2020 Cilt 34 Sayı 2
Permanent URI for this collectionhttps://hdl.handle.net/11452/14504
Browse
Browsing by Subject "Cicer arietinum"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item The evulation of stress related gene expression level and relationship to cellular H2O2 in chickpea (cicer arietinum l.) under copper stress(Bursa Uludağ Üniversitesi, 2020-08-26) Kar, Musa; Öztürk, NuriyeThe aim of this study is to determine the changes in expression levels of stress genes in chickpea (Cicer arietinum) plant leaves exposed to copper (Cu) at different times and concentrations. Also; the relationship between the changes in gene expression and cellular H2O2 was investigated. In this context, the amount of malondialdehyde (MDA) and reactive oxygen species (ROS) hydrogen peroxide (H2O2) levels were determined. Furthermore, the changes in gene expressions of Metallothionein (MT), Catalase (CAT) and superoxide dismutase (Cu / Zn-SOD) enzymes were determined based on the actin expression level that selected as a housekeeping gene. It was determined that MDA content increased significantly due to time and concentration, In all duration and concentrations, the expression of stress-related genes significantly differed from the control group. Hleowever, a decrease has been determined by all gene expressions after the highest expression. This phenomenon is associated with cellular H2O2, which shows a steady increase in stress. At the end of the study, it was concluded that the elevating duration and concentration of Cu induced oxidative stress and caused the expression of stress-related genes. Furthermore, cellular H2O2 might be acting as a signal molecule that, up-regulate gene expressions until a certain concentration and down-regulate until a certain concentration. Thanks to the results of this study; Plants in agricultural areas can be exposed to a certain concentration of H2O2 to provide an earlier response to oxidative stress against biotic or abiotic stresses. In this way, the use of chemical pesticides can be minimized due to obtaining more durable products.