Luca, Florian2024-04-032024-04-032013-06Cangül, I. N. (2013). “On the diophantine equation x 2+2 a • 3 b • 11 c = y n”. Mathematica Slovaca, 63(3), 647-659.0139-99181337-2211https://www.degruyter.com/document/doi/10.2478/s12175-013-0125-2/htmlhttps://hdl.handle.net/11452/40940In this note, we find all the solutions of the Diophantine equation x (2) + 2 (a) center dot 3 (b) center dot 11 (c) = y (n) , in nonnegative integers a, b, c, x, y, n a parts per thousand yen 3 with x and y coprime.eninfo:eu-repo/semantics/closedAccessMathematicsExponential Diophantine equationsPrimitive divisors of Lucas sequencesPower valuesX(2)+2(A)On the diophantine equation x 2+2 a • 3 b • 11 c = y nArticle0003211306000222-s2.0-84879697472647659633https://doi.org/10.2478/s12175-013-0125-2MathematicsDiophantine Equation; Number; Linear Forms in Logarithms