Browsing by Author "Ari, Ferda"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Anticancer potential of albumin bound wnt/β-catenin pathway inhibitor niclosamide in breast cancer cells(Wiley-v C H Verlag Gmbh, 2021-08-06) Ari, Ferda; Erkisa, Merve; Pekel, Gonca; Buyukkoroglu, Gulay; Ulukaya, Engin; Erturk, Elif; ERTÜRK, ELİF; Arı, Ferda; Erkısa, Merve; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Biyoloji Bölümü.; Bursa Uludağ Üniversitesi/Sağlık Hizmetleri Meslek Yüksekokulu.; 0000-0002-6729-7908; 0000-0002-3127-742X; 0000-0002-5089-6007; 0000-0003-4875-5472; K-5792-2018; N-6551-2019; JQI-3400-2023; AAM-1001-2020; IWM-5784-2023Albumin-based nanoparticle transport systems (nab-technology) are a new strategy in cancer treatment and we aimed to increase the effectiveness of Niclosamide using this technology. Niclosamide was bound with bovine serum albumin (BSA) by desolvation to yield nanoparticle albumin-bound Niclosamide (nab-Niclo). Nab-Niclo anticancer activity was assessed by proliferation, apoptosis and DNA damage analyses on breast cancer cells. The results implied that nab-Niclo was a more potent agent in the inhibition of cell viability than free Niclosamide and albumin. Flow cytometry analysis show that nab-Niclo triggered apoptosis by caspase and mitochondriadependent pathways in cells and nab-Niclo enhances apoptosis by induce DNA damage in cells. Overall results of this study showed that the nanoparticle form of Niclosamide is effective for breast cancer treatment, presenting a new treatment strategy that can be safe and effective for breast cancer patients.Publication Combination of histone deacetylase inhibitor with cu(ii) 5,5-diethylbarbiturate complex induces apoptosis in breast cancer stem cells: A promising novel approach(Bentham Science, 2021-01-01) Erkisa, Merve; Aztopal, Nazlihan; Erturk, Elif; Ulukaya, Engin; Yilmaz, Veysel T.; Ari, Ferda; Erkisa, Merve; Aztopal, Nazlihan; YILMAZ, VEYSEL TURAN; Ari, Ferda; ARI, FERDA; ertürk; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi.; 0000-0002-3127-742X; 0000-0003-3118-8061; 0000-0002-2849-3332; 0000-0002-6729-7908; JQI-3400-2023; AAM-1001-2020; L-7238-2018; AAG-7012-2021; L-6687-2018Background: Cancer Stem Cells (CSCs) are a subpopulation within the tumor that play a role in the initiation, progression, recurrence, resistance to drugs and metastasis of cancer. It is well known that epigenetic changes lead to tumor formation in cancer stem cells and show drug resistance. Epigenetic modulators and /or their combination with different agents have been used in cancer therapy.Objective: In our study, we scope out the effects of a combination of a histone deacetylases inhibitor, Valproic Acid (VPA), and Cu(II) complex [Cu(barb-kappa N)( barb-kappa 2N,O)(phen-kappa N,N')]center dot H2O] on cytotoxicity/apoptosis in a stem-cell enriched population (MCF-7s) obtained from parental breast cancer cell line (MCF-7).Methods: The viability of the cells was measured by the ATP assay. Apoptosis was elucidated via the assessment of caspase-cleaved cytokeratin 18 (M30 ELISA) and a group of flow cytometry analysis (caspase 3/7 activity, phosphatidylserine translocation by annexin V-FITC assay, DNA damage and oxidative stress) and 2',7'-dichlorofluorescein diacetate staining.Results: The VPA combined with Cu(II) complex showed anti-proliferative activity on MCF-7s cells in a dose-and time-dependent manner. Treatment with a combination of 2.5 mM VPA and 3.12 mu M Cu(II) complex induced oxidative stress in a time-dependent manner, as well as apoptosis evidenced by the increase in caspase 3/7 activity, positive annexin-V-FITC, and increase in M30 levels.Conclusion: The results suggest that the combination therapy induces apoptosis following increased oxidative stress, thereby making it a possible promising therapeutic strategy for which further analysis is required.Item Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes(Elsevier, 2019-07-02) Ulukaya, Engin; Alper, Pınar; Erkisa, Merve; Genckal, Hasene Mutlu; Sahin, Saliha; Ari, Ferda; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Bölümü.; 0000-0002-0026-7755; 0000-0002-6729-7908; 0000-0002-3127-742X; AAH-2888-2021; AAG-7012-2021; AAM-1001-2020; AAH-2892-2021; 24376085300; 15027401600; 57212275330; 57126208900; 57197858774Flavonoids are natural products which are known to have biological activity for human health. In this study, new mixed ligand complexes of Ni(II) and Cu(II) were synthesized by using flavonoid (quercetin or naringenin) and heterocyclic imine (2,2':6',2 ''-terpyridine or 2,2'-bipyiridine) ligands. The new complexes are [Ni(narH-1)(terpy)Cl]center dot 4H(2)O (1, nar = naringenin, terpy = 2,2':6',2 ''-terpyridine), [Cu(narH-1)(terpy)Cl]center dot H2O (2), and [Cu(queH-1)(bpy)(O3N)]center dot 1.5H(2)O (3, que = quercetin, bpy = 2,2'-bipyiridine). The structural features of the synthesized mixed ligand complexes were investigated using elemental analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, magnetic susceptibility and molar conductivity measurements. The resulting data demonstrated an octahedral geometry for Complex 1 and Complex 2 and square pyramidal geometry for Complex 3. Antioxidant capacity and total phenolic content of Complexes 1-3 were measured by the Folin-Ciocalteu and ABTS methods. Anti- proliferative effect of complexes were tested by SRB and ATP assays on MCF-7 (breast cancer), A549 (nonsmall cell lung cancer), PC-3 (prostate cancer) and HeLa (human cervical cancer) cell lines. Apoptosis was identified using by the fluorescence imaging, caspase cleaved cytokeratin-18 and flow cytometry analysis. Complex 2 and 3 had high total phenolic content and antioxidant activity. Complex 2 was found to show selective cytotoxicity through the induction of apoptosis on MCF-7 cells with having a very low IC50 value (<0.8 mu M; the half maximum inhibitory concentration) while its ligands showed much higher cytotoxicity (IC50 > 50 mu M). In conclusion, Complex 2 is a highly promising and novel compound for breast cancer and warrants further animal experiments. (C) 2019 Elsevier B.V. All rights reserved.Publication The mechanism for anticancer and apoptosis-inducing properties of cu(ii) complex with quercetin and 1,10-phenanthroline(Wiley-v C H Verlag Gmbh, 2022-10-13) Cevatemre, Buse; Ari, Ferda; ARI, FERDA; Done, Gülseven; Akgün, Oğuzhan; Akgün, Halime; Gençkal, Hasene Mutlu; MUTLU GENÇKAL, HASENE; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Biyoloji Bölümü.; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Kimya Bölümü.; 0000-0002-6729-7908; 0000-0002-8410-1786; 0000-0002-2048-3252; 0000-0002-0026-7755; AAG-7012-2021; A-5608-2019This article covers the anticancer activities and mechanisms of action of Cu(II) complexes of flavonoid-derived quercetin and 1,10-phenanthroline ligands. The antiproliferative activity of the complex and its ligands was evaluated by MTT, ATP, and SRB viability assays in human lung cancer cells (A549, H1299). Findings for apoptosis were determined by fluorescent staining, flow cytometry analysis, and the M30 antigen method. In addition, the mechanism of action of the complex was investigated by Annexin V staining, caspase 3/7 activity, ROS formation, and cell cycle analysis. The involvement of caspases, thus, apoptosis was confirmed by rescuing cell death by using a pan-caspase inhibitor (Z-VAD-FMK). Again, increased ROS levels in the cell showed that death may occur by apoptosis. For this reason, the accuracy of ROS-induced apoptosis in cells has been proven as a result of the application of N-acetylcysteine (NAC), which is a ROS inhibitor. The efficacy of the complex was compared with Cisplatin and ligands. The results showed that the Cu(II) flavonoid complex is cytotoxic on lung cancer cells and may have the potential to act as an effective metal-based anticancer drug with a lower IC50 over Cisplatin.