Szatmari, Eszter2024-07-102024-07-102019-12-011844-6094https://doi.org/10.2478/ausm-2019-0031https://hdl.handle.net/11452/43145In this paper, we define a class of analytic functions, F(H, alpha, delta, mu), satisfying the following condition(alpha[zf'(z)/f(z)](delta) + (1-alpha) [zf'(z)/f(z)](mu)[1+zf ''(z)/f'(z)](1-mu)) (sic) H(z, t),where alpha is an element of [0, 1], delta is an element of [1, 2] and mu is an element of [0, 1].We give coefficient estimates and Fekete-Szego inequality for this class.eninfo:eu-repo/semantics/closedAccessAnalytic functionsSubordinationChebyshev polynomialsCoefficient estimatesFekete-szego inequalityScience & technologyPhysical sciencesMathematicsCoefficient estimates and fekete-szego inequality for a class of analytic functions satisfying subordinate condition associated with chebyshev polynomialsArticle00051840690001343043611210.2478/ausm-2019-0031