Simos, T. E.2022-11-072022-11-072011Yurttaş, A. vd. (2011). "Classification of normal subgroups of Hecke group H6 in terms of parabolic class number". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 315-316.0094-243Xhttps://doi.org/10.1063/1.3636729https://aip.scitation.org/doi/10.1063/1.3636729http://hdl.handle.net/11452/29421Bu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'da bildiri olarak sunulmuştur.In [3], Greenberg showed that n <= 6t(3) so that mu - nt <= 6t(4) for a normal subgroup N of level n and index mu having t parabolic classes in the modular group Gamma. Accola, [1], improved these to n <= 6t(2) always and n <= t(2) if Gamma/N is not abelian. Newman, [5], obtained another generalisation of these results. Hecke groups are generalisations of the modular group. We particularly deal with one of the most important cases, q = 6.eninfo:eu-repo/semantics/closedAccessMathematicsHecke groupsLevelParabolic class numberRiemann surfaceAutomorphismsClassification of normal subgroups of Hecke group H6 in terms of parabolic class numberProceedings Paper0003022398000772-s2.0-818552001503153161389Mathematics, appliedKlein Surface; Compact; Belyi