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Mine Çardak1
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Abstract This study evaluated the antibiotic resistance

characteristics and virulence genes of enterococci isolated

from raw and processed seafood sold in the Marmara

Region, Turkey. In this context, the enterococcal load was

determined as between 1.0 and 2.5 log CFU/g in 39 of a

total of 397 samples. It was determined that 117 strains

isolated from the samples belonged to Enterococcus gal-

linarum, E. casseliflavus, E. durans, E. faecium, and E.

faecalis species. Erythromycin, tetracycline, streptomycin,

and gentamicin resistance was observed, whereas the tetM,

ermB, aac(6’)-aph(2’’)-la genes were found in a majority

of the isolates. It was also determined that the isolates

carried the agg2 and gelE virulence genes. When all these

results are evaluated, the presence of these isolates in

aquatic products may pose a risk in terms of food safety

and public health.

Keywords Antibiotic resistance � Enterococci � Seafood �
Virulence genes

Introduction

Seafood, particularly those having bacterial and/or chemical

qualities, may carry high potential health risks for human

beings. Pathogenic microorganisms may contaminate seafood

during the breeding, handling, processing, or preparation of

products (Iwamoto et al. 2010). During the breeding of sea-

food products, using antibiotics as therapeutic and/or pro-

phylactic agents to prevent bacterial diseases leads to the

development of antibiotic resistance in bacterial populations

in aquaculture environments (Muñoz-Atienza et al. 2013).

Enterococci are the member of the commensal micro-

biota of the intestinal tract of animals and humans and are
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also found in soil and water, domestic sewage and animal

waste (Facklam et al. 2002; Hancock and Gilmore 2006).

Sewage and wastes can contaminate certain surfaces,

which are used by the public, and groundwater (Korajkic

et al. 2020). Because of their widespread presence in ani-

mal and human faeces, they are indicated as a faecal

indicator for water quality (Di Cesare et al. 2014).

Studies have reported enterococcal species can be iso-

lated from particular aquatic ecosystem, including coastal

marine environments and aquaculture, because of their

tolerance to high salt conditions. Seafood may carry ente-

rococci obtained from several aquatic sources, such as

lakes, rivers, and seawater, which contaminate urban and

aquaculture wastewater (Ben Said et al. 2017). Enterococci

have also been isolated from seafood such as shellfish, the

intestine of fish, traditionally processed fish products,

shrimp, salmon, turbot, etc. In some studies, it has been

reported that the Enterococcus faecium, E. faecalis, E.

durans, E. raffinosus, E. avium, E. malladoratus, E. cas-

seliflavus, E. gallinarum, E. phoeniculicola, E. saccha-

rolyticus, and E. gilvus strains were isolated from aquatic

habitats and traditional or industrially processed seafood

products (Hammad et al. 2014; Klibi et al. 2013; Psoni

et al. 2006; Pinto et al. 2009; Valenzuela et al. 2010).

Although E. gallinarum was described originally from

chickens, this species was rarely found, suggesting that

these species may not belong to the normal intestinal flora

of poultry (Lebreton et al. 2014). Badgley et al. (2010)

identified enterococcal species isolated from water, sedi-

ment, and submerged aquatic vegetation such as E. cas-

seliflavus, E. faecalis, E. faecium, E. hirae, and E. mundtii.

It was suggested that the persistence of certain strains was

not directly related to pollution events.

Enterococcal species can tolerate improper environ-

mental conditions such as high salt concentrations, high or

low pH and temperatures. (Byappanahalli et al. 2012).

Enterococci are also isolated from intestinal fish microflora

or fish environments (Valenzuela et al. 2010). Certain

enterococcal strains are considered as opportunistic

pathogens which have transferable antibiotic resistance

characteristics and may cause multi-resistant nosocomial

infections (Clewell et al. 2014). Some enterococcal strains

may also carry virulence determinants that are responsible

for infections in humans such as gelatinase, cytolysin,

aggregation substances, and extracellular surface proteins

(Aslam et al. 2012). Certain virulence characteristics in the

genotype and/or phenotype of enterococci isolated from

seafood were reported. Igbinosa and Beshiru (2019)

detected S-layer, gelatinase production, and b-hemolysis

reaction in phenotype and high number of virulence genes

in the Enterococcus species from ready-to-eat seafood

samples. Hammad et al. (2014) mentioned that the viru-

lence determinants such as gelE (gelatinase), asa1

(aggregation substance), hyl (hyaluronidase), and esp (en-

terococcal surface protein) were related to pathogenicity

proved by animal models. They also reported that gelE and

asa1 genes were detected in E. faecalis and E. faecium

strains isolated from ready-to-eat raw fish. Chajecka-

Wierzchowska et al. (2017) determined that all tested

enterococcal strains isolated from shrimp most frequently

carried esp, gelE, efaA cpd, cob, ccf virulence genes.

The release of antimicrobial drugs in agricultural, and

industrial applications and in the environment used in the

medical treatment of humans and animals may cause an

increase in the spreading of resistant enterococcal biota in

water, soil, food, and wastewater. The virulent strains may

be transferred to humans through sediment and seawater

(Di Cesare et al. 2012; Pasquaroli et al. 2014; Citterio et al.

2017). It was reported that antibiotic-resistant enterococcal

clinic isolates originated from hospital and urban wastew-

ater and marine environmental isolates were found to be

closely related. Antibiotic resistant bacterial isolates in the

environment may be formed by the genetic transfer of

resistance genes from clinical strains (Vignaroli et al.

2018). In humans, the enterococcal species, such as E.

gallinarum, E. durans, E. casseliflavus, E. avium, E. hirae,

may cause infection occasionally. Enterococcus galli-

narum and E. casseliflavus sourced infections are consid-

ered because of their intrinsic resistance to vancomycin

used to treat aminoglycoside-resistant enterococcal infec-

tions which caused a health risk for the public (Lebreton

et al. 2014).

Enterococci are widely spread in the marine environ-

ment, despite the stress conditions such as salinity and

sunlight. This habitat is affected by farming activities,

marine sediments, and urban and hospital sewage. Because

of this, it becomes a reservoir of the enterococcal strains of

humans. The link between the high prevalence of entero-

cocci in seawater and an increased ratio of human illness,

the enterococcal strains carrying virulence genes and/or

antibiotic resistance characteristic thought to be a threat to

human health (Di Cesare et al. 2014).

Citterio et al. (2017) isolated enterococci from fish,

shellfish, seawater, marine sediment, and beach sand. It

was informed that bivalve shellfish may collect a high

number of microorganisms in their body which could cause

infection for humans and animals and which may also be a

source for horizontal gene transfer, including antibiotic

resistance genes. The use of antibiotics in aquaculture

production may cause damaging environmental effects

such as the occurrence of antibiotic resistance among the

bacterial community in cultured aquatic animals and

ponds. Concerns regarding the fact that antibiotic resis-

tance characteristics in phenotype and genotype and also

antimicrobial drug residues may be transferred to humans
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via consumption of seafood such as fish and shrimps (Ellis-

Iversen et al. 2020).

Clinical and environmental enterococcal epidemics were

reported in the literature (Gassiep et al. 2015) with limited

information regarding outbreaks originated from food-

borne enterococci. However, it was mentioned that the

consumption of ready-to-eat seafood carrying virulence

genes was an important way of transfer. Chajecka-Wierz-

chowska et al. (2017) characterized virulent enterococcal

isolates from seafood samples.

Although it is widely known that antibiotic-resistant

strains are a potential problem for humans and ecosystem

health, there are a few studies regarding the investigation

of antibiotic-resistant and pathogenic enterococci in the

seafood of Turkey. The objective of this study was to do

research on the occurrence and distribution of antibiotic-

resistant characteristics and virulence genes of enterococci

isolated from processed and raw seafood in the Marmara

Region, Turkey.

Material and methods

Sample collection and isolation

A total of 397 samples were obtained from supermarkets,

convenience stores, delicatessens, and traditional and fish

markets in the Marmara Region, Turkey, including raw

seafood (n = 290) and processed seafood samples

(n = 107) such as frozen (n = 61), salted (n = 50), smoked

(n = 1), canned (n = 5), marinated (n = 7) and surimi

foods (n = 3) (Table 1).

The whole seafood sample was cut into pieces and

mixed individually in aseptic conditions. Then the analyt-

ical unit of seafood sample was weighed out (10 g) and

homogenized with 90 mL of a physiological saline (PS)

solution (0.85% NaCl) using a laboratory stomacher. The

decimal dilutions of the samples were conducted in sterile

PS and inoculated on Kanamycin Aesculin Azide (KAA,

Fluka) agar and then incubated at 37 �C for 24- 48 h. After

incubation, the black colonies around the black zone con-

sidered to be ‘‘suspicious’’ were purified on Trypticase Soy

agar (Merck, Germany). The strain was maintained in stock

culture at -80 �C in Brain Heart Infusion broth (Oxoid,

Canada) containing 20% (v/v) glycerol.

Control strains

In the study, E. faecalis NCIMB 700584 (The National

Collection of Industrial, Marine and Food Bacteria, UK)

and Enterococcus hirae FM 2.16 were used as positive

control strains for virulence genes and ermB gene,

respectively (Eaton and Gasson 2001; Pasquaroli et al.

2014).

Identification and antibiotic susceptibility testing

The isolates were identified using Gram-staining and GP

(Gram-positive cocci) cards in the VITEK 2 Compact 30

automated micro identification system (Biomereux,

France). (Abele-Horn et al. 2006).

A VITEK 2 compact system (bioMérieux, France) and

disc diffusion test method were used to analyze the

antibiotic susceptibility of the isolates. Antimicrobial sus-

ceptibility testing (AST) was applied by VITEK 2 Compact

(Biomérieux, Marcy l’Etoile, France) using AST card P592

(EUCAST 2015) and double-checked by means of the disk

diffusion method. The strains were evaluated for antibiotic

resistance against streptomycin (10 lg), chloramphenicol

(30 lg), erythromycin (15 lg), tetracycline (30 lg), gen-

tamycin (10 lg), and vancomycin (30 lg) using the disc

diffusion method on Muller–Hinton agar (MHA, Oxoid,

UK), and the results were evaluated through the consider-

ation of the CLSI guidelines (CLSI 2016). The isolates

displaying MIC[ 1 lg/mL for streptomycin were thought

to be resistant as suggested by the European Committee on

Antimicrobial Susceptibility Testing (EUCAST 2015).

In this study, the multiple antibiotic resistance (MAR)

index was also calculated for enterococcal isolates through

the MAR formula (‘‘a/b’’). The ‘‘a’’ refers to the number of

antimicrobials, to which an isolate was resistant, whereas

‘‘b’’ refers to the total number of antimicrobials to which

the isolate was exposed. The MAR index can be calculated

when there are more than three antibiotics showing resis-

tance (Krumperman 1983).

Determination of antibiotic resistance
and virulence genes

The vancomycin (vanA and vanB), tetracycline (tetM),

erythromycin (ermB), and amyloglucosidase (aac(6’)-

aph(2’’)-la) resistance genes and virulence genes (agg2,

gelE, cylM, cylB, cylA) of the enterococcal strains were

determined by polymerase chain reaction (PCR). The

genomic DNAs of the enterococcal strains were extracted

by using a commercial DNA isolation kit (Qiagen). PCR

primers for the antibiotic resistance and virulence genes

(Table 2) were choosen by considering Eaton and Gasson

2001, Reviriego et al. 2005; Pasquaroli et al. 2014).

PCR amplifications were performed in 25 lL reaction

mixtures using dNTP mix (1 mM) (Promega, USA), Go

Taq Flexi DNA polymerase (1 U) (Promega), DNA (1 lL),

and primers (10 pmol) obtained from IDT (Integrated DNA
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Technologies, USA). The samples were subjected to an

initial cycle of denaturation (95 �C for 2 min), which was

followed by 35 cycles of denaturation (94 �C for 45 s),

annealing (53 �C for 30 s) and elongation (72 �C for 45 s)

(Eaton and Gasson 2001; Reviriego et al. 2005).

Table 1 Analyzed raw and processed seafood samples and the distribution of isolated enterococcal species

Product type (Raw) Number of

samples

(n = 290)

The species isolated from the

samples

Product type

(processed)

Number of

samples

(n = 107)

The species isolated

from the samples

Sardinella (Sardina pilchardus) 51 E. casseliflavus, E.
gallinarum, E. faecalis, E.
Faecium

Fish Kroket

(Frozen)

3 –*

Mackerel (Scomber scombru) 3 – Salmon Fillet

(Frozen)

1 –

Blotched picarel (Spicara
maena)

32 E. gallinarum, E. faecium Cod Fish Fillet

(Frozen)

1 –

Horse mackerel (Trachurus
trachurus)

28 E. gallinarum, E. Durans, E.
casseliflavus

Anchovy Fillet

(Frozen)

10 –

Sea bream (Diplodus vulgaris) 11 E. gallinarum, E. faecium Boiled Shrimp

(Frozen)

3 –

Red mullet (Mullus barbatus) 33 E. durans, E. gallinarum, E.
casseliflavus

Calamary

(Frozen)

13 –

Shrimp (Parapenaeus
longirostris)

22 E. casseliflavus, E.
gallinarum

Shrimp

(Frozen)

8 –

Striped red mullet (Mullus
surmuletus)

12 E. casseliflavus, E.
gallinarum

Clam (Frozen) 20 E. gallinarum, E.
casseliflavus, E.
hirae

Baracuda (Sphyraena sphyrena) 6 – Mixed

Seafood

(Frozen)

2 E. faecium

Bouge (Boops boops) 10 – Sardinella

(Salted)

3 –

Bluefish (Pomatomus saltator) 11 E. gallinarum, E.
casseliflavus

Dried

macherel

(Salted)

2 –

Mediterranean horse mackerel

(Trachurus mediterraneus)
20 E. durans, E. gallinarum Salted bonito

(Salted)

22 E. gallinarum, E.
faecium

Squid (Loligo vulgaris) 17 E. faecium, E. durans, E.
Faecalis, E. gallinarum

Anchovy

(Salted)

22 E. casseliflavus

Anchovy (Engraulis
encrasicolus)

25 E. gallinarum Pate (Salted) 1 –

Gilthead seabream (Sparus
aurata)

9 – Mackerel

Fillet

(Smoked)

1 E. gallinarum

Sardinella

(Canned)

5 E. casseliflavus, E.
gallinarum

Anchovy

(Marinated)

3 –

Seafood salads

(Marinated)

2 –

Clam

(Marinated)

2 E. faecalis

Crab (Surimi) 3 –

* Not isolated any enterococcal strains
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Results and discussion

Distribution of enterococcal isolates

In the study, the enterococcal load was determined as

between 1.0—2.5 log CFU/g in 39 of 397 (9.82%) total raw

and processed seafood samples, and 117 strains were

identified as Enterococcus spp. Among the enterococci, E.

gallinarum (50.43%) was the most prevalent species, fol-

lowed by E. casseliflavus (29.06%), E. faecium (7.70%), E.

durans (6.84%), E. faecalis (5.13%), and E. hirae (0.85%)

(Table 3). E. gallinarum (43.22%) and E. casseliflavus

(22.03%) species were mostly isolated from raw fish

samples. E. gallinarum strains were dominantly found in

frozen (4.24%), salted (2.54%), smoked (0.85%), and

canned (0.85%) seafood samples. E. faecalis strains were

frequently isolated from marinated (0.85%) samples

(Fig. 1) (Table 1).

There are certain studies that reported different entero-

coccal species isolated from raw and processed seafood

samples in literature. It was thought that seafood contam-

ination has occurred naturally from the environment during

fish harvesting or cross-contamination during processing or

preparation where bacteria were transferred from raw fish,

contaminated surfaces or from equipment (Chajecka-

Wierzchowska et al. 2016). Campista-Leon et al. (2021)

had isolated E. olivae, E. saigonensis, E. hirae, E. avium,

E. pseudoavium, E. termitis, and E. gallinarum species

from twenty samples of seafood cocktails containing raw

and/or cooked shrimp, scallop, ax callus (Atrina maura),

octopus, oyster, fish, and vegetables. They emphasized that

enterococci can be found as a result of faecal contamina-

tion or cross contamination at the time of preparation in

seafood. Chajecka-Wierzchowska et al. (2017) reported

that E. faecalis (62.9%), E. faecium (28.6%), E. cas-

seliflavus (5.7%) and E. gallinarum (2.9%) species isolated

from retail shrimps. Boss et al. (2016) found the enteroccal

distribution as E. faecalis (n = 55), E. faecium (n = 6),

Enterococcus casseliflavus (n = 8) Enterococcus gilvus

(n = 6), Enterococcus thailandicus (n = 5), Enterococcus

hirae (n = 4), Enterococcus mundtii (n = 3), Enterococcus

phoenoculicola (n = 2), Enterococcus avium (n = 1), En-

terococcus malodoratus (n = 1) isolated from salmon

(n = 11), pangasius (shark catfish; n = 12), shrimp

(n = 11), and oysters (n = 10). They mentioned that ente-

rococci might be an indicator of faecal pollution of the

aquaculture environment or could be acquired during pro-

cessing. Although dominant species are different from the

mentioned research, similarly it was thought that the

sources of enterococcal microbiota might be transferred

from human or animal pollution of the marine environment

where hunting the seafood samples as well as during pro-

cessing and handling of foods. Besides this, it should be

considered that the persistence of certain strains of ente-

rococci in fish intestine, sediment and submerged aquatic

vegetation was not directly related to pollution events

(Badgley et al. 2010).

Table 2 The primers for

virulence and antibiotic

resistance genes

Genes Primer sequence (5’-3’) Product size (bp)

agg2 F-5’ GTT GTT TTA GCA ATG GGG TAT 1210

R-5’ TCC TGT CAC TCC TCT TCT CAG

gelE F-5’ ACC CCG TAT CAT TGG TTT 419

R-5’ ACG CAT TGC TTT TCC ATC

cylM F-5’ TGC TTC TCC ACT GTG ACC T 742

R-5’ ATC TAG TAA ATG TTA AGA AAT ACA

cylB F-5’ TGG AAG CAT TAC TTC CAG CT 843

R-5’ AAC TGC AAC CTC AAG ATT GG

cylA F-5’ AAT CCT ATC GGT TAC TGC TTA 517

R-5’ AGC ATC ACA ACC ATC CTA AC

vanA F-5’ GTA CAA TGC GGC CGT TA 732

R-5’ GGG ACA GTT ACA ATT GC

vanB F-5’ GTG CTG CGA GAT ACC ACA GA 1145

R-5’ CGA ACA CCA TGC AAC ATT TC

tetM F-5’ GTT AAA TAG TGT TCT TGG AG 657

R-5’ CTA AGA TAT GGC TCT AAC AA

aac(6’)-aph(2’’)-la F-5’ GAG CAA TAA GGG CAT ACC AAA AAT C 505

R-5’ CCG TGC ATT TGT CTT AAA AAA CTG G

ermB F-5’ CAT TTA ACG ACG AAA CTG GC 425

R-5’ GGA ACA TCT GTG GTA TGG CG
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Enterococcal load and species diversity were found

higher in raw seafood samples than processed types in this

study. It was thought that the raw seafood samples might be

contaminated during fish evisceration and environmental

sources during processing and handling by humans as

mentioned by Hammad et al. (2014). However, the pro-

cessing technologies such as smoking and canning may

reduce more the bacterial load of foods than salting and

freezing because of applied high process temperature in

addition to antimicrobial and water activity reducing

characteristics of smoking. So, that’s the reason of low

prevalence of enterococci species in smoked and canned

seafood in comparison with the raw, frozen and salted

seafood samples. It was also thought that the low preva-

lence of enterococci in marinated seafood samples caused

by relatively low resistance of this bacteria to high acidic

conditions.

Hammad et al. (2014) reported that 96 enterococcal

isolates were obtained from 90 (45%, 90/200) ready-to-eat

raw fish samples. E. faecalis species were predominantly

identified, followed by E. faecium and E. casseliflavus as

well as E. gallinarum, E. raffinosus, E. phoeniculicola, E.

gilvus, and E. saccharolyticus. They also mentioned that

seafood products could be a reservoir for unusual Entero-

coccus spp. such as E. phoeniculicola,. E. raffinosus, E.

saccharolyticus, and E. gilvus.

Igbinosa and Beshiru found that the prevalence of

enterococci was 8.19% (59/720) in ready-to-eat shrimps

samples. They identified mostly E. faecalis and E. faecium

species from the samples following E. gallinarum, E.

casseliflavus, E. durans, and E. hirae. Several studies have

reported that seafood cross-contamination may develop as

a result of food preparation or processing. Accordingly,

Sánchez Valenzuela et al. (2010) isolated 24 enterococcal

Table 3 Species distribution of antibiotic-resistant enterococci isolated from seafood samples

Antimicrobial

agent

Number and percentages (%) of enterococcal isolates distributed by species

E. gallinarum
(n = 59)

E. casseliflavus
(n = 34)

E. faecium
(n = 9)

E. durans
(n = 8)

E. faecalis
(n = 6)

E. hirae
(n = 1)

Streptomycin 55 (93.22) 33 (97.06) 9 (100) 7 (87.5) 6 (100) 1 (100)

Chloramphenicol 25 (42.37) 16 (47.06) 3 (33.33) 4 (50) 1 (16.66) 0

Erythromycin 44 (74.58) 33 (97.06) 7 (77.77) 4 (50) 5 (83.33) 0

Tetracycline 34 (57.63) 22 (64.71) 6 (66.66) 5 (62.5) 5 (83.33) 0

Vancomycin 4 (6.78) 2 (5.89) 0 4 (50) 0 0

Gentamycin 29 (49.15) 25 (73.53) 4 (44.44) 2 (25) 4 (66.66) 0
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strains from uncooked fish fillets, fish intestine, clams and

molluscs samples, and all strains were identified as E.

faecium. They also mentioned that seafoods may be con-

taminated by enterococci during fish evisceration from fish

intestine, and during handling and processing from the

environment of the plant.

Antibiotic resistance profiles of enterococcal
isolates

The results of the study showed that there was a high

percentage ([ 50%) of streptomycin, erytromycin, and

tetracycline resistance along with gentamycine, chloram-

phenicol, and vancomycin resistance in the enterococcal

strains isolated from the raw and processed seafood sam-

ples. In all the isolates, the streptomycin resistance preva-

lence had the highest ratio. Except streptomycin resistance,

the highest antibiotic-resistance distribution was seen in E.

casseliflavus for erythromycin, in E. durans, and E. cas-

seliflavus for chloramphenicol, in E. faecalis for tetracy-

cline, in E. durans for vancomycin, and in E. casseliflavus

for gentamycin (Table 3).

The results also indicated that enterococcal strains iso-

lated from seafood samples were found as commonly

resistant against tested antibiotics. The multidrug resistance

characteristics of the isolates demonstrated by Multiple

Antibiotic Resistance (MAR) index and it was indicated

the strain number that showed antibiotic resistance in the

risk zone and showed the isolates obtained from the envi-

ronment which exposed to overused antibiotics (Paul et al.

1997) (Fig. 2).

All of the enterococcal isolates were determined as

intermediate- or high-level resistant against at least one of

the tested antibiotics. According to the antibiotic resistance

profiles of the isolates; 59% of the isolates were resistant to

three and more antibiotics, 19.4% were resistant to five and

more antibiotics, and 2.8% were resistant to all of the

antibiotics, whereas 55.5% of the MAR isolates were

resistant to vancomycin. All of the enterococcal isolates

exhibited multiple antibiotic resistance with the average

MAR index (Fig. 2).

There were limited reports of antibiotic-resistant ente-

rococcal strains isolated from seafood. Ben Said et al.

(2017) found that E. faecalis, E. faecium and E. hirae

strains of enterococci isolated from fish and shellfish in the

Tunisian region were resistant to streptomycin, tetracy-

cline, and erythromycin, as well as to ciprofloxacin, gen-

tamycin, and chloramphenicol. Valenzuela et al. (2010)

reported that most of the enterococci strains isolated from

uncooked mollusca, fish, and fish fillets were resistant to

nitrofurantoin, erythromycin, and rifampicin. Hammad

et al. (2014) reported that clindamycin, erythromycin,

kanamycin, gentamycin, streptomycin, and tetracycline

resistance were detected in enterococcal isolates from raw

fish samples.

In Turkey, Savaşan et al. (2008) reported that strepto-

mycin-, gentamicin-, and ciprofloxacin-resistant E. faecalis

strains were found as prevalent in fishes from the Aegean

Region. Despite its low proportion, the presence of a

vancomycin-resistance in E. faecalis strains, the fish sam-

ples must be considered as a source of vancomycin-resis-

tant enterococci.

The rate of the MAR index (0.200) differentiates the low

and high risk. If the rate is between 0.200–0.250, it means a

very risky phase in which there are equal chances that the

MAR may fall in the high-risk and low-risk phases

(Krumperman 1983). The MAR is accepted as a good

instrument for risk assessment. The MAR of the entero-

coccal strains isolated from seafood was reported in certain

studies. Igbinosa and Beshiru (2019) determined that

73.1%, 100%, and 44.4% of enterococcal strains as MAR

were isolated from sauced, boiled, and smoked shrimp

samples, respectively. Citterio et al. (2017) also reported

that 24.2% of enterococcal strains (E. casseliflavus, E.

faecium, and E. hirae) isolated from clam were found as

the MAR. These strains were found as resistant to up to 5

antibiotics, and the resistance profile detected more fre-

quently were ampicillin-streptomycin-erythromycin and

ampicillin-gentamicin-levofloxacin. They mentioned that

coastal marine areas were contaminated with enteric bac-

teria at various levels, by both humans and animals, gen-

erally because of insufficient sewage treatment and

wastewater flow. The high filtration rates of clams lead to

the accumulation of small environmental pollution parti-

cles such as bacteria, including enterococci. Therefore, this

environment may be a source for horizontal gene transfer

and the emergence of multidrug-resistant strains.

Fig. 2 Multiple antibiotic resistance (MAR) indices of enterococcal

isolates
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Antibiotic resistance and virulence genes
in enterococcal isolates

The phenotypic vancomycin resistance was detected in

some E. gallinarum, E. casseliflavus, and E. durans isolates

(Table 3). The vanA and/or vanB genes were not found in

the vancomycin-resistant isolates of enterococci.

The tetM gene was detected in the fifty-nine tetracy-

cline-resistant isolates of enterococci, whereas the ermB

gene was found in the fifty-seven erythromycin-resistant

isolates of enterococci. The thirty-eight aminoglycosides-

resistant isolates of enterococci harbored the aac(6’)-

aph(2’’)-la gene. It was determined that the tetM and ermB

genes were mostly found in the E. casseliflavus, E. faecalis,

and E. gallinarum strains isolated from the sardinella,

squid, and red mullet samples. Besides, the aac(6’)-

aph(2’’)-la gene was detected in the E. gallinarum, E.

casseliflavus, E. faecalis, and E. durans strains isolated

from the Mediterranean horse mackerel, sardinella, shrimp,

and squid samples. Erythromycin-, tetracycline-, and

aminoglycosides-resistant characteristics were usually

found in the E. gallinarum and E. casseliflavus strains

isolated from sardinella in phenotype and genotype.

The virulence genes agg2, gelE, cylM, cylB, and cylA

were detected in the Enterococcus strains. Some isolates

carried the gelE (43.58%) and agg2 (39.31%) genes which

are important in pathogenesis (Fig. 3). Two of E. durans

(horse mackerel and red mullet), one of E. casseliflavus

(red mullet), E. faecalis (sardinella), and E. faecium (sar-

dinella) strains were found to carry all the tested virulence

genes (agg2, gelE, cylM, cylB, cylA).

The researchers mentioned that acquired vanA and vanB

genes were detected mostly in E. faecalis and E. faecium

species. Vancomycin resistance may also be seen intrinsi-

cally in certain rare species of enterococci, resulting in

low-level vancomycin-resistant strains. The vanC ligase

genes, which encode this type of resistance, are not

acquired or transferable and are specific for Enterococcus

casseliflavus, Enterococcus gallinarum, Enterococcus fla-

vescens, and Enterococcus mundtii (Toye et al. 1997). It is

a need to investigate the presence of vanC gene and sus-

ceptibility to teicoplanin in the vancomycin-resistant E.

casseliflavus and E. gallinarum isolates in the study.

Enterococci enhanced and acquired resistance genes on

plasmids or transposons from other bacteria that provided

an increasing level of resistance to enterococci. It is pos-

sible that the antibiotic-resistant fecal bacteria of urban

sewage, animal wastewater, or fish farming discharged into

the sea might have transferred their antibiotic-resistant

genes to fish microflora (Valenzuela et al. 2010).

There is limited information regarding the virulence

characteristics of seafood-borne enterococci. Valenzuela

et al. (2010) reported that hemolysin/cytolysin virulence

genes were not found in any of the enterococci isolated

from uncooked aquaculture consisting of mollusk, fish, and

fish fillet. Hammad et al. (2014) reported that E. faecium

isolates from seafood had gelE virulence gene. Migaw

et al. (2014) reported that clyA virulence gene was detected

only in one enterococcal isolate from the fish gastroin-

testinal tract. Muñoz-Atienza et al. (2013) mentioned that

enterococcal virulence genes were found more frequently

in E. faecalis (95%) isolated from seafood and that the

strains harbored at least one of the most frequent virulence

genes such as efaAfs, gelE, and agg.

Conclusions

This is the first study in terms of the distribution of ente-

rococcal microbiota at species level isolated from raw or

processed seafoods that are hunted and consumed in Tur-

key and showing that enterococcal isolates from seafoods

may carry some virulence genes (agg2 and gelE) as well as

high antibiotic resistance profile (tetM, ermB and aac(6’)-

aph(2’’)-la genes). At this point, considering that entero-

cocci can have pathogenicity potential at isolate level and

transfer their antibiotic resistance properties to other bac-

teria, the consumption of these products may pose a serious

risk in terms of public health and food safety. The way to

produce and consume healthy and safe raw and processed

seafood products will be possible by ensuring the hygienic

safety of the aquatic environments where these products

are hunted, as well as by reducing the unconscious use of

antibiotics in the triangle of humans, animals and the

Fig. 3 Amplification of virulence genes agg2 (upper) and gelE
(below) by PCR. (Product size for agg2; 1210 base pair and for gelE;

419 base pair, M; marker (Thermo Fisher Scientific), the numbers 10,

11, 13, 15 and16 were positive isolates for agg2 and the numbers

1–16 except 2 and 7 were positive isolates for gelE, negative control;

NK, positive control; K)
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environment, and thus limiting the antibiotic resistance rate

of the bacteria in the ecosystem microbiota.
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