Zhu, HuilinLe, MaohuaSoydan, Gökhan2024-08-122024-08-122015-01-011582-3067https://hdl.handle.net/11452/43876Let p be a fixed odd prime. In this paper, we study the integer solutions (x, y, a, b) of the equation x(2) + 2(a).p(b) = y(4), gcd(x, y) = 1, x > 0, y > 0, a >= 0, b >= 0, and we derive upper bounds for the number of such solutions.eninfo:eu-repo/semantics/closedAccessExponential diophantine equationLebesgue-nagell equationClassification of solutionsScience & technologyPhysical sciencesMathematicsOn the number of solutions of the diophantine equation x2+2a . p b = y4Article000363495600001255263173