Cansev, Asuman; Bilgili, Ugur; Candogan, Burak Nazmi; CANDOĞAN, BURAK NAZMİ; Cansev, Asuman; CANSEV, ASUMAN; Bilgili, Ugur; BİLGİLİ, UĞUR; Yonter, Fikret; YÖNTER, FİKRET; ; Bursa Uludağ Üniversitesi/Ziraat Fakültesi/Tarla Bitkileri Bölümü.; Bursa Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Anabilim Dalı.; 0000-0002-2243-2993; GRO-3789-2022; AAH-4255-2019; AAH-1539-2021; AAH-3102-2021
    This research was conducted to determine to effects of different irrigation levels and nitrogen doses (ND) on the various warm-season turfgrasses at the Agricultural Training and Research Centre of the Bursa Uludag University Faculty of Agriculture for two years in a row. The experimental design was the randomized blocks in a split-split plot design with three replications. The main plot was irrigation levels (I1=25%, I2=50%, I3=75%, and I4=100% of pan evaporation), subplots were turfgrass species [hybrid Bermudagrass (Cynodon transvaalensis x Cynodon dactylon) cv. Tifdwarf, seashore paspalum (Paspalum vaginatum Sw.) cv. Seaspray, zoysiagrass (Zoysia japonica Steud.) cv. Zenit], and sub subplots were ND's (monthly 0.0, 1.25, 2.5, and 5.0 g N m-2). Visual turfgrass color and quality, clipping yield, leaf relative water content (RWC), loss of turgidity (LT), chlorophyll content (CC), and electrolyte leakage were measured. According to the results, significant differences were determined among irrigation levels, turfgrass species, and ND's for color, quality, clipping yield and physiological parameters. Turfgrass visual color, quality and clipping yield were shown to decrease significantly with decreases in irrigation water and N fertilizer. The study findings demonstrated that under a non-limiting water supply, irrigation could be decreased by adjusting N fertilizer rates with I3N3 treatments can maintain acceptable turfgrass visual color and quality under Mediterranean climatic conditions. In addition, at 25% (I1) deficit irrigation level, leaf RWC, CC decreased significantly, while an increase was determined in LT. This research indicated that under 75% (I3) deficit irrigation and N3 ND, acceptable quality can be maintained with 'seaspray' seashore paspalum under Mediterranean climate performed.
  • Publication
    Climate change impacts on precipitation dynamics in the Southern Marmara Region of Turkey
    (Bursa Uludağ Üniversitesi, 2024-04-05) Yetik, Ali Kaan; CANDOĞAN, BURAK NAZMİ; Bursa Uludağ Üniversitesi/Ziraat Fakültesi; 0000-0001-9898-5685
    Understanding the dynamics of precipitation patterns is crucial for effective water management strategies, especially in regions vulnerable to the impacts of climate change. This study investigates the projected changes in annual and seasonal precipitation across the Southern Marmara Region of Turkey by comparing the averages of the reference period (1971-2000) with those of the future period (2061-2090). Employing multiple climate models (GFDL, HADGEM, and MPI) and Representative Concentration Pathways (RCP4.5 and RCP8.5), the analysis includes Mann-Kendall trend tests and Sen's slope method to determine trends in precipitation patterns. Key findings reveal significant variability in precipitation projections among different models and scenarios, with implications for water resource management, agriculture, and ecosystem resilience in provinces such as Çanakkale, Balıkesir, Bursa, Bilecik, and Yalova. According to the annual rainfall change rates relative to the reference period, Balıkesir province stands out as the most resilient province against climate change with average rates of 8.81% and 7.09% under the HADGEM and MPI model simulations, respectively. Regarding seasonal variations, Bilecik province is expected to experience a significant decrease in rainfall, reaching up to -53.78% under the MPI RCP8.5 scenario. In terms of within-period changes in annual rainfall values, the strongest declining trend was identified with Z=-2.03 in Bilecik province under the MPI RCP8.5 scenario conditions by the Mann-Kendall test. On the other hand, for seasonal variations, Bursa province demonstrates the most robust decreasing trend under the GFDL RCP4.5 conditions (Z=-2.89). The study emphasizes the importance of considering spatially varying precipitation patterns and potential shifts in atmospheric circulation for sustainable water resource management amidst climate variability and change in the Southern Marmara region. These findings provide critical insights for policymakers and stakeholders involved in developing adaptive strategies to address the challenges posed by future climate scenarios.
  • Publication
    Irrigation level and nitrogen rate affect evapotranspiration and quality of Perennial Ryegrass (Lolium perenne)
    (Friends Science, 2015-01-01) Candoğan, Burak Nazmi; Bilgili, Uğur; Yazgan, Senih; Açıkgöz, Esvet; CANDOĞAN, BURAK NAZMİ; BİLGİLİ, UĞUR; Yazgan, Senih; Açıkgöz, Esvet; Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.; Uludağ Üniversitesi/Ziraat Fakültesi/Tarla Bitkileri Bölümü.; AAH-3102-2021; AAH-1539-2021; GII-3222-2022; CBK-0678-2022
    This study examined the effects of different irrigation levels and nitrogen rates on perennial ryegrass (Lolium perenne L.) evapotranspiration and quality in a sub-humid climate over a two-year period (2007-2008). Nitrogen treatment (25 kg N ha(-1); N-1 and 50 kg N ha(-1); N-2) varied among main plots and irrigation levels (25%; I-1, 50%; I-2, 75%; I-3, 100%; I-4 and 125%; I-5 of the Class A pan evaporation) by subplot. Irrigation was performed at 3-day intervals during May-September using a pop-up sprinkler irrigation system, and N applied as a monthly rate during the irrigation period. Seasonal turfgrass evapotranspiration was found to vary by treatment from 309-1178 mm in 2007 and from 379-1097 mm in 2008. Turfgrass visual color, quality and clipping yield were shown to decrease significantly with decreases in irrigation water and N fertilizer. The study findings demonstrated that under a non-limiting water supply, irrigation could be decreased by adjusting N fertilizer rates according to turfgrass visual color and quality and that N1I4 or N2I3 treatments can maintain acceptable turfgrass visual color and quality under sub-humid climatic conditions.
  • Publication
    Chlorophyll response to water stress and the potential of using crop water stress index in sugar beet farming
    (Springer India, 2022-08-04) Yetik, Ali Kaan; Candoğan, Burak Nazmi; CANDOĞAN, BURAK NAZMİ; Bursa Uludağ Üniversitesi/Tıp Fakültesi/Biyosistem Mühendisliği Anabilim Dalı.; AAH-3102-2021
    Field experiments were conducted in 2019 and 2021 growing seasons to evaluate the chlorophyll readings and crop water stress index (CWSI) response to full and deficit irrigation for drip-irrigated sugar beet (Beta vulgaris L.) under sub-humid climate of Bursa, Turkey. In addition, the changes of soil water content under different irrigation treatments and statistical relationships between chlorophyll and CWSI values and ETc, root yield and sugar yield were investigated. Experiments were carried out in a completely randomized blocks design with three replications. Irrigations were scheduled based on the replenishment of 100 (S1), 66 (S2), 33 (S3), and 0% (S4) of soil water depletion within the soil profile of 0-90 cm using 7 day irrigation intervals. Lower and upper baselines obtained by measurements based on the canopy temperature from the treatments full irrigated and non-irrigated were used to calculate CWSI. The variations in CWSI values were consistent with the variations of seasonal soil water contents induced by the different irrigation practices. CWSI values generally varied between 0 and 1 throughout the experimental periods. In 2019, seasonal mean chlorophyll readings varied between 203.3 and 249.1, and mean CWSI values varied between 0.12 and 0.85. In 2021, seasonal mean chlorophyll readings varied between 232.7 and 259.3 and mean CWSI values between 0.19 and 0.89. Unlike chlorophyll values, CWSI decreased with increased irrigation water amount. In both years, statistically significant relationships were determined between chlorophyll readings and CWSI and ETc, root yield and sugar yield. The greatest root yield was achieved with a seasonal mean CWSI value of 0.12. An exponential equation determined as "Root Yield = 10.804e(-1,55CWSI)" between seasonal average CWSI values and root yield can be used for estimation of root yield in sugar beet farming. The mean CWSI values determined by infrared thermometer technique can be used in determination of crop water stress and irrigation scheduling of sugar beet cultivation under sub-humid climatic conditions.