Browsing by Author "Bingolbali, Bilal"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Downscaling wave energy converters for optimum performance in low-energy seas(Elsevier, 2021-05-01) Iglesias, Gregorio; Majidi, AjabGul; Bingolbali, Bilal; BİNGÖLBALİ, BİLAL; Akpinar, Adem; AKPINAR, ADEM; Jafali, Halid; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi.; 0000-0003-0006-5843; 0000-0003-4496-5974; 0000-0002-5422-0119; AAB-4152-2020; AAC-8011-2021; AAC-6763-2019As wave energy converters (WECs) are typically designed and optimized for ocean wave conditions, they struggle to perform in low-energy seas or bays, where wave conditions are very different. This work investigates the hypothesis that downscaled versions of WECs may well be more suited for such conditions. More specifically, fifteen downscaled WECs are considered for deployment in the Black Sea. The resizing (downscaling) of the WECs is based on Froude scaling law. Ten values are considered for the scaling factor (lambda(L) = 1/4 1.0, 0.9, 0.8 ... 0.1), and the value that yields the highest capacity factor is selected for downscaling the WEC. The downscaled WEC is then compared with the original (full-scale) WEC in terms of performance (capacity factor, full-load hours, and rated capacity). This analysis is carried out for fifteen WECs and 62 locations at different water depths (5, 25, 50, 75, and 100 m), distributed on 13 lines perpendicular to the shoreline along the south-western coast of the Black Sea. The highest capacity factor was obtained by Oyster, whereas the highest energy output was achieved by SSG and WaveDragon for the locations with 4-16 m depths. For deeper waters (25, 50, 75, and 100 m), the highest capacity factor was obtained by Oceantec. In terms of energy output, the best performers were WaveDragon (at 25 m water depth) and Pontoon (at 50, 75, and 100 m water depths). The interest of this approach, however, lies not only in that it enables a scaling factor to be determined for downscaling a WEC for a given site, but also and more generally in that it proves the initial hypothesis that downscaled WECs may provide a better alternative for low-energy seas than their full-scale counterparts.Publication Inter- and intra-annual wave energy resource assessment in the south-western black sea coast(Pergamon-Elsevier Science Ltd, 2021-01-22) Bingolbali, Bilal; BİNGÖLBALİ, BİLAL; Majidi, Ajab Gul; Akpinar, Adem; AKPINAR, ADEM; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi.; 0000-0003-4496-5974; 0000-0003-0006-5843; 0000-0002-5422-0119; AAB-4152-2020; AAC-6763-2019; AAC-8011-2021This study focuses on the inter- and intra-annual variation in theoretical wave power along the southwestern coast of the Black Sea. Long-term (1979-2009) hindcast developed using the calibrated three-layer nested SWAN model was used for a detailed assessment of wave energy resource. Annual change, monthly and seasonal wave power variability indices were evaluated, and the Optimal Hotspot Index (OHI) was calculated for 62 sites along the coast to rate the hotspot locations. The assessment shows the highest wave energy resources in western Karaburun with higher variability. However, the western Sinop sites have lower wave energy resources compared to western Karaburun sites, in spite of considering the lower variability, these sites are more appropriate for wave energy extraction. The location with the highest potential (KAS 100 m depth) has an average of 8.4 kW/m and a maximum of 1015 kW/m wave power capacity. The east sites of Sinop and Filyos are comparatively less dynamic. Moreover, it was found that the average peak values of wave heights are in February, and the lowest sea state was in June. 2003 was the most, and 1989 was the least energetic years in the 31-year period.Publication Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea(Pergamon-Elsevier Science Ltd, 2021-01-02) Rusu, Eugen; Majidi, Ajab Gul; Bingolbali, Bilal; BİNGÖLBALİ, BİLAL; Akpinar, Adem; AKPINAR, ADEM; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi.; 0000-0003-0006-5843; 0000-0003-4496-5974; 0000-0002-5422-0119; 0000-0001-6899-8442; AAC-6763-2019; B-6766-2011; AAB-4152-2020; AAC-8011-2021The paper focuses on the performance and determination of optimal installation depths of wave energy converter systems (WECs) in less intensified wave energy locations. Therefore, the study aims to investigate the changes in wave power production performance of different WECs along the coastline of the south-western parts of the Black Sea, a semi-enclosed sea. For this purpose, the data needed was extracted from the dataset produced for the period 1979 to 2009 using a calibrated nested layered wave hindcast SWAN version 41.01AB model forced with CFSR winds. The discussion focuses on the most essential five statistical parameters (dimensionless normalized wave power, efficiency index, capacity factor, capture width and energy production per unit of rated power) that can present an easy and more precise idea about the power production performance of WECs at different depths. The results present that the wave energy resource intensity is generally decreasing gradually from Karaburun to Sinop in the study area; the most energy intensified location is line KA, and the Oceantec WECs shows the best performance in its installation depth range. At different locations and depths, different WECs are more suitable for installation.