Intravenous CDP-choline activates neurons in supraoptic and paraventricular nuclei and induces hormone secretion

Date

2012-02-10

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science

Abstract

The aim of the present study was to assess the effects of intravenous (i.v.) cytidine-5'-diphosphate (CDP)-choline administration on the activation of oxytocin and vasopressin neurons in the supraoptic (SON) and paraventricular nuclei (PVN), using the immunohistochemical identification of c-Fos expression as a marker of neuronal activation and to correlate this with the plasma hormone levels. Rats were catheterized under sevofluorane anesthesia and experiments were conducted 24 h later. Blood samples were withdrawn from arterial catheter at 2, 5, 10, 20, 40 and 60 min after CDP-choline (0.5, 1.0 and 2.0 g/kg; i.v.) or saline (1.0 ml/kg; i.v.) for the measurement of plasma oxytocin and vasopressin levels by radioimmunoassay. Animals were sacrificed 90 min after CDP-choline administration for dual immunohistochemistry which was performed on paraformaldehyde-fixed vibratome sections. Dual immunohistochemistry for c-Fos and oxytocin or vasopressin revealed that CDP-choline activates these neurons in a dose-dependent manner. Light microscopic analyses showed that, about 41%, 75% or 87% of the oxytocin neurons and about 18%, 46% or 82% of the vasopressin neurons in SON express c-Fos, thus activated, by the dosages of 0.5, 1.0 or 2.0 g/kg CDP-choline, respectively. Increases in c-Fos expression were about 29%, 62% or 81% for the oxytocin neurons and about 38%, 70% or 78% for the vasopressin neurons in PVN with the dosages of 0.5, 1.0 or 2.0 g/kg CDP-choline, respectively. When compared to the control groups (8% and 7% oxytocin or 2% and 5% vasopressin neuronal activation in SON or PVN, respectively), these increases were found to be statistically significant (p < 0.05). In the PVN most of the magnocellular neurons were activated while less number of parvocellular neurons expressed c-Fos in response to CDP-choline challenge. In correlation with c-Fos data, CDP-choline increased plasma oxytocin and vasopressin levels both dose- and time-dependently. Results of the present study suggested that peripheral administration of CDP-choline is able to increase plasma oxytocin and vasopressin levels while activating the respective neurons.

Description

Keywords

Neurosciences & neurology, C-fos, Citicoline, Hypothalamus, Oxytocin, Vasopressin, Rat hypothalamus, C-fosmagnocellular neurons, Cardiovascular regulation, Acetylcholine-receptors, Osmotic stimulation, Oxytocin neurons, Blood-pressure, Acute nicotine, Survival-time

Citation

Eyigör, Ö. vd. (2012). "Intravenous CDP-choline activates neurons in supraoptic and paraventricular nuclei and induces hormone secretion". Brain Research Bulletin, 87(2-3), 286-294.