Ashyralyev, AllaberenSimos, T.E.2022-11-032022-11-032011Ashyralyev, A. (2011). "On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 577-580.0094-243Xhttps://doi.org/10.1063/1.3636796https://aip.scitation.org/doi/10.1063/1.3636796http://hdl.handle.net/11452/29366Bu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'de bildiri olarak sunulmuştur.The Bitsadze-Samarskii type nonlocal boundary value problem { -d(2)u(t)/dt(2) + Au(t) = f(t), 0 < t < 1, u(0) = phi, u(1) = Sigma(J)(j=1) alpha(j)u(lambda(j)) + psi, (1) Sigma(J)(j=1)vertical bar alpha(j)vertical bar <= 1, 0 < lambda(1) < lambda(2) < ... < lambda(J) < 1 for the differential equation in a Hilbert space H with the self -adjoint positive definite operator A is considered. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well posedness of this difference scheme in difference analogue of Holder spaces is established.eninfo:eu-repo/semantics/closedAccessMathematicsElliptic equationNonlocal boundary value problemDifference schemeStabilityOn the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problemProceedings Paper0003022398001422-s2.0-818552032015775801389Mathematics, appliedDifference Scheme; Nonlocal Boundary Value Problems; Identification Problem