Tzanakis, NikosSoydan, GökhanKaczorowski, J.2022-04-202022-04-202010Cangül, İ. N. vd. (2010). "On The Diophantine Equation x(2) 5(a) . 11(b) = y(n)". ed. J. Kaczorowski. Functiones et Approximatio: Commentarii Mathematici, 43, Part 2, 209-225.https://projecteuclid.org/journals/functiones-et-approximatio-commentarii-mathematici/volume-43/issue-2/On-the-diophantine-equation-x25acdot-11byn/10.7169/facm/1291903397.fullhttp://hdl.handle.net/11452/25901We give the complete solution (n, a, b, x, y) of the title equation when gcd(x,y) = 1, except for the case when xab is odd. Our main result is Theorem 1.eninfo:eu-repo/semantics/openAccessExponential diophantine equationS-integral points of an elliptic curveThue-Mahler equationLucas sequenceLinear form in logarithms of algebraic numbersPower valuesFormsMathematicsOn the Diophantine Equation x(2) 5(a) . 11(b) = y(n)Book Chapter0002863693000072-s2.0-8498339351720922543, Part 2MathematicsDiophantine Equation; Number; Linear Forms in Logarithms