Browsing by Author "Uzlu, Ergun"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm(Pergamon-Elsevier, 2014-10-01) Uzlu, Ergun; Kankal, Murat; Dede, Tayfun; Akpınar, Adem; Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0002-9042-6851; AAC-6763-2019; 23026855400The main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching-learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN-TLBO model and the classical back propagation-trained ANN model (ANN-BP (teaching learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN-TLBO model better predicted the energy consumption compared to the ANN-BP model. After determining the best configuration for the ANN-TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020.Item Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey(Pergamon-Elsevier, 2014-05-01) Uzlu, Ergun; Öztürk, Hasan; Nacar, Sinan; Kankal, Murat; Akpınar, Adem; Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.; 0000-0002-9042-6851; AAC-6763-2019; 23026855400The primary objective of this study was to apply the ANN (artificial neural network) model with the ABC (artificial bee colony) algorithm to estimate annual hydraulic energy production of Turkey. GEED (gross electricity energy demand), population, AYT (average yearly temperature), and energy consumption were selected as independent variables in the model. The first part of the study compared ANN-ABC model performance with results of classical ANN models trained with the BP (back propagation) algorithm. Mean square and relative error were applied to evaluate model accuracy. The test set errors emphasized positive differences between the ANN-ABC and classical ANN models. After determining optimal configurations, three different scenarios were developed to predict future hydropower generation values for Turkey. Results showed the ANN-ABC method predicted hydroelectric generation better than the classical ANN trained with the BP algorithm. Furthermore, results indicated future hydroelectric generation in Turkey will range from 69.1 to 76.5 TWh in 2021, and the total annual electricity demand represented by hydropower supply rates will range from 14.8% to 18.0%. However, according to Vision 2023 agenda goals, the country plans to produce 30% of its electricity demand from renewable energy sources by 2023, and use 20% less energy than in 2010. This percentage renewable energy provision cannot be accomplished unless changes in energy policy and investments are not addressed and implemented. In order to achieve this goal, the Turkish government must reconsider and raise its own investments in hydropower, wind, solar, and geothermal energy, particularly hydropower.Item Prediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques(Springer, 2019-08-09) Karasu, Servet; Nacar, Sinan; Uzlu, Ergun; Yüksek, Ömer; Kankal, Murat; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği.; 0000-0003-0897-4742; AAZ-6851-2020; 24471611900Artificial beach nourishment is one of the most important environmentally friendly coastal protection methods since it protects the aesthetic and recreational values of the beach and increases its protective properties. Therefore, the main aim of the current study is to assess the accuracy of multivariate adaptive regression splines (MARS) in predicting the parameters, namely sediment transport coefficients (K) and the diffusion rate (omega), which affect beach nourishment performance. The performance of the MARS was determined by comparison of the models using exponential, linear, and power regression equations trained by conventional regression analyses (CRA) and the teaching-learning based optimization (TLBO) algorithm. In all models, two different input data obtained from the experimental study were used, one dimensional and one non-dimensional. The results presented that the MARS models gave lower error values than the CRA and TLBO models according to the root mean square error, mean absolute error, and scattering index criteria. When the models were evaluated, it was revealed that dimensional and non-dimensional models gave approximate results. We proved that the dimensional and non-dimensional MARS models can be used to estimate the (K) and (omega) values.