Person: BULCA SOKUR, BETÜL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
BULCA SOKUR
First Name
BETÜL
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Rotational surfaces with rotations in x3x4-plane(Tsing Hua Univ, Dept Mathematics, 2021-01-01) Arslan, Kadri; Bulca, Betül; ARSLAN, KADRİ; BULCA SOKUR, BETÜL; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü; 0000-0001-5861-0184; EJT-1458-2022; AAG-7693-2021In the present study we consider generalized rotational surfaces in Euclidean 4-space E-4. Further, we obtain some curvature properties of these surfaces. We also introduce some kind of generalized rotational surfaces in E-4 with the choice of meridian curve. Finally, we give some examples.Publication General rotational ξ-surfaces in euclidean spaces(Tubitak Scientific & Technological Research Council Turkey, 2021-01-01) Arslan, Kadri; ARSLAN, KADRİ; Aydın, Yılmaz; Bulca, Betul; BULCA SOKUR, BETÜL; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü.; 0000-0001-5861-0184The general rotational surfaces in the Euclidean 4-space R-4 was first studied by Moore (1919). The Vranceanu surfaces are the special examples of these kind of surfaces. Self-shrinker flows arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold. In addition, xi-surfaces are the generalization of self-shrinker surfaces. In the present article we consider xi-surfaces in Euclidean spaces. We obtained some results related with rotational surfaces in Euclidean xi- space R-4 to become self-shrinkers. Furthermore, we classify the general rotational xi-surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational xi-surfaces in R-4.Publication A characterization of involutes and evolutes of a given curve in En(Kyungpook Natl Univ, Dept Mathematics, 2018-03-01) Öztürk, Günay; Arslan, Kadri; ARSLAN, KADRİ; Bulca, Betül; BULCA SOKUR, BETÜL; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü.; 0000-0002-1440-7050; 0000-0001-5861-0184; AAG-8775-2021; AAG-7693-2021The orthogonal trajectories of the first tangents of the curve are called the involutes of x. The hyperspheres which have higher order contact with a curve x are known osculating hyperspheres of x. The centers of osculating hyperspheres form a curve which is called generalized evolute of the given curve x in n-dimensional Euclidean space E-n. In the present study, we give a characterization of involute curves of order k (resp. evolute curves) of the given curve x in n-dimensional Euclidean space E-n. Further, we obtain some results on these type of curves in E-3 and E-4, respectively.