Person:
DOĞANGÜN, ADEM

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

DOĞANGÜN

First Name

ADEM

Name

Search Results

Now showing 1 - 6 of 6
  • Publication
    Scaling of vertical component of seismic ground motion
    (Elsevier, 2020-10-01) ALMahdi, Fikrat; Fahjan, Yasin; Doğangün, Adem; ALMahdi, Fikrat; DOĞANGÜN, ADEM; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-1867-7103; AAR-6126-2020; ABE-2272-2020
    Three-dimensional time history analysis has become a demand for the majority of updated building codes. A vast literature has addressed the selecting and scaling of horizontal component of earthquake ground motion. Meanwhile, the scaling of vertical component has been less of a concern. This paper investigates the suggestion of using the same scaling factor of horizontal component of ground motion to scale its vertical counterpart. A data set consists of 6409 mainshock records with vertical and orientation independent geometric rotated (GMRotD50) response spectra with 5% damping is used. Even though ASCE7 - 16 among other international codes recommends to use the same scaling factor for horizontal component and its vertical counterpart, this paper shows that scaling factor of vertical component trends an extreme variation from its horizontal counterpart for various soil classes, different magnitudes and over a wide range of Joyner-Boore distances. Results illustrate that the ratio of vertical to horizontal scaling factors has a strong negative relationship with the ratio of vertical to horizontal peak ground acceleration. Earthquake magnitude has no significant role on the ratio of vertical to horizontal scaling factors. A gradual increase is observed in the studied ratio over a wide range of Joyner-Boore distances. The paper ends up with simplified equations to calculate the scaling factor of vertical component in regards with the scaling factor of its GMRotD50 horizontal counterpart based on the (V/H)(PGA) ratio of the recorded components. Robust statistics manifest the goodness of the developed equations. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
  • Publication
    Critical remarks on Rayleigh damping model considering the explicit scheme for the dynamic response analysis of high rise buildings
    (Sage Publications Inc, 2021-07-01) Mahdi, Fikrat A. L.; Fahjan, Yasin; Doğangün, Adem; Mahdi, Fikrat A. L.; DOĞANGÜN, ADEM; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-3046-4389; 0000-0002-1867-7103; ABE-2272-2020; AAR-6126-2020
    This paper numerically investigates the validity of Rayleigh damping model considering explicit operator to assess the dynamic response of high rise buildings under seismic loads. Considering transverse and longitudinal seismic waves, the bending moment, shear force, axial force, and and inter story drift are evaluated for a Core wall and a frame system of 46 story each. It is found that considering the explicit scheme, the dynamic responses are amplified significantly especially for axial forces. The reported amplification can be attributed to the ignorance of stiffness proportional Rayleigh damping coefficient which is associated with the stability issue of the implemented explicit operator. The paper indicates that Rayleigh damping model does not provide the required/expected damping for the higher modes of higher frequencies hence, it is not appropriate to be used along with the explicit operator especially for buildings of wide range of frequencies. It is worth pointing out that for classical dynamic analysis which follows the implicit scheme, Rayleigh damping seems to well consider the higher modes of high frequencies with higher damping ratio in comparison to the initial mode shapes. Consequently, the literature explicit scheme should be revised to accurately consider a proper damping for the higher modes which is crucial to assess the total response of structures of long periods and wide range of frequencies such as high rise buildings among others.
  • Publication
    P-Y curves for laterally loaded single piles: Numerical validation
    (Taylor, 2021-08-23) Timurağaoğlu, Mehmet Ömer; Fahjan, Yasin; Doğangün, Adem; TİMURAĞAOĞLU, MEHMET ÖMER; DOĞANGÜN, ADEM; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-6329-905X; 0000-0002-1867-7103; AAR-6126-2020; ABF-2355-2020
    Pile foundations are widely used in marine and coastal engineering structures. The correct analysis method must be used to ensure the safety of piled systems used in marine and coastal structures. Despite several methods available in the literature, the numerical method is increasingly applied for understanding the loading mechanism of pile-soil interaction under vertical, lateral, or seismic loadings. The present study focuses on the numerical validation of centrifugal test results of the single pile in dense sand under lateral loading. An extensive parametric study is carried out to validate numerical models due to the lack of experimental tests such as shear or triaxial tests. In the numerical model, the soil is represented by a kinematic hardening model, which is simple to calibrate in finite element analysis, whereas pile is modeled as an elastic material. The p-y family of the curve is back-calculated for a single pile and an algorithm is generated. Two interface models between soil and pile, namely full contact and frictional slip contact, are investigated to represent the behavior under horizontal loading. Then, the analyses are extended to vertical loading to assess the influence of interface models.
  • Publication
    Seismicity of east anatolian of Turkey and failures of infill walls induced by major earthquakes
    (World Scientific Publ Co Pte Ltd, 2021-03-13) Doğangün, Adem; Yön, Burak; Onat, Onur; Emin Öncü, Mehmet; Sağıroğlu, Serkan; DOĞANGÜN, ADEM; SAĞIROĞLU, SERKAN; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-1867-7103; AAH-8862-2021; AAR-6126-2020
    There are three major fault zones in Turkey scattered around the country known as East Anatolian Fault (EAF), North Anatolian Fault (NAF) and Anatolian-Aegean Subduction Zone (AASZ). Last two decades, EAF has been rather quiescent compared with NAF. However, this quiescence was broken in the beginning of the millennium. The strong shaking was started in 2003 with Bingol earthquake (Mw = 6.3) and the last earthquake on the EAF is the Sivrice-Elazig (Mw = 6.8) on January 24, 2020. Strong seismicity of these faults damaged the structures severely and caused death of the habitants. This study aims to present, seismotectonic of the region, general characteristics of the earthquakes and more specifically to report structural damage of infill walls of the structure's damages caused by these earthquakes. Damage evaluation and identification of the observed infill wall damages due to 2003 Bingol, 2011 Van earthquakes and January 24, 2020 Sivrice-Elazig earthquake occurred Turkey's Eastern region, were presented, and possible solutions were suggested. Moreover, the effects of the infill walls on the behavior of structures under static and dynamic load cases are discussed that experienced in these earthquakes. Damages are classified according to formations such as in-plane or out-of-plane, evaluations and the results obtained from the discussions are presented for each category.
  • Publication
    A period-height relationship for newly constructed mid-rise reinforced concrete buildings in Turkey
    (Elsevier, 2021-01-22) Kaplan, Onur; Güney, Yücel; Doğangün, Adem; DOĞANGÜN, ADEM; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0002-1867-7103; AAR-6126-2020
    The fundamental period is an essential parameter in the force-based design of buildings as it defines the spectral acceleration and thus the base shear force to which the building should be designed. The fundamental period can be computed based on modeling or utilizing simplified empirical relationships defined in seismic design codes. Previous studies show that the simplified equations should be region-specific and should represent the general design and the construction characteristics of the region. In this study, ambient vibration measurements were carried out on 24 newly constructed, mid-rise reinforced concrete (RC) buildings in Eskisehir, Turkey. The relationships between the fundamental periods and the building heights were examined. Through regression analysis, a simple equation was derived to estimate the elastic fundamental vibration period of mid-rise RC buildings with respect to building height. The proposed relationship was compared to the equation defined in the new Turkey Building Earthquake Code (TBEC-2018) and with the other simplified equations in different design codes and the related literature. The results showed that the fundamental period estimates of the TBEC-2018 equation are much longer than the fundamental periods of the measured buildings in this study. This overestimation may lead to unconservative base shear forces. Therefore, the proposed equation can be used in the force-based design of mid-rise RC frame buildings for conservative estimates of the fundamental period. The contribution of infill walls to the lateral stiffness of the buildings was also investigated, and some preliminary suggestions are made for the related parts in TBEC-2018.
  • Publication
    Effects of material properties on the mechanical and durability behaviors of khorasan mortar mixtures: A review
    (Taylor, 2021-03-05) İsafça, Tuğçe; Karakuzu, Kemal; Özen, Süleyman; Doğangün, Adem; Mardani-Aghabaglou, Ali; İsafça, Tuğçe; Karakuzu, Kemal; DOĞANGÜN, ADEM; MARDANİ, ALİ; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü; 0000-0002-9331-1339; 0000-0002-1023-3962; 0000-0002-1867-7103; 0000-0003-0326-5015; AAR-6126-2020; C-7860-2015; GBH-3020-2022; GFM-1667-2022
    Historical buildings are an important piece of our cultural heritage. It is important that the materials used in the preservation, repair and reinforcement applications of these structures should be compatible with the existing structure. In many of the historical buildings in Turkey, it was reported use of the Khorasan mortar as the masonry mortar and plaster. Khorasan mortar contains slaked lime as a binder, river sand, and clayey materials as aggregate, which are fired at high temperature. It was emphasized that this mortar is an essential building material widely used in the construction and repair of historical buildings from past to present. In this study, the effects of binder, aggregate, chemical admixture, organic admixture, and fiber properties on the mechanical and durability performance of Khorasan mortar and lime-based mortar mixtures were investigated. For this purpose, a comprehensive literature research was carried out on this subject. In addition, the positive and negative effects of these materials on the mortar mixture were emphasized.