Person:
ÖZTÜRK, FERRUH

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÖZTÜRK

First Name

FERRUH

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    The investigation of the effects of spray parameters on the thermal and mechanical properties of 22MnB5 steel during hybrid quenching process
    (Begell House, 2021-01-01) Sevilgen, Gökhan; Ertan, Rukiye; Bulut, Emre; Öztürk, Ferruh; Eşiyok, Ferdi; Abi, Tuğçe Turan; Alyay, İlhan; SEVİLGEN, GÖKHAN; ERTAN, RUKİYE; BULUT, EMRE; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; 0000-0002-7746-2014; 0000-0001-9159-5000; ABG-3444-2020; KIH-2391-2024; AAG-8907-2021; JIW-7185-2023
    In this paper, the investigation of the effects of spray parameters on the thermal and mechanical properties of 22MnB5 steel during the hybrid quenching (HQ) process was performed. The HQ method presented in this study includes early removal of hot-stamped parts from the die and transfer to an external multinozzle spray cooling device. The proposed method was developed due to the need for improving disadvantages of the traditional hot stamping process such as complexity of controlling the cooling rate during die quenching by using cooling channels and of providing the reduced tool contact surface temperature after a certain cycle of the hot stamping process. This paper focuses on the temperature distribution and mechanical characteristics of high-strength 22MnB5 steel during the HQ process. Moreover, the methodology developed in this paper can be used to get tailored parts where the cooling rates are locally chosen to achieve structures with graded properties, i.e., to allow local modification of final mechanical properties in order to provide high energy absorption to enhance the crashworthiness of the whole component and thus to improve the vehicle safety performance. The three-dimensional numerical model of spray cooling was also developed by using the computational fluid dynamics (CFD) method to get the suitable process parameters such as spray height and initial blank temperature and to present the detailed heat transfer analysis of hot-stamped parts during the hybrid quenching process.
  • Publication
    Simplified optimization model and analysis of twist beam rear suspension system
    (Sage Publications, 2021-04-01) Albak, Emre İsa; Solmaz, Erol; Öztürk, Ferruh; ALBAK, EMRE İSA; SOLMAZ, EROL; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü; 0000-0001-9215-0775; 0000-0001-9369-3552; I-9483-2017; HRA-1531-2023; FRD-1816-2022
    Twist beam rear suspension systems are frequently used in front wheel drive cars owing to their compactness, lightweight and cost-efficiency. Since the kinematic behavior of twist beam rear suspension systems are determined by the elastic properties of the twist beam, the twist beam is the most critical component of this suspension system. In the study, a simplified optimization model is presented to offer designers the most suitable beam structure in the early stage of the vehicle system development. With the optimization model, designers will be able to obtain the most suitable twist beam structure in a very short time. Opposite wheel travel analysis based on finite element modeling of twist beam is conducted to examine the kinematic performance of the twist beam rear suspension. The cross-section, position and direction of the twist beam are the most important parameters affecting the performance of the twist beam rear suspension system. In this study, optimization studies with 25 design variables including variable cross-sections, twist beam position and twist beam orientation are performed. Nine different optimization studies are carried out to investigate the effects of design variables better. In optimization studies carried out with the genetic algorithm, the objective and constraint functions are obtained with the moving least squares meta-modeling method. In the study, toe angle, camber angle and roll steer are decided as constraints, and mass as the objective function. With the optimization models, lightweight designs up to 25% have been obtained according to the initial design. It is validated that the proposed simplified model and analysis of twist beam rear suspension with connecting bushing is a quite efficient approach in terms of accuracy and to speed up the optimum design process.
  • Publication
    Rubber bushing optimization by using a novel chaotic krill herd optimization algorithm
    (Springer, 2021-08-27) Bilal, Halil; Öztürk, Ferruh; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Otomotiv Mühendisliği Bölümü; JIW-7185-2023
    This study's primary purpose is to improve the original krill herd (KH) optimization algorithm by using chaos theory and propose a novel chaotic krill herd (CKH) optimization algorithm. Fourteen different chaotic map functions have been added to the several steps of the KH and CKH optimization algorithms already existing in the literature to improve their performances. Six different well-known benchmark functions have been used to test the performances of the developed algorithm. The proposed algorithm has better performance to reach the global optimum of the objective function which has many local minimums. The proposed algorithm improved the KH and CKH optimization algorithms' performances which already exist in the literature. Proposed novel CKH has been applied to rubber bushing stiffness optimization which is a real automotive industry problem. Obtained results have been compared with KH, CKH, genetic algorithm (GA), differential evaluation algorithm (DE) and particle swarm optimization (PSO). The proposed algorithm has better performance to reach the global optimum of the objective function. The performance and validity of the algorithm have been proved not only by using six different benchmark functions but also by using finite element analysis of rubber bushing. The study is also a unique optimization activity that uses the KH algorithm to optimize rubber bushing by using nonlinear finite element analysis.
  • Publication
    A new approach for battery thermal management system design based on grey relational analysis and latin hypercube sampling
    (Elsevier, 2021-09-16) Bulut, Emre; Albak, Emre İsa; Sevilgen, Gökhan; Öztürk, Ferruh; BULUT, EMRE; ALBAK, EMRE İSA; SEVİLGEN, GÖKHAN; ÖZTÜRK, FERRUH; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü; Bursa Uludağ Üniversitesi/Gemlik Asım Kocabıyık Meslek Yüksekokulu/Hibrit ve Elektrikli Araç Teknolojisi; 0000-0001-9159-5000; 0000-0001-9215-0775; 0000-0002-7746-2014; ABG-3444-2020; AAG-8907-2021; I-9483-2017; JCO-2416-2023; FRD-1816-2022
    A liquid cooling system is an effective type of battery cooling system on which many studies are presented nowadays. In this research, the effects of the mass flow rate and number of channels on the maximum temperature and pressure drop are investigated for multi-channel serpentine cooling plates. A new approach with LHS and GRA is used to obtain the optimum ranges of design parameters to minimize the pressure drop, maximum temperature and to maximize the convective heat transfer coefficient. In this study, the values of the parameters for the numerical modeling are obtained by the experiments. The width and height of the serpentine channel and mass flow rate are chosen as input parameters and the pressure drop, convective heat transfer coefficient and maximum temperature are selected as output parameters. Comparing with the base design, the optimized design provided up to 40.3% decrease in the pressure drop with a penalty of 11.3% decrease in the convective heat transfer coefficient with a slight decrease in the maximum temperature. The proposed approach can be used to design better cooling plates to keep the batteries in safe temperature ranges and to reduce the power consumption by optimizing the pressure drop and maximum temperature values.