Person:
KAYNAKLI, ÖMER

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

KAYNAKLI

First Name

ÖMER

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    A modeling of electricity generation by using geothermal assisted organic rankine cycle with internal heat recovery
    (Taylor & Francis Inc, 2019-11-07) Bademlioğlu, A. H.; Canbolat, A. S.; CANBOLAT, AHMET SERHAN; Kaynaklı, O.; KAYNAKLI, ÖMER; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi..; HPH-3328-2023
    In this study, the performance of organic Rankine cycle (ORC), which produces electrical energy, was examined by using a geothermal resource with a temperature of 145 degrees C. The fluids used in the system were determined as dry type fluids, and R142b, R227ea, R245fa, R600, and R600a were preferred as a working fluid. Within the scope of this study, energy and exergy analysis of the system was performed for different evaporator pressures (1000-2000 kPa). With the help of these analyses, the performances of the cycle elements were examined and the first and second law efficiencies of the system were compared for different refrigerants. Considering the selection of refrigerant, and evaporator pressure within the scope of this study, the first and second law efficiencies of the cycle have enhanced maximum of 4.86% and 19.78%, respectively.
  • Publication
    Performance assessment and solution procedure for series flow double-effect absorption refrigeration systems under critical operating constraints
    (Springer Heidelberg, 2019-06-01) Yılmaz, İbrahim Halil; Kaska, Önder; Saka, Kenan; SAKA, KENAN; Kaynaklı, Ömer; KAYNAKLI, ÖMER; 0000-0001-7840-9162; 0000-0002-2296-894X; AAH-5303-2021; AAX-2458-2020
    In this study, the effects of critical operational constraints on the operational domain of a double-effect lithium bromide/water absorption refrigeration system and its performance were investigated. These constraints were determined as the equivalence state of concentrations, the thermal unbalance between the system components of high-pressure condenser and low-pressure generator, freezing and crystallization risk of lithium bromide/water solution. For the system analysis, a simulation program was developed, and its detailed solution procedure was presented. The program outputs were initially validated with the literature. Subsequently, parametric studies were conducted for broad ranges of the component temperatures. The results demonstrate that the considered constraints were essential for acceptable design and the operational control of double-effect absorption refrigeration systems. The simulations will help to figure out under which operating conditions a double-effect absorption refrigeration system functions effectively and what kind of control strategies are essentially required to increase the coefficient of performance. Based on the operation scenario of fixed high-pressure generator temperature, the proposed system can enhance the coefficient of performance up to 31% and 84% as compared to its counterparts which function under the variable high-pressure generator temperature and the pinch point temperature difference (5K between the high-pressure condenser and the low-pressure generator), respectively.
  • Publication
    Economic thermal insulation thickness for pipes and ducts: A review study
    (Elsevier, 2014-02-01) Kaynaklı, Ömer; KAYNAKLI, ÖMER; Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü; DBD-5807-2022
    Energy conservation has become an increasingly important issue for all sectors, particularly in industry. Therefore, the thermal performance of insulation systems and their influence on heat loss/gain in various applications in addition to economic considerations have received increased attention in recent years. In this study, a literature review of papers that addressed the optimum economic thickness of the thermal insulation on a pipe or duct with different geometries used in various industries was carried out The studies related to determining the critical insulation thickness for different geometries including circular shapes were investigated. The heat transfer equations, the basic results, the optimization procedures and the economic analysis methods used in the studies were presented comparatively. Additionally, a practical application example based on optimizing the insulation thickness on a pipe was performed, and the effective parameters of the optimum thickness were investigated.