Gökbulu, Cengiz2021-12-072021-12-072006Gökbulut, C. vd. (2006). ''Plasma disposition and faecal excretion of netobimin metabolites and enantiospecific disposition of albendazole sulphoxide produced in ewes''. Veterinary Research Communications, 30(7), 791-805.0165-73801573-7446https://doi.org/10.1007/s11259-006-3336-yhttps://link.springer.com/article/10.1007%2Fs11259-006-3336-yhttp://hdl.handle.net/11452/23018Netobimin (NTB) was administered orally to ewes at 20 mg/kg bodyweight. Blood and faecal samples were collected from 1 to 120 h post-treatment and analysed by high-performance liquid chromatography (HPLC). Using a chiral phase-based HPLC, plasma disposition of albendazole sulphoxide (ABZSO) enantiomers produced was also determined. Neither NTB nor albendazole (ABZ) was present and only ABZSO and albendazole sulphone (ABZSO(2)) metabolites were detected in the plasma samples. Maximum plasma concentrations (C <(max)) of ABZSO (4.1 +/- 0.7 mu g/ml) and ABZSO(2) (1.1 +/- 0.4 mu g/ml) were detected at (t (max)) 14.7 and 23.8 h, respectively following oral administration of netobimin. The area under the curve (AUC) of ABZSO (103.8 +/- 22.8 (mu g h)/ml) was significantly higher than that ABZSO(2)(26.3 +/- 10.1 (mu g h)/ml) (p < 0.01). (-)-ABZSO and (+)-ABZSO enantiomers were never in racemate proportions in plasma. The AUC of (+)-ABZSO (87.8 +/- 20.3 (mu g h)/ml) was almost 6 times larger than that of (-)-ABZSO (15.5 +/- 5.1 (mu g h)/ml) (p < 0.001). Netobimin was not detected, and ABZ was predominant and its AUC was significantly higher than that of ABZSO and ABZSO(2), following NTB administration in faecal samples (p > 0.01). Unlike in the plasma samples, the proportions of the enantiomers of ABZSO were close to racemic and the ratio of the faecal AUC of (-)-ABZSO (172.22 +/- 57.6 (mu g h)/g) and (+)-ABZSO (187.19 +/- 63.4 (mu g h)/g) was 0.92. It is concluded that NTB is completely converted to ABZ by the gastrointestinal flora and absorbed ABZ is completely metabolized to its sulphoxide and sulphone metabolites by first-pass effects. The specific behaviour of the two enantiomers probably reflects different enantioselectivity of the enzymatic systems of the liver that are responsible for sulphoxidation and sulphonation of ABZ.eninfo:eu-repo/semantics/closedAccessVeterinary sciencesOvisPharmacokineticsEnantiomersNetobiminAlbendazole sulphoxideEwesAlbendazoleAnthelminticsGoatsCattleFenbendazoleP-GlycoproteinLiver-microsomesRuminal biotransformationHaemonchus-contortusPharmacokinetic behaviorSheepSheep diseasesSheepHelminthiasis, animalGuanidinesFemaleAdministration, oralFecesDose-response relationship, drugChromatography, high pressure liquidArea under curveAnthelminticsAnimalsAlbendazolePlasma disposition and faecal excretion of netobimin metabolites and enantiospecific disposition of albendazole sulphoxide produced in ewesArticle0002408312000072-s2.0-3374918935279180530717004041Veterinary sciencesAlbendazole; Fasciola Hepatica; Anthelmintic AgentNetobiminLiver enzymeDrug metaboliteAlbendazole sulfoxideAlbendazole sulfoneAlbendazoleSulfoxidationSulfonationStructure analysisStatistical significanceSheepRacemic mixtureNonhumanIntestine floraHigh performance liquid chromatographyFirst pass effectEnantioselectivityEnantiomerAnimal experimentArea under the curveDrug structureDrug metabolismArticleDrug feces levelDrug dose regimenDrug dispositionDrug blood levelBody weightChiral chromatographyControlled studyDrug absorption