Person:
DESTE GÖKAY, GONCA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

DESTE GÖKAY

First Name

GONCA

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    The effect of the design of a mandibular implant-supported zirconia prosthesis on stress distribution
    (Elsevier, 2021-03-04) Oyar, Perihan; Durkan, Rükiye; Deste, Gonca Gökay; DESTE GÖKAY, GONCA; Bursa Uludağ Üniversitesi/Diş Hekimliği Fakültesi/Protetik Diş Tedavisi Anabilim Dalı; 0000-0002-5481-0063; AAM-7219-2020
    Statement of problem. Prosthetic complications have been frequently reported in implant supported complete-arch prosthesis. Prosthetic restorations designed with an all-on-four treatment concept and fabricated from zirconia ceramic may be used to overcome these problems.Purpose. The purpose of this biomechanical study was to evaluate the effects of cantilever length and inclination of implant on the stress distribution in bone tissue, implant, and a monolithic zirconia ceramic-lithium disilicate glass-ceramic superstructure for all-on-four prosthesis.Material and methods. All-on-four mandibular prosthesis fabricated from a zirconia and lithium disilicate glass-ceramic (LDGC) superstructure was designed with cantilever lengths of either 5 mm or 9 mm and posterior implants with a distal tilt of either 15 or 30 degrees. Stresses were evaluated with a simulated application of a static load of 600 N.Results. Increasing implant inclination from 15 to 30 degrees led to a decrease in maximum principal stress (MaxPS) values of approximately 4 to 7 MPa in cortical bone around all implants except the right anterior implant in the designs with short cantilevers and an increase in MaxPS values (approximately 3 to 19 MPa) in the same places in the designs with the long cantilevers. Increasing cantilever length from 5 to 9 mm resulted in an increase in minimum principal stress (MinPS) values of approximately 3 to 13 MPa in the cortical bone surrounding all posterior implants. In the designs with the long cantilever, MaxPS values increased approximately 3 to 4 MPa in spongy bone adjacent to the right posterior implant. An increase in cantilever length also led to higher vMS values at the first and second implant grooves in the right posterior implant in the design with the 15-degree implant tilt. An increase in implant inclination in the design with the short cantilever resulted in lower vMS values at the apex and all grooves of the left posterior implant, whereas in the design with the long cantilever, an increase in implant inclination resulted in lower stress values in the first and second grooves of the same implant. An increase in implant inclination led to in an increase in vMS values in the core structure.Conclusions. In zirconia ceramic restorations by using an all-on-four design with an LDGC superstructure, short cantilevers may be preferable because they result in a more favorable distribution of stress than long cantilevers. An increase in implant angulation from 15 to 30 degrees decreased MaxPS values in cortical bone.
  • Publication
    Evaluation of physical properties of polyamide and methacrylate based denture base resins polymerized by different techniques
    (Wolters Kluwer Medknow Publications, 2021-12-01) Gökay, Gonca Deste; Durkan, R.; Oyar, P.; DESTE GÖKAY, GONCA; 0000-0002-5481-0063; AAM-7219-2020
    Aim: This study aims to comparatively evaluate the flexural strength, internal adaptation, elastic modulus, and maximum deflection of a newly introduced, strengthened injection-molded semi-flexed polyamide resin (Deflex) and a conventional heat-cured resin containing cross-linking polymethyl methacrylate denture base polymers (QC-20). Materials and Methods: A vinyl polysiloxane film replicating the gap between the denture base and the metallic master model of an edentulous maxilla was weighed using an analytical balance with an accuracy of 0.0001 g for the measurement of internal adaptation. The measurements were performed immediately after surface finishing. Seven rectangular test samples measuring 65 x 10 x 3.3 mm(3) were set up for flexural strength test. Flexural strength test (three-point bending test) was performed using a universal machine under axial load at a crosshead speed of 5 mm/min. One-way ANOVA (alpha = 0.05) following by t tests was utilized in statistical analysis. Results: The difference between the flexural strength of the denture base resins of Deflex and QC-20 was found to be statistically significant. The injection-molded resin demonstrated better internal adaptation compared to the conventional heat-polymerized resin. Evaluation of the physical test results revealed that the polyamide samples were more flexible than polymethyl methacrylate and did not break during flexural strength tests. Conclusion: Some properties of denture base resins, such as resin types, internal adaptation, and mechanical strength, may play a significant role in clinical performance of complete dentures and removable partial prostheses. Because of the superior flexural strength properties and internal adaptation characteristics, Deflex may prove to be a useful alternative to conventional denture base resin.