Multicomponent Reactions DOI: 10.1002/anie.201410751 Double Heteroatom Functionalization of Arenes Using Benzyne Three-Component Coupling** Jos¦-Antonio Garc�a-Lýpez, Meliha Çetin, and Michael F. Greaney* Abstract: Arynes participate in three-component coupling reactions with N, S, P, and Se functionalities to yield 1,2- heteroatom-difunctionalized arenes. Using 2-iodophenyl aryl- sulfonates as benzyne precursors, we could effectively add magnesiated S-, Se-, and N-nucleophilic components to the strained triple bond. In the same pot, addition of electrophilic N, S, or P reagents and a copper(I) catalyst trapped the intermediate aryl Grignard to produce a variety of 1,2- difunctionalized arenes. 1,2-Heteroatom-functionalized arenes represent privi- leged structures in pharmaceuticals and catalysis (Scheme 1).[1] Covering a vast area of chemical structure and function, their synthesis usually entails multistep sequen- ces with attendant multiple purification steps. In the 2- functionalized aniline series, for example, an ortho-halo- nitrobenzene is commonly used for initial SNAr C¢X bond formation, followed by nitro reduction and a second C¢N bond forming reaction at the amine functional group.[2] More recently, sequential metal-catalyzed C¢N and C¢S bond formations have been developed on suitably differentiated haloarene precursors.[3] Our interest in benzyne chemistry[4] led us to speculate whether this compound class could be made in a single operation through a three component coupling of two heteroatom moieties and an aryne.[5] Nucleophilic addition to benzyne to form a reactive aryl anion intermediate 2, followed by trapping with an electro- philic component, is a fundamental reaction mode in benzyne chemistry that has seen extensive application in synthesis.[6,7] Perhaps surprisingly, the three-component coupling of ben- zyne and two heteroatom moieties has yet to be described as a general method.[8, 9] The development of this reaction would yield valuable heteroatom-functionalized arenes in a single step, with broad application in synthesis. We chose to study tandem S- and N-addition to benzyne in the first instance. Important precedent from Knochel and co- workers had shown that magnesium thiolates undergo efficient addition to benzynes generated from 2-iodophenyl arylsulfonates 4 with iPrMgCl, with the resulting adducts being trapped with simple carbon electrophiles in good yield.[10] Using this chemistry for the initial nucleophilic addition, we then planned to try O-benzoyl N,N-dialkyl- hydroxylamines as the nitrogen source. These electrophilic aminating agents are simple to prepare as stable, crystalline solids, and have recently been shown to have excellent versatility in C¢N bond formation.[11] Treatment of 2-iodophenyl-sulfonate 4 with two equiv- alents of iPrMgCl in the presence of 4-tert-butyl-benzene- thiolate 5 at ¢78 88C in THF, followed by warming of the mixture to 0 88C, afforded the expected 2-magnesiated benzo- thioether 6 (Scheme 2). Pleasingly, dropwise addition of this intermediate Grignard to a mixture containing one equivalent Scheme 1. 1,2-Heteroatom-functionalized arenes and proposed ben- zyne three-component coupling approach. [*] Dr. J.-A. Garc�a-Lüpez, Dr. M. Çetin,[+] Prof. M. F. Greaney School of Chemistry, University of Manchester Oxford Rd, Manchester, M13 9PL (UK) E-mail: michael.greaney@manchester.ac.uk [++] Visiting researcher from Uludaḡ University Faculty of Arts and Science, Department of Chemistry 16059 Bursa (Turkey) [**] We thank T�BİTAK-BİDEB (scholarship to M.Ç.), Fundaciün S¦neca (CARM, Spain) (Fellowship to J.-A.G.-L.) and the EPSRC (Leader- ship Fellowship to M.F.G.) for funding. Dr. James Raftery is thanked for X-ray crystallography. Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201410751. Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. ..Angewandte Communications 2156 Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2015, 54, 2156 –2159 http://dx.doi.org/10.1002/anie.201410751 of O-benzoyl N-hydroxylpiperidine and catalytic CuCl2 (5 mol%) in dry THF, yielded the desired 2-(2-piperidine phenyl)benzenethioether 7a in 35% yield. An optimization study (see the Supporting Information, SI) focusing on reaction stoichiometry and catalyst choice improved the yield to 76%, using a CuCl catalyst (10 mol%) and phenanthroline ligand (10 mol%) system. Catalyst load- ing was a key parameter, as larger amounts of CuCl led to copious homocoupling of the intermediate Grignard 6. No product 7a was detected in the absence of copper, as C- arylation of the O-benzoylhydroxylamine reagent is preferred to yield the ketone.[12] We were pleased to find that the reaction was general for a range of aromatic, pyridine, and thiophene thiols, with electron-donating (OMe, tBu) and electron-withdrawing (F, Br) substituents being well accom- modated (7a–i, 51–76 % yield, Figure 1). Phenyl selenide was also productive in the coupling, affording the expected ortho- seleno-aminated product 7j in 59% yield. In terms of the electrophilic amine moiety, the reaction worked well for introducing cyclic (morpholine, thiomorpho- line, and piperidine) and acyclic secondary amines (N,N- diethyl and N,N-methyl benzyl amines). Primary O-benzoyl hydroxylamines, however, worked poorly in the reaction. To address this shortcoming, we experimented with the trans- metalation of intermediate 6 with zinc; pioneering work from Johnson has shown that arylzinc compounds can react with primary O-benzoyl hydroxylamines under copper catalysis to give secondary anilines.[13] We were pleased to find that the addition of ZnCl2 (0.5 equiv) to the reaction mixture was successful, enabling iPrNHOBz and CyNHOBz to be used as electrophiles in the reaction (7k, 7 l) in 44 and 46 % yield, respectively. Substituted arynes could be successfully employed, with 3- methoxybenzyne reacting smoothly to give the expected 1,2,3-O,N,S-functionalized product 7 o as a single regioiso- mer.[14] Using 1,2-naphthyne as the starting material, by contrast, gave the thioaminated products 7m and 7m’’ in 56% yield, but as a separable mixture of regioisomers (1:1). Addition to 1,2-naphthyne often favors the 2-position (e.g., for neutral nitrogen nucleophiles),[4d,e,h] but selectivity can vary according to the nature of the nucleophile.[15] Here, the strong thiolate nucleophile shows little discrimination (cf. magnesium amide addition). We were pleased to extend the reaction to 5,6-quinolyne, a hetaryne that has scarcely been exploited in the literature.[16] The three-component coupling afforded the piperazinyl-mercaptoquinolines (7n, 7n’’) in 55% yield (using ZnCl2 as an additive for the amination step), again giving a 1:1 mixture of regioisomers.[17] Starting material 4-methylbenzyne afforded a 66% yield of 7p in the expected 1:1 mixture of isomers, exhibiting the regiodiver- gence typical of additions to meta-substituted benzynes. Finally, we demonstrated that electrophilic P and S sources were effective in the three-component coupling, synthesizing the S,P adduct 8a using CuCl (2 mol%) and ClPPh2, and the mixed S,S adduct 8b through quenching with tolyldisulfide in the presence of CuCl (10 mol%). Having established a working thio- and seleno-amination system, we turned our attention to benzyne double amination. Scheme 2. Tandem S,N-functionalization of benzyne. phen =phenan- throline. Figure 1. Scope of the (2-aminophenyl)benzothioether substrate. Reac- tion conditions: thiol (1 mmol), iPrMgCl (2.2 mmol), and aryne pre- cursor (1.2 mmol) were stirred at ¢78 88C for 45 min, then warmed to 0 88C. The resulting intermediate Grignard was quenched with 1.5 mol of R1R2N¢OBz in the presence of CuCl (10 mol%) and phenanthroline (10 mol%; see SI). [a] An additional zincation step was performed by adding ZnCl2 (0.5 equiv) after the initial thiolate addition. The thermal ellipsoids of the X-ray structure of 7d were set at 50%.[19] Angewandte Chemie 2157Angew. Chem. Int. Ed. 2015, 54, 2156 –2159 Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 15213773, 2015, 7, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1002/anie.201410751 by B ursa U ludag U niversity K utuphane ve D okum antasyon, W iley O nline L ibrary on [21/07/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense http://www.angewandte.org Access to this motif through stepwise metal-catalyzed C¢N bond forming chemistry is underdeveloped, making a pro- spective aryne three-component coupling route particularly interesting.[18] Using magnesiated secondary anilines as the initial nucleophiles, we were pleased to find that our established three-component coupling conditions translated well to diamine synthesis (Scheme 3). Although yields were slightly lower than the thio system, we could successfully access a variety of 1,2-diamino benzenes (10 a–l) in 30–73% yield. It is likely that the initial aniline addition adduct presents additional steric hindrance to the second amination step, relative to the thio analogues, leading to some attenu- ation in yields. Zinc transmetalation was beneficial for the cyclic morpholine, piperidine, and piperazine products 10g–i, plus the primary isopropylamine adduct 10j. The effect was not general, however, with acyclic secondary amines 10b,c,f reacting markedly worse under zincation conditions. The use of 1,2-naphthyne in the diamination contrasted with the thioamination, giving a single regioisomeric product 10k. The less reactive magnesium anilide is evidently able to discrim- inate between the differences in steric demand at either aryne position, adding to the more accessible aryne 2-position. Starting with 3-methoxy benzyne gave the O,N,N product 10 l as a single regioisomer, albeit in low yield. As with the thiolate addition system, we could also use phosphorus and sulfur electrophiles to access the N,P and N,S products 11 a and 11 b, respectively. The polarity reversal in synthesizing 11b is complimentary to thiolate addition and trapping with R1R2NOBz reagents, as the O-benzoyl hydroxylaniline reagents are less readily synthesized.[20] We applied our three component coupling protocol to the synthesis of vortioxetine, 13, an antidepressant drug that has recently received FDA and EMA approval (sold as brintellix; Scheme 4). The molecule had previously been prepared through double nucleophilic substitution of 1,2-dichloroben- zene, mediated by ferrocene, in 17% overall yield.[21] Following our optimized procedure, 2,4-dimethylthiophenol reacted with benzyne precursor 4 to generate an intermediate Grignard 11. Transmetalation with ZnCl2 enabled efficient copper-catalyzed amination with the N-Boc protected O- benzoyl hydroxylamine derived from piperazine, affording a 78% yield of 12 in a single manipulation. Simple TFA treatment removed the Boc group, affording the desired pharmaceutical 13 in 73% overall yield in two steps from 4, without recourse to noble-metal catalysis. In conclusion, we have developed the aryne three- component coupling reaction to encompass double hetero- atom substitution, showcasing a new, one-pot approach to S,N-, N,N-, Se,N-, S,P-, and N,P-functionalized arenes that avoids the isolation of intermediates. The method encom- passes a variety of thiols, arynes (including hetarynes), and amines, and uses inexpensive metal reagents and catalysts. Received: November 4, 2014 Published online: January 7, 2015 .Keywords: arynes · benzyne · Grignard reaction · heterocycles · multicomponent reactions [1] Synthesis of representative structures in Scheme 1: a) R. J. Lundgren, B. D. Peters, P. G. Alsabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 4071 – 4074; Angew. Chem. 2010, 122, 4165 – 4168; b) D. C. H. Oakes, B. S. Kimberley, V. C. Gibson, D. J. Jones, A. J. P. White, D. J. Williams, Chem. Commun. 2004, 2174 – 2175; c) E. J. Hennessy, S. L. Buchwald, J. Org. Chem. 2005, 70, 7371 – 7375; d) G. J. Atwell, B. C. Baguley, G. J. Finlay, G. W. Rewcastle, W. A. Denny, J. Med. Chem. 1986, 29, 1769 – 1776; e) E. J. Warawa, B. M. Migler, U.S. Patent 4,879,288, 1988 ; f) J. F. Gertser, et al., J. Med. Chem. 2005, 48, 3481 – 3491. Scheme 3. Synthesis of 2-aminoaniline. Reaction conditions: amine (1 mmol), iPrMgCl (2.2 mmol), and aryne precursor (1.2 mmol) were stirred at ¢78 88C for 45 min, then warmed to 0 88C. The resulting intermediate Grignard was quenched with R1R2N¢OBz (1.5 mol) in the presence of CuCl (10 mol%) and phenanthroline (10 mol%; see SI). [a] An additional zincation step was performed by adding ZnCl2 (0.5 equiv) after the initial anilide addition. Bz = benzoyl, Boc= tert- butyloxycarbonyl. Scheme 4. Vortioxetine synthesis. TFA = trifluoroacetic acid. ..Angewandte Communications 2158 www.angewandte.org Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2015, 54, 2156 –2159 15213773, 2015, 7, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1002/anie.201410751 by B ursa U ludag U niversity K utuphane ve D okum antasyon, W iley O nline L ibrary on [21/07/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense http://dx.doi.org/10.1002/anie.201000526 http://dx.doi.org/10.1002/anie.201000526 http://dx.doi.org/10.1002/ange.201000526 http://dx.doi.org/10.1002/ange.201000526 http://dx.doi.org/10.1039/b409870f http://dx.doi.org/10.1039/b409870f http://dx.doi.org/10.1021/jo051096o http://dx.doi.org/10.1021/jo051096o http://dx.doi.org/10.1021/jm00159a035 http://dx.doi.org/10.1021/jm00159a035 http://www.angewandte.org [2] F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley- VCH, Weinheim, 2013, ISBN 978 – 3527318612. [3] a) D. Tsvelikhovsky, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 14228 – 14231; b) T. Dahl, C. W. Tornøe, B. Bang-Andersen, P. Nielsen, M. Jørgensen, Angew. Chem. Int. Ed. 2008, 47, 1726 – 1728; Angew. Chem. 2008, 120, 1750 – 1752. [4] a) B. Michel, M. F. Greaney, Org. Lett. 2014, 16, 2684 – 2684; b) J.-A. Garc�a-Lýpez, M. F. Greaney, Org. Lett. 2014, 16, 2338 – 2341; c) C. Hall, J. L. Henderson, G. Ernouf, M. F. Greaney, Chem. Commun. 2013, 49, 7602 – 7604; d) T. Pirali, F. Zhang, A. H. Miller, J. L. Head, D. McAusland, M. F. Greaney, Angew. Chem. Int. Ed. 2012, 51, 1006 – 1009; Angew. Chem. 2012, 124, 1030 – 1033; e) D. McAusland, S. Seo, D. G. Pintori, J. Finlayson, M. F. Greaney, Org. Lett. 2011, 13, 3667 – 3669; f) K. Biswas, M. F. Greaney, Org. Lett. 2011, 13, 4946 – 4949; g) A. A. Cant, L. Roberts, M. F. Greaney, Chem. Commun. 2010, 46, 8671 – 8673; h) A. A. Cant, G. H. V. Bertrand, J. L. Henderson, L. Roberts, M. F. Greaney, Angew. Chem. Int. Ed. 2009, 48, 5199 – 5202; Angew. Chem. 2009, 121, 5301 – 5304. [5] Recent reviews on aryne chemistry: a) P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550 – 3577; b) C. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3766 – 3778; Angew. Chem. 2012, 124, 3829 – 3842; c) A. V. Dubrovskiy, N. A. Mar- kina, R. C. Larock, Org. Biomol. Chem. 2013, 11, 191 – 218; d) R. W. Hoffmann, K. Suzuki, Angew. Chem. Int. Ed. 2013, 52, 2655 – 2656; Angew. Chem. 2013, 125, 2717 – 2718; e) C. Hol- den (n¦e Hall), M. F. Greaney, Angew. Chem. Int. Ed. 2014, 53, 5746 – 5749; Angew. Chem. 2014, 126, 5854 – 5857; f) A. Bhunia, A. T. Biju, Synlett 2014, 25, 608 – 614; g) E. Goetz, T. K. Shah, N. K. Garg, Chem. Commun. 2015, 51, 34 – 45. [6] Seminal work: R. Huisgen, H. Rist, Justus Liebigs Ann. Chem. 1955, 594, 137. [7] Selected examples: a) P. D. Pansegrau, W. F. Rieker, A. I. Meyers, J. Am. Chem. Soc. 1988, 110, 7178 – 7184; b) H. Tomori, J. M. Fox, S. L. Buchwald, J. Org. Chem. 2000, 65, 5334 – 5341; c) H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, Angew. Chem. Int. Ed. 2004, 43, 3935 – 3938; Angew. Chem. 2004, 116, 4025 – 4028; d) T. T. Jayanth, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2005, 7, 2921 – 2924; e) I. Larrosa, M. I. Da Silva, P. M. Gýmez, P. Hannen, E. Ko, S. R. Lenger, S. R. Linke, A. J. P. White, D. Wilton, A. G. M. Barrett, J. Am. Chem. Soc. 2006, 128, 14042 – 14043; f) J. L. Henderson, A. S. Edwards, M. F. Greaney, J. Am. Chem. Soc. 2006, 128, 7426 – 7427; g) F. Berti, P. Crotti, G. Cassano, M. Pineschi, Synlett 2012, 2463 – 2468; h) T. Truong, M. Mesgar, K. K. A. Le, O. Daugulis, J. Am. Chem. Soc. 2014, 136, 8568 – 8576; i) A. Nagaki, D. Ichinari, J.-i. Yoshida, J. Am. Chem. Soc. 2014, 136, 12245 – 12248. [8] The two-component coupling of benzyne and X¢Y components through s-bond insertion is well described. Reviews: a) D. PeÇa, D. PÀrez, E. Guiti�n, Angew. Chem. Int. Ed. 2006, 45, 3579 – 3581; Angew. Chem. 2006, 118, 3659 – 3661; b) H. Yoshida, K. Takaki, Synlett 2012, 1725 – 1732; recent examples: c) M. Ala- jarin, C. Lopez-Leonardo, R. Raja, R.-A. Orenes, Org. Lett. 2011, 13, 5668 – 5671; d) C. E. Hendrick, S. L. McDonald, Q. Wang, Org. Lett. 2013, 15, 3444 – 3447; e) J. R. Hwu, Y. C. Hsu, Chem. Eur. J. 2011, 17, 4727 – 4731; f) J. Chen, T. Murafuji, R. Tsunashima, Organometallics 2011, 30, 4532 – 4538; g) C. Shen, G. Yang, W. Zhang, Org. Lett. 2013, 15, 5722 – 5725; h) D. Rodr�guez-Lojo, A. Cobas, D. PeÇa, D. P¦rez, E. Guiti�n, Org. Lett. 2012, 14, 1363 – 1365; i) H. Yoshida, S. Kawashima, Y. Takemoto, K. Okada, J. Ohshita, K. Takaki, Angew. Chem. Int. Ed. 2012, 51, 235 – 238; Angew. Chem. 2012, 124, 239 – 242; j) H. Yoshida, R. Yoshida, K. Takaki, Angew. Chem. Int. Ed. 2013, 52, 8629 – 8632; Angew. Chem. 2013, 125, 8791 – 8794. [9] For heteroatom addition to benzyne followed by trapping with molecular iodine or oxygen, see: a) Z. He, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 3353 – 3357; Angew. Chem. 2014, 126, 3421 – 3425; b) Y. Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am. Chem. Soc. 2013, 135, 18730 – 18733. [10] a) W. Lin, I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2005, 44, 4258 – 4261; Angew. Chem. 2005, 117, 4330 – 4333; b) I. Sapountzis, W. Lin, M. Fischer, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 4364 – 4366; Angew. Chem. 2004, 116, 4464 – 4466; c) W. Lin, F. Ilgen, P. Knochel, Tetrahedron Lett. 2006, 47, 1941 – 1944; d) W. Lin, L. Chen, P. Knochel, Tetrahedron 2007, 63, 2787 – 2797. [11] Reviews: a) X. Yan, X. Yang, C. Xi, Catal. Sci. Technol. 2014, 4, 4169 – 4177; b) M.-L. Louillat, F. W. Patureau, Chem. Soc. Rev. 2014, 43, 901 – 910. [12] M. J. Campbell, J. S. Johnson, Org. Lett. 2007, 9, 1521 – 1524. [13] A. M. Berman, J. S. Johnson, J. Am. Chem. Soc. 2004, 126, 5680 – 5681. [14] For a recent discussion on aryne selectivity, see: J. M. Medina, J. L. Mackey, N. K. Garg, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 15798 – 15805. [15] For examples of nonselective addition to 1,2-naphthyne, see: a) B. Rao, X. Zeng, Org. Lett. 2014, 16, 314 – 317; b) T. Jin, Y. Yamamoto, Angew. Chem. Int. Ed. 2007, 46, 3323 – 3325; Angew. Chem. 2007, 119, 3387 – 3389; c) A. T. Biju, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 9761 – 9764; Angew. Chem. 2010, 122, 9955 – 9958; d) E. R¦mond, A. Tessier, F. R. Leroux, J. Bayar- don, S. Juge, Org. Lett. 2010, 12, 1568 – 1571; e) K. Z. Łaczkow- ski, D. Garc�a, D. PeÇa, A. Cobas, D. P¦rez, E. Guiti�n, Org. Lett. 2011, 13, 960 – 963; f) E. Yoshioka, H. Miyabe, Tetrahedron 2012, 68, 179 – 189; g) B. V. Lakshmi, U. K. Wefelscheid, U. Kazmaier, Synlett 2011, 345 – 348. [16] For quinolynes in synthesis, see: a) T. Kauffmann, F.-P. Boettcher, J. Hansen, Justus Liebigs Ann. Chem. 1962, 659, 102 – 109; b) I.-C. Grig-Alexa, E. Garnier, A.-L. Finaru, L. Ivan, C. Jarry, J.-M. L¦ger, P. CaubÀre, G. Guillaumet, Synlett 2004, 2000 – 2004; c) G. E. Collis, A. K. Burrell, Tetrahedron Lett. 2005, 46, 3653 – 3656; d) N. Saito, K. Nakamura, S. Shibano, S. Ide, M. Minami, Y. Sato, Org. Lett. 2013, 15, 386 – 389; e) Y. Fang, R. C. Larock, Tetrahedron 2012, 68, 2819 – 2826. [17] Aryne distortion in 5,6-quinolyne is known to be low, correlating with low regioselectivities in nucleophilic addition: A. E. Goetz, S. M. Bronner, J. D. Cisneros, J. M. Melamed, R. S. Paton, K. N. Houk, N. K. Garg, Angew. Chem. Int. Ed. 2012, 51, 2758 – 2762; Angew. Chem. 2012, 124, 2812 – 2816. [18] For an elegant rearrangement approach to the 1,2-aminoaniline motif, see: A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson, Org. Lett. 2010, 12, 1492. [19] CCDC 1028839 (7d) contains the supplementary crystallo- graphic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. [20] The synthesis of O-benzoyl N-hydroxylanilines requires the preparation of N-alkylated N-hydroxyl anilines (either by N- alkylation from N-hydroxyl aniline or by treatment of a nitro- soalkane with PhMgBr), followed by an O-benzoylation step. See for example: a) A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson, Eur. J. Org. Chem. 2008, 5135 – 5143; b) Y. Endo, S. Hizatate, K. Shudo, Tetrahedron Lett. 1991, 32, 2803 – 2806. [21] T. Ruhland, G. P. Smith, B. Bang-Andersen, A. Pueschl, E. K. Moltzen, K. Andersen, Int. Patent WO 2003029232A1, 2003. Angewandte Chemie 2159Angew. Chem. Int. Ed. 2015, 54, 2156 –2159 Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 15213773, 2015, 7, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1002/anie.201410751 by B ursa U ludag U niversity K utuphane ve D okum antasyon, W iley O nline L ibrary on [21/07/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense http://dx.doi.org/10.1021/ja206229y http://dx.doi.org/10.1021/ja206229y http://dx.doi.org/10.1002/anie.200705209 http://dx.doi.org/10.1002/anie.200705209 http://dx.doi.org/10.1002/ange.200705209 http://dx.doi.org/10.1021/ol500959e http://dx.doi.org/10.1021/ol5006246 http://dx.doi.org/10.1021/ol5006246 http://dx.doi.org/10.1039/c3cc44529a http://dx.doi.org/10.1002/anie.201106150 http://dx.doi.org/10.1002/anie.201106150 http://dx.doi.org/10.1002/ange.201106150 http://dx.doi.org/10.1002/ange.201106150 http://dx.doi.org/10.1021/ol201413r http://dx.doi.org/10.1021/ol202049v http://dx.doi.org/10.1039/c0cc02547j http://dx.doi.org/10.1002/anie.200901410 http://dx.doi.org/10.1002/ange.200901410 http://dx.doi.org/10.1021/cr200478h http://dx.doi.org/10.1002/anie.201107485 http://dx.doi.org/10.1002/ange.201107485 http://dx.doi.org/10.1002/ange.201107485 http://dx.doi.org/10.1039/c2ob26673c http://dx.doi.org/10.1002/anie.201209041 http://dx.doi.org/10.1002/anie.201209041 http://dx.doi.org/10.1002/ange.201209041 http://dx.doi.org/10.1002/jlac.19555940204 http://dx.doi.org/10.1002/jlac.19555940204 http://dx.doi.org/10.1021/ja00229a037 http://dx.doi.org/10.1021/jo000691h http://dx.doi.org/10.1021/jo000691h http://dx.doi.org/10.1002/anie.200460009 http://dx.doi.org/10.1002/ange.200460009 http://dx.doi.org/10.1002/ange.200460009 http://dx.doi.org/10.1021/ol050859r http://dx.doi.org/10.1021/ja0662671 http://dx.doi.org/10.1021/ja0662671 http://dx.doi.org/10.1021/ja0615526 http://dx.doi.org/10.1021/ja504886x http://dx.doi.org/10.1021/ja504886x http://dx.doi.org/10.1021/ja5071762 http://dx.doi.org/10.1055/s-0031-1290401 http://dx.doi.org/10.1021/ol202395s http://dx.doi.org/10.1021/ol202395s http://dx.doi.org/10.1021/ol401518c http://dx.doi.org/10.1002/chem.201001735 http://dx.doi.org/10.1021/om200228x http://dx.doi.org/10.1021/ol402748u http://dx.doi.org/10.1021/ol300439r http://dx.doi.org/10.1021/ol300439r http://dx.doi.org/10.1002/anie.201106706 http://dx.doi.org/10.1002/anie.201106706 http://dx.doi.org/10.1002/ange.201106706 http://dx.doi.org/10.1002/anie.201302783 http://dx.doi.org/10.1002/anie.201302783 http://dx.doi.org/10.1002/ange.201302783 http://dx.doi.org/10.1002/anie.201310572 http://dx.doi.org/10.1002/anie.201310572 http://dx.doi.org/10.1002/ange.201310572 http://dx.doi.org/10.1002/ange.201310572 http://dx.doi.org/10.1021/ja409748m http://dx.doi.org/10.1002/anie.200500443 http://dx.doi.org/10.1002/anie.200500443 http://dx.doi.org/10.1002/ange.200500443 http://dx.doi.org/10.1002/anie.200460417 http://dx.doi.org/10.1002/anie.200460417 http://dx.doi.org/10.1002/ange.200460417 http://dx.doi.org/10.1016/j.tetlet.2006.01.071 http://dx.doi.org/10.1016/j.tetlet.2006.01.071 http://dx.doi.org/10.1016/j.tet.2007.01.027 http://dx.doi.org/10.1016/j.tet.2007.01.027 http://dx.doi.org/10.1039/c3cs60318k http://dx.doi.org/10.1039/c3cs60318k http://dx.doi.org/10.1021/ol0702829 http://dx.doi.org/10.1021/ja049474e http://dx.doi.org/10.1021/ja049474e http://dx.doi.org/10.1021/ol403346x http://dx.doi.org/10.1002/anie.200700101 http://dx.doi.org/10.1002/ange.200700101 http://dx.doi.org/10.1002/ange.200700101 http://dx.doi.org/10.1002/anie.201005490 http://dx.doi.org/10.1002/anie.201005490 http://dx.doi.org/10.1002/ange.201005490 http://dx.doi.org/10.1002/ange.201005490 http://dx.doi.org/10.1016/j.tet.2011.10.072 http://dx.doi.org/10.1016/j.tet.2011.10.072 http://dx.doi.org/10.1002/jlac.19626590111 http://dx.doi.org/10.1002/jlac.19626590111 http://dx.doi.org/10.1016/j.tetlet.2005.03.164 http://dx.doi.org/10.1016/j.tetlet.2005.03.164 http://dx.doi.org/10.1021/ol303352q http://dx.doi.org/10.1016/j.tet.2012.02.002 http://dx.doi.org/10.1002/anie.201108863 http://dx.doi.org/10.1002/ange.201108863 http://dx.doi.org/10.1021/ol100196a http://dx.doi.org/10.1002/ejoc.200800672 http://dx.doi.org/10.1002/ejoc.200800672 http://dx.doi.org/10.1016/0040-4039(91)85091-I http://www.angewandte.org