Kendir, EsraYaltkaya, Serafettin2024-07-112024-07-112019-10-230361-5235https://doi.org/10.1007/s11664-019-07718-1https://hdl.handle.net/11452/43197We prepared SiO2, Fe2O3-SiO2, and Dy2O3-SiO2 composites by an enhanced method and reported the result of their structural, optical and magnetic properties. In the x-ray diffraction results of the Fe2O3-SiO2, Fe2O3 and the SiO2 it is evident that these composites are crystallized in rhombohedral and trigonal structures, respectively. In the Dy2O3-SiO2 composite, SiO2 transforms into a trigonal structure with the addition of Dy. The absorption bands belong to Fe2O3, and Dy2O3 were obtained using the Fourier transform infrared spectra. In ultraviolet-visible spectra, the photocatalytic properties of Fe2O3-SiO2 and Dy2O3-SiO2 were determined as a function of time at room temperature. Maximum transmittance change at 800 nm was 75% and 40% for composites Fe2O3-SiO2, and Dy2O3-SiO2, respectively. The photocatalytic property of Dy2O3-SiO2 composite increases gradually from short to long in the wavelength region where it exhibits a maximum value in the visible region. In magnetic measurements, a weak ferromagnetic behavior was observed in the Fe2O3-SiO2, while Dy2O3-SiO2 exhibited paramagnetic behavior as expected. The saturation and coercivity values for Fe2O3-SiO2 were found to be 0.15 Am-2 kg(-1) and 40 mT, respectively.eninfo:eu-repo/semantics/closedAccessPhotocatalytic degradationNanoparticlesNanostructuresLanthanumGlassesRouteFtirSilicaFe2o3-sio2Dy2o3-sio2Optical propertiesScience & technologyTechnologyPhysical sciencesEngineering, electrical & electronicMaterials science, multidisciplinaryPhysics, appliedEngineeringMaterials sciencePhysicsStructural, optical and magnetic properties of α-Fe2O3-SiO2 and Dy2O3-SiO2 composites produced by a facile methodArticle000492010600006798806491, Special IssueSI10.1007/s11664-019-07718-1