Person:
ALTINKAYA, ŞAHSENE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ALTINKAYA

First Name

ŞAHSENE

Name

Search Results

Now showing 1 - 10 of 37
  • Publication
    Coefficient estimates and fekete-szego inequality for a class of analytic functions satisfying subordinate condition associated with chebyshev polynomials
    (Sciendo, 2019-12-01) Szatmari, Eszter; Altınkaya, Şahsene; ALTINKAYA, ŞAHSENE; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; AAA-8330-2021
    In this paper, we define a class of analytic functions, F(H, alpha, delta, mu), satisfying the following condition(alpha[zf'(z)/f(z)](delta) + (1-alpha) [zf'(z)/f(z)](mu)[1+zf ''(z)/f'(z)](1-mu)) (sic) H(z, t),where alpha is an element of [0, 1], delta is an element of [1, 2] and mu is an element of [0, 1].We give coefficient estimates and Fekete-Szego inequality for this class.
  • Publication
    On a new subclass of bi-univalent functions satisfying subordinate conditions
    (Ankara Üniversitesi, 2019-01-01) Mazi, Emeka; Altınkaya, Şahsene; ALTINKAYA, ŞAHSENE; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; AAA-8330-2021
    The purpose of our present paper is to introduce a new subclass of bi-univalent functions associated with pseudo-starlike function with Sakaguchi type functions and to determine the coefficient estimates vertical bar a(2)vertical bar and vertical bar a(3)vertical bar for functions in each of this newly-defined class. We also highlight some known consequences of our main results.
  • Publication
    A subclass of bi-univalent functions based on the faber polynomial expansions and the fibonacci numbers
    (Mdpi, 2019-02-01) Altınkaya, Şahsene; Yalçın, Sibel; Çakmak, Serkan; ALTINKAYA, ŞAHSENE; YALÇIN TOKGÖZ, SİBEL; Çakmak, Serkan; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; 0000-0002-0243-8263; 0000-0003-0368-7672; AAE-9745-2020; ABC-6175-2020; GZG-2072-2022; AAA-8330-2021
    In this investigation, by using the Komatu integral operator, we introduce the new class ( pound eta,rho)(Sigma,t)((rho) over tilde of bi-univalent functions based on the rule of subordination. Moreover, we use the Faber polynomial expansions and Fibonacci numbers to derive bounds for the general coefficient vertical bar a(n)vertical bar of the bi-univalent function class.
  • Publication
    A subclass of analytic functions defined by using mittag-leffler function
    (Honam Mathematical Soc, 2020-09-01) Mahmood, Tahir; Naeem, Muhammad; Hussain, Saqib; Khan, Shahid; Altınkaya, Şahsene; ALTINKAYA, ŞAHSENE; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; AAA-8330-2021
    In this paper, new subclasses of analytic functions are proposed by using Mittag-Leffler function. Also some properties of these classes are studied in regard to coefficient inequality, distortion theorems, extreme points, radii of starlikeness and convexity and obtained numerous sharp results.
  • Publication
    The (p, q)-chebyshev polynomial bounds of a general bi-univalent function class
    (Springer, 2020-07-01) Altinkaya, Sahsene; ALTINKAYA, ŞAHSENE; Yalcin, Sibel; YALÇIN TOKGÖZ, SİBEL; Fen Edebiyat Fakültesi; 0000-0002-7950-8450; 0000-0002-0243-8263; AAA-8330-2021; AAE-9745-2020
    In the present paper, we will define the bi-univalent function class S.,mu S ( p, q) related to the ( p, q)-Chebyshev polynomials. Then we will derive the ( p, q)-Chebyshev polynomial bounds for the initial coefficients and determine Fekete-Szego functional for f. S.,mu S ( p, q).
  • Publication
    Some applications of generalized srivastava-attiya operator to the bi-concave functions
    (Univ Miskolc Inst Math, 2020-01-01) Altınkaya, Şahsene; Yalçın, Sibel; ALTINKAYA, ŞAHSENE; YALÇIN TOKGÖZ, SİBEL; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; 0000-0002-0243-8263; AAE-9745-2020; AAA-8330-2021
    In this present investigation, we are concerned with the class Omega C-m,k(Sigma;mu,b)0(alpha) of bi-concave functions defined by using the generalized Srivastava-Attiya operator. Moreover, we derive some coefficient inequalities for functions in this class.
  • Publication
    On a new class of analytic functions related to fractional calculus
    (Publ House Bulgarian Acad Sci, 2020-01-01) Owa, Shigeyoshi; Altınkaya, Şahsene; ALTINKAYA, ŞAHSENE; Yalçın, Sibel; YALÇIN TOKGÖZ, SİBEL; Fen Edebiyat Fakültesi; 0000-0002-7950-8450; 0000-0002-0243-8263; AAA-8330-2021; AAE-9745-2020
    Let A be the class of analytic functions f with f(0) = 0 and f'(0) = 1 in the open unit disk U. Applying the fractional derivative D-z(lambda) f of order lambda for f is an element of A, a new subclass A(alpha, beta; lambda) of A with 0 <= alpha < 1, beta > 1 and 0 <= lambda < 1 is considered. The object of the present paper is to discuss some interesting properties of this class of functions.
  • Publication
    The fekete-szego problem for a general class of bi-univalent functions satisfying subordinate conditions
    (Univ Maragheh, 2017-12-01) Altınkaya, Şahsene; Yalçın, Sibel; ALTINKAYA, ŞAHSENE; YALÇIN TOKGÖZ, SİBEL; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-0243-8263; AAE-9745-2020; AAA-8330-2021
    In this work, we obtain the Fekete-Szego inequalities for the class P-Sigma (lambda, phi) of bi-univalent functions. The results presented in this paper improve the recent work of Prema and Keerthi [11].
  • Publication
    Second hankel determinant for a general subclass of bi-univalent functions
    (Inst Applied Mathematics, 2016-01-01) Altınkaya, Şahsene; Yalçın, Sibel; ALTINKAYA, ŞAHSENE; YALÇIN TOKGÖZ, SİBEL; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; 0000-0002-0243-8263; ABC-6175-2020; AAE-9745-2020; AAA-8330-2021
    Making use of the Hankel determinant, in this work, we consider a general subclass of bi-univalent functions. Moreover, we investigate the bounds of initial coefficients of this class.
  • Publication
    Coefficient bounds for certain subclasses of m-fold symmetric biunivalent functions
    (Hindawi, 2015-01-01) Altınkaya, Şahsene; Yalçın, Sibel; ALTINKAYA, ŞAHSENE; YALÇIN TOKGÖZ, SİBEL; Fen Edebiyat Fakültesi; Matematik Bölümü; 0000-0002-7950-8450; 0000-0002-0243-8263; AAE-9745-2020; AAA-8330-2021
    We consider two new subclasses S-Sigma m(alpha,lambda) and S-Sigma m (beta,lambda) of Sigma(m) consisting of analytic and m-fold symmetric biunivalent functions in the open unit dis U. Furthermore, we establish bounds for the coefficients for these subclasses and several related classes are also considered and connections to earlier known results are made.