Person:
ŞİMŞEK, ERCAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ŞİMŞEK

First Name

ERCAN

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Air quality measurements in four sheep barns part ii: Pollutant gas emissions
    (Springer, 2021-01-04) Kılıç, İlker; Şimşek, Ercan; Yaşlıoğlu, Erkan; Heber, Albert; Uğuz, Seyit; KILIÇ, İLKER; ŞİMŞEK, ERCAN; YASLIOĞLU, ERKAN; UĞUZ, SEYİT; 0000-0002-3865-7863; 0000-0002-3994-8099; 0000-0003-0087-6718; ABH-7275-2020; AAH-3553-2021; AAG-8511-2021; ABE-6643-2020
    Pollutant gas emissions from animal barns affect indoor air quality, the health and well-being of farmers, and the surrounding environment. This study was carried out in four sheep barns (SB) in Bursa, an important region for animal husbandry operations. Concentrations of NH3, CO2, H2S, and CH4 were measured in four sheep barns by monitoring throughout 24 h in 1 year. Pollutant gas emissions from barns were also calculated and modeled. The average pollutant gas emissions obtained in this study were 5 kg day(-1) barn(-1) for NH3, and 18 kg day(-1) barn(-1) for CH4. The average NH3 and CH4 emissions from each barn were 2.1 and 2.7 kg day(-1) barn(-1) for SB1; 9.4 and 12.9 kg day(-1) barn(-1) for SB2; 4.0 and 3.6 kg day(-1) barn(-1) for SB3; and 4.5 21 kg day(-1) barn(-1) for SB4, respectively. There are statistically significant differences between daytime and nighttime for pollutant gas emissions. Pollutant gas emissions in the monitored barns are generally higher in summer than in other seasons. Models for estimating NH3, and CH4 emissions were developed using measured temperature and relative humidity values in the barns. These models can only be used in the Bursa region. The results of this study were compared with other studies under similar conditions in the literature.
  • Publication
    Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building
    (Academic Press Ltd- Elsevier Science Ltd, 2022-04-25) Anderson, Gary; Yang, Xufei; Osabutey, Augustina; Şimşek, Ercan; ŞİMŞEK, ERCAN; Oğuz, Seyit; Bursa Uludağ Üniversitesi/Ziraat Fakültesi; 0000-0002-9734-631X; ABH-7275-2020; AAH-3553-2021
    The continual consolidation and concentration of animal feeding operations (AFOs) raises various environmental challenges, including air pollutant emission. Cost-effective mitigation technologies are pursued to protect the health and wellbeing of animals and farmers as well as the environment. Previous lab studies utilized ammonia (NH3) and carbon dioxide (CO2), two major air pollutants in AFOs, for microalgal cultivation. However, the field performance of this algae-based mitigation approach has yet to be investigated. In this study, two photo-bioreactors (PBRs) were tested in a nursery pig barn to mitigate NH3 and CO2 while growing Scenedesmus dimorphus (S. dimorphus). Pit air was fed into the PBRs where the two pollutants were adsorbed by S. dimorphus as nutrients to produce algal biomass and oxygen gas (O-2). The cleaned air then recirculated back to the room space. S. dimorphus reached its maximum cell count on the 17th day of the experiment when NH3 and CO2 concentrations in the pit air were 25.6 ppm and 3150 ppm, respectively. The maximum biomass concentration occurred on the 11th day when the NH3 and CO2 concentrations were 14.6 and 2250 ppm, respectively. The average mitigation efficiency was 31-50% for NH3 and 1-1.7% for CO2. The costs for removing 1 g NH3 and CO2 were estimated to be $3.77 and $0.20, respectively. This study shows that an integrated PBR system is technically feasible for reducing pig barn air pollutant emission while producing microalgae as a valuable product.