Person:
KILIÇ, MUHSİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

KILIÇ

First Name

MUHSİN

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    Estimation of friction surface temperature of a dry clutch
    (Inderscience Enterprises Ltd, 2020-01-01) Çakmak, Tolga; Kılıç, Muhsin; KILIÇ, MUHSİN; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü; 0000-0003-2113-4510; O-2253-2015
    This paper presents an approach to estimate the temperature on the friction surface of a dry clutch. The study comprises both experimental measurements and transient thermal numerical analysis of heavy duty truck clutches for the successive engagements on a slope road. Compared to previous mathematical models in the literature; pressure plate surface convection coefficient, energy dissipation, engagement duration and variation of the clutch housing air temperature were obtained on the basis of experimental data and have been applied as input in the 3D clutch transient thermal finite element analysis. Simulation results show that the design of clutch plate has a significant effect on the temperature rise at the friction surface.
  • Publication
    Comparative performance analysis of ORC-VCRC combined systems based on refrigerant selection
    (Taylor & Francis, 2021-01-01) Özdemir Küçük, Esra; Kılıç, Muhsin; ÖZDEMİR KÜÇÜK, ESRA; KILIÇ, MUHSİN; Bursa Uludağ Üniversitesi/Yenişehir İbrahim Orhan Meslek Yüksekokulu/Makine Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0001-8146-0495; 0000-0003-2113-4510; AAG-6562-2021; O-2253-2015; IQW-0498-2023
    In this study, the combined power and refrigeration cycles driven by low-grade thermal energy are evaluated. An organic Rankine cycle (ORC) and a vapor compression refrigeration cycle (VCRC) are linked for both power generation and cooling. Three different combined cycle configurations are considered in the analyses. These are a basic ORC-VCRC, a dual-fluid basic ORC-VCRC, and a dual-fluid ORC-VCRC with an internal heat exchanger (IHE) and liquid-vapor heat exchanger (LVHE). The effects of the combined cycle configuration design on overall coefficients of performance (COPs) and the exergy efficiency of the system are examined. The highest overall COPs and exergy efficiency values at the operating conditions are obtained for the dual-fluid ORC-VCRC with IHE-LVHE as 0.72 and 19.5%, respectively. A comprehensive energy and exergy analysis is also performed for the dual-fluid ORC-VCRC with IHE-LVHE. The selection of the optimum fluid pair for ORC-VCRC is also investigated in the study. Thirty different fluid pair combinations are evaluated and compared using R123, R245fa, R600, R114, R141b, R290, R134a, and R143a refrigerants. The parametric analysis of the integrated system is performed depending on various operating conditions. Results show that the best performance among the cases considered is observed when the refrigerant R123 is used in the ORC-VCRC combined system.
  • Publication
    Dual-separated cooling channel performance evaluation for high-power led Pcb in automotive headlight
    (Elsevier, 2021-06) Sevilgen, Gökhan; Kılıç, Muhsin; Aktaş, Mehmet; SEVİLGEN, GÖKHAN; KILIÇ, MUHSİN; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü; 0000-0002-7746-2014; 0000-0003-2113-4510; O-2253-2015; ABG-3444-2020
    In this paper, thermal and hydraulic analysis of a dual-separated cooling channel was performed for the cooling applications of different automotive lighting systems. A single LED and multi-LEDs were considered to evaluate the thermal and hydraulic performance as well as the lighting properties of automotive headlights. The detailed hydraulic analysis was theoretically evaluated for developing laminar flow to get higher thermal performance with less pumping power. The theoretical and simulation results for the dual-separated cooling channel were compared and discussed. Unlike the constant properties were used in the current literature, thermal analysis with temperature-dependent properties was performed to estimate Nusselt number preciously for dual-separated cooling channels. The temperature measurements were also performed in the experimental study to compare the numerical results. The light output parameter of the LEDs depends on junction temperature, it was found that the increase in light output by using a dualseparated cooling channel was about 10% for all cases. Otherwise, higher junction temperature values lead to a reduction in operating efficiency. The top copper surface temperature drop was higher than 50%, and the junction temperature had been reduced by 36% to ensure the desired operating conditions of the automotive lighting system.
  • Publication
    Comparative performance evaluation of the mechanical and adsorption hybrid cooling systems for the cascaded and the serial connected evaporators configurations
    (Elsevier, 2021-09-22) Kılıç, Muhsin; Anjrini, Mustafa; KILIÇ, MUHSİN; Anjrini, Mustafa; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0003-2113-4510; 0000-0003-1153-7631; O-2253-2015; DSX-5806-2022
    The goal of this study is to investigate comparatively the performance of an integrated cooling system comprised of an adsorption cooling cycle (ADC) and a vapor cooling cycle (VCC) with two different configurations, namely (cascaded and serial connected evaporators). The ADC chiller relies on the thermal compressor with two adsorption beds, which use three different adsorbents (RD silica gel, RD silica gel 2060, and silica gel- LiCl) and water (adsorbate) as a working pair separately. The thermal compressor operates by outside waste or solar-based thermal sources that have low-level temperatures below 100 degrees C. R152A was selected for the VCC chiller. This article pays particular attention to evaluating the ADC adsorbents and (ADC-VCC) connection configurations based on the first and second law of thermodynamics. The investigations have been implemented at different ADC evaporator temperatures. The effect of adsorption cycle time and ambient temperature on the overall coefficient of performance were also investigated and discussed for both configurations. Furthermore, the ADC and VCC coefficient of performances and the performance ratio (PR) were investigated at different ADC evaporator temperatures. The relation between the adsorbent mass and the cooling load was also discussed in this paper.