Available online at www.sciencedirect.com 3 h c © K H ScienceDirect Indagationes Mathematicae 33 (2022) 992–1000 www.elsevier.com/locate/indag A modular approach to the generalized Ramanujan–Nagell equation Elif Kızıldere Mutlua, Maohua Leb, Gökhan Soydana,∗ a Department of Mathematics, Bursa Uludağ University, 16059 Bursa, Turkey b Institute of Mathematics, Lingnan Normal College, Zhangjiang, Guangdong, 524048, China Received 11 November 2021; received in revised form 8 April 2022; accepted 25 April 2022 Communicated by C. Salgado Dedicated to the memory of Bas Edixhoven. Abstract Let k be a positive integer. In this paper, using the modular approach, we prove that if k ≡ 0 (mod 4), 0 < k < 724 and 2k −1 is an odd prime power, then under the GRH, the equation x2 + (2k −1)y = kz as only one positive integer solution (x, y, z) = (k − 1, 1, 2). The above results solve some difficult ases of Terai’s conjecture concerning this equation. 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved. eywords: Polynomial-exponential Diophantine equation; Elliptic curve; S-integral point; Modular approach 1. Introduction Let Z, N be sets of all integers and positive integers respectively. Let d, k be fixed coprime positive integers with min{d, k} > 1. A class of polynomial-exponential Diophantine equations of the form x2 + d y = kz, x, y, z ∈ N (1.1) is usually called the generalized Ramanujan–Nagell equation. It has a long history and rich content (see [15]). In 2014, N. Terai [19] discussed the solution of (1.1) in the case d = 2k −1. e proposed the following conjecture: ∗ Corresponding author. E-mail addresses: elfkzldre@gmail.com (E.K. Mutlu), lemaohua2008@163.com (M. Le), gsoydan@uludag.edu.tr (G. Soydan). https://doi.org/10.1016/j.indag.2022.04.005 0019-3577/© 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved. http://www.elsevier.com/locate/indag https://doi.org/10.1016/j.indag.2022.04.005 http://www.elsevier.com/locate/indag http://crossmark.crossref.org/dialog/?doi=10.1016/j.indag.2022.04.005&domain=pdf mailto:elfkzldre@gmail.com mailto:lemaohua2008@163.com mailto:gsoydan@uludag.edu.tr https://doi.org/10.1016/j.indag.2022.04.005 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 h [ C M 3 f a s t [ Conjecture 1.1. For any k with k > 1, the equation x2 + (2k − 1)y = kz, x, y, z ∈ N (1.2) as only one solution (x, y, z) = (k − 1, 1, 2). The above conjecture has been verified in some special cases (see [1, Theorem 3.1], 10, Corollary 1.4], [11, Theorem 1.2] and [19, Proposition 3.3]). Most of solved cases of onjecture 1.1 focus on the case 4 ∤ k, and very little is known in the case 4 | k. In [10], .-J. Deng, J. Guo and A.-J. Xu verified Conjecture 1.1 when the case k ≡ 3 (mod 4) with ≤ k ≤ 499. For the case 4 | k, N. Terai [19] used some classical methods to discuss (1.2) or k ≤ 30. However, his method does not apply for k ∈ {12, 24}. Until 2017, M. A. Bennett nd N. Billerey [1] used the modular approach to solve the case k ∈ {12, 24}. It follows that the case 4 | k and 2k − 1 is an odd prime power is a very difficult case to Conjecture 1.1. In this paper, using the modular approach we prove the following result: Theorem 1.1. If 4 | k, 30 < k < 724 and 2k − 1 is an odd prime power, then under the GRH, Conjecture 1.1 is true. 2. Preliminaries This section introduces some well known notions and results that will be used to prove the main result. 2.1. The modular approach The most important progress in the field of the Diophantine equations has been with Wiles’ proof of Fermat’s Last Theorem [18,20]. His proof is based on deep results about Galois representations associated to elliptic curves and modular forms. The method of using such results to deal with Diophantine problems, is called the modular approach. After Wiles’ proof, the original strategy was strengthened and many mathematicians achieved great success in solving other equations that previously seemed hard. As a result of these efforts, the generalized Fermat equation Ax p + Byq = Czr , with 1/p + 1/q + 1/r < 1, (2.1) where p, q, r ∈ Z≥2, A, B, C are non-zero integers and x, y, z are unknown integers became a new area of interest. Call an integer solution (x, y, z) to such an equation proper if gcd(x, y, z) = 1. It was proved that Eq. (2.1) has finitely many proper solutions by H. Darmon and A. Granville [9, Theorem 2]. We call the triple of exponents (p, q, r ) as in (2.1) the signature of equation. In the cases 1/p + 1/q + 1/r = 1, the proper solutions give rise to rational points on certain curves of genus one. It is easily demonstrated that for each p, q, r , there exist values of A, B, C such that the equation has infinitely many proper solutions (see [9, Section 6]). There also exist values of A, B, C such that the equation has no proper solutions; though, for any A, B, C , there are number fields which contain infinitely many proper solutions (see [9, Subsection 5.4]). In the cases where 1/p + 1/q + 1/r > 1, the proper olutions correspond to rational points on certain curves of genus zero. For this case, it is easy o show that there are infinitely many proper solutions of every equation x p + yq = zr (see 9, Section 7]). 993 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 p A 2 a o d W w g w 3 T ( p L P L P In recent 30 years, several authors considered many cases of the above equations. Two survey apers which were written by M.A. Bennett, I. Chen, S. Dahmen and S. Yazdani [2] and M. . Bennett, P. Mihǎilescu and S. Siksek [3] are good references for the case ABC = 1. One can find the details concerning modular approach in [7, Chapter 15] and [17]. .2. Signature (n, n, 2) Here we give recipes for signature (n, n, 2) which was firstly described by M.A. Bennett nd C. Skinner [4] (see also [13]). We denote by rad(m) the radical of |m|, i.e. the product f distinct primes dividing m, and by ordp(m) the largest nonnegative integer k such that pk ivides m. We always assume that n ≥ 7 is prime, and a, b, c, A, B and C are nonzero integers with Aa, Bb and Cc pairwise coprime, A and B are nth-power free, C squarefree satisfying Aan + Bbn = Cc2. (2.2) e further assume that we are in one of the following situations: (i) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4). (i i) ab ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1. (i i i) ab ≡ 1 (mod 2), ord2(B) = 2 and C ≡ −bB/4 (mod 4). (iv) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4). (v) ord2(Bbn) ≥ 6 and c ≡ C (mod 4). In case (v), we will consider the curve E3(a, b, c) : Y 2 + XY = X3 + cC − 1 4 X2 + BCbn 64 X, (2.3) hich is defined over Q. By [4, Lemma 2.1 ], the conductor of the curve E = E3(a, b, c) is iven by N (E) = 2α · C2 · rad(abAB) (2.4) here α = { −1 if i = 3, case (v) and ord2(Bbn) = 6, 0 if i = 3, case (v) and ord2(Bbn) ≥ 7. . Proof of Theorem 1.1 Here and below, we assume that (x, y, z) is a solution of (1.2) with (x, y, z) ̸= (k − 1, 1, 2). hen, by (1.2), we can get z > y immediately. Obviously, if we can prove that the solution x, y, z) does not exist, then Conjecture 1.1 is true. The following two lemmas are basic roperties on the solution (x, y, z). emma 3.1. Suppose 4 | k. Then 2 ∤ y. roof. If 2 | y then (1.2) implies x2 + 1 ≡ 0 (mod 4), impossible. □ emma 3.2. If 2k − 1 is an odd prime power, then 2 ∤ z. roof. See Lemma 2.6 of [10]. □ 994 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 P o L P p R w R ( h S v t H p L i P h g Lemma 3.3. Let F(t) = t + a/t be a function of the real variable t , where a is a constant with a > 1. Then F(t) is a strictly decreasing function for 1 ≤ t < √ a. roof. Since F ′(t) = 1 − a/t2 < 0 for 1 ≤ t < √ a, where F ′(t) is the derivative of F(t), we btain the lemma immediately. □ emma 3.4. If k is a power of 2 and 4 | k, then Conjecture 1.1 is true. roof. Let (x, y, z) be a solution different from (k − 1, 1, 2) and let k = 2r , where r ≥ 2 is a ositive integer. Then by (1.2), we have x2 + (2r+1 − 1)y = 2r z . (3.1) ecall that x is odd, hence 2r z/2 + x and 2r z/2 − x are relatively prime. If 2 | r z, then from (3.1) we get 2r z/2 + x = f y, 2r z/2 − x = gy, 2r+1 − 1 = f g, f, g ∈ N, 2 ∤ f g, gcd( f, g) = 1, hence we obtain 2r z/2+1 = f y + gy = ( f + g) ( f y + gy f + g ) . (3.2) By Lemma 3.1, we have 2 ∤ y. Therefore, since 2 ∤ f g, ( f y + gy)/( f + g) is an odd positive integer. It follows from (3.2) that ( f y + gy)/( f + g) = 1, y = 1. Take a = 2r+1 −1 and t = g. By Lemma 3.3, we have 2r z/2+1 = f + g = 2r+1 − 1 g + g ≤ (2r+1 − 1) + 1 = 2r+1. (3.3) ecall that z > y = 11. We find from (3.3) that f = 2r+1 − 1, g = 1, z = 2 and x, y, z) = (2r − 1, 1, 2) = (k − 1, 1, 2), a contradiction. If 2 ∤ r z, then 2 ∤ r . Since 2 ∤ y, we see from (3.1) that the equation X2 + (2r+1 − 1)Y 2 = 4 · 2Z , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0 (3.4) as a solution (X, Y, Z ) = (x, (2r+1 − 1)(y−1)/2, r z − 2). (3.5) ince 12 + (2r+1 −1) ·12 = 4 ·2(r−1), (1, 1, r −1) is a solution and clearly the one with smaller alue of z, hence is what is called a minimal solution in [14]. Then Theorem 2 of [14] implies hat r z − 2 = (r − 1)t, t ∈ N. (3.6) owever, since 2 | r − 1, we get from (3.6) that 2 | r z, a contradiction. Thus, the lemma is roved. □ emma 3.5. If 4 | k, 2k − 1 is an odd prime power and k is a square, then Conjecture 1.1 s true. roof. Since k is a square, k = ℓ2, where ℓ is a positive integer with 2 | ℓ. by (1.2), we ave (ℓz)2 − x2 = (ℓz + x)(ℓz − x) = (2k − 1)y . Since 2k − 1 is an odd prime power and cd(ℓz + x, ℓz − x) = 1, we have ℓz + x = (2k − 1)y and ℓz − x = 1, whence we get 2ℓz = (2k − 1)y + 1. (3.7) 995 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 w w ( l a T 3 T w L P ( g B N Further, since (2k − 1) + 1 = 2ℓ2 and 2 ∤ y by Lemma 3.1, we obtain from (3.7) that 2ℓz = 2ℓ2 ( (2k − 1)y + 1 (2k − 1) + 1 ) , hence we get ℓz−2 = (2k − 1)y + 1 (2k − 1) + 1 , (3.8) here ((2k − 1)y + 1)/((2k − 1) + 1) is a positive integer. Notice that 2 | ℓ and 2 ∤ (2k − 1)y + 1)/((2k − 1) + 1). We see from (3.8) that z = 2 and (x, y, z) = (k − 1, 1, 2). The emma is proved. □ For any fixed positive integers m and n with n > 1, there exist unique positive integers f nd g such that m = f gn, f is nth-power free. (3.9) he positive integer f is called the nth-power free part of m, and denoted by f (m). Similarly, g is denoted by g(m). Obviously, by (3.9), if 2 | m, then we have ord2(m) = ord2( f (m)) + n ord2(g(m)), 0 ≤ ord2( f (m)) < n. (3.10) Here, we consider Eq. (1.2) where y ≥ 7 is prime and y = 3 or y = 5, respectively. .1. The case y ≥ 7 prime Let k be a positive integer with 4 | k. Suppose that y ≥ 7 is prime. Then Eq. (1.2) becomes (−1) · (2k − 1)y + kz = x2. (3.11) hen, the ternary equation (2.1) can be obtained from (3.11) by the substitution A = −1, a = 2k − 1, B = f (kz), b = g(kz), C = 1, c = (−1)(x−1)/2x, (3.12) here f (kz) and g(kz) are defined as in (3.9). emma 3.6. If 4 | k, then b, B and C in (3.12) satisfy the case (v) with ord2(Bbn) > 6. roof. Since 2 | k, we see from (1.2) that 2 ∤ x . So we have C ≡ (−1)(x−1)/2x ≡ 1 mod 4). In addition, by (3.9) and (3.12), we have Bbn = f (kz)(g(kz))n = kz , whence we et ord2(Bbn) = ord2(kz) = z ord2(k) > 6 (recall that z > y). Thus, the lemma is proved. □ By (2.3) and (3.12), we are interested in the following elliptic curve (called a Frey curve) E3 : Y 2 + XY = X3 + (−1)(x−1)/2x − 1 4 X2 + kz 64 X. (3.13) y Lemma 3.6 and (2.4), the conductor of this elliptic curve is N (E3) = rad(2k − 1) · rad(k). (3.14) ote that when k = 720, one gets that N (E3) = 43170 and 2k − 1 = 1439 is prime. But when k = 724, one obtains N (E ) = 523814, outside the range of the Cremona elliptic curve 3 996 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 ℓ C c c t w 2 p i w g e a w ( ( database [8] where the upper bound for conductors is 500000. We therefore restrict attention to 30 < k ≤ 720. Using Lemmas 3.4 and 3.5, we can exclude the cases k = 2r0 with r0 = 6 and k = ℓ2 with ∈ {6, 8, 10, 18, 22, 24}. This leaves 50 values of k to consider. We proceed as follows. For a given k we compute by (3.14) the conductor of the Frey curve at (3.13). Using remona’s elliptic curve database [8] we obtain a list of isomorphism classes of elliptic urves for that conductor. In each class, we must determine whether there exists a model onsistent with the model at (3.13). For example, when k = 192 and the conductor is 2298, he isomorphism class of the curve labeled 2298.h4, [1, 0, 0, −184, 1088], contains the curve [1, −48, 0, 576, 0] (note that this fails to provide a solution to our problem, because the corresponding values of y, z, equal 1,2, not allowed). Since the curve (3.13) has point (0, 0) of order 2, it is only necessary to consider isomorphism classes determined by curves with nontrivial 2-torsion. Suppose a Cremona class representative has nontrivial 2-torsion point T0. To obtain an isomorphic curve of the form (3.13) we must take the transformation mapping T0 to (0, 0), and then test the resulting curve to see whether the X− coefficient is of the form kz 64 . This was programmed into MAGMA. Resulting curves with corresponding (y, z) = (1, 2) are not allowed, and only one other curve resulted, namely [1, 733/4, 0, 33/16, 0] when k = 132 with z = 2. But this does not provide a solution to our problem because there is no corresponding value of x (or y). Finally, thus, we deduce (1.2) has no solutions where y ≥ 7. 3.2. The case y = 3 or y = 5 Here we solve the Diophantine equations x2 + (2k − 1)3 = kz, z > 3 odd, (3.15) and x2 + (2k − 1)5 = kz, z > 5 odd, (3.16) here 4 | k, 30 < k < 724 and 2k − 1 is an odd prime power. Write in (1.2) y = 6A + i , z = 3B + j where i = 3 or 5 and 0 ≤ j ≤ 2, A, B ≥ 0. Since k − 1 is an odd prime power, we have 2k − 1 = pr , where p is an odd prime and r is a ositive integer. Then we see that( k B+ j (2k − 1)2A , xk j (2k − 1)3A ) s an S-integral point (U, V ) on the elliptic curve Ei jk : V 2 = U 3 − (2k − 1)i k2 j , here S = {p}, 4 | k, 30 < k < 724 and 2k − 1 is a power of p, in view of the restriction cd(k, x) = 1. A practical method for the explicit computation of all S-integral points on a Weierstrass lliptic curve has been developed by A. Pethő, H.G. Zimmer, J. Gebel and E. Herrmann in [16] nd has been implemented in MAGMA [5]. The relevant routine SIntegralPoints worked ithout problems for all triples (i, j, k) except for i, j, k) ∈ {(5, 2, 96), (5, 1, 120), (5, 2, 156), (5, 2, 180), (5, 2, 192), (5, 2, 220), 3, 1, 232), (5, 0, 232), (5, 2, 232), (5, 0, 240), (5, 2, 240), (5, 2, 244), (5, 0, 304), 997 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 ( ( ( (5, 1, 304), (5, 2, 304), (3, 2, 316), (5, 0, 316), (5, 2, 316), (5, 2, 324), (5, 0, 360), 5, 1, 364), (5, 2, 364), (3, 2, 372), (5, 1, 372), (5, 2, 372), (5, 2, 376), (3, 1, 412), 3, 2, 412), (5, 0, 412), (5, 0, 420), (5, 0, 432), (5, 1, 432), (3, 2, 444), (5, 1, 444), 5, 2, 444), (5, 0, 456), (5, 1, 456), (5, 2, 460), (5, 1, 492), (5, 1, 516), (5, 2, 516), (3, 1, 520), (5, 0, 520), (5, 2, 520), (5, 2, 532), (5, 1, 544), (5, 2, 552), (3, 2, 612), (5, 0, 612), (5, 1, 612), (5, 2, 612), (5, 1, 616), (5, 0, 640), (5, 2, 640), (3, 2, 652), (5, 2, 652), (5, 2, 660), (3, 2, 664)(5, 0, 664), (5, 2, 664), (5, 1, 684), (5, 0, 700), (5, 1, 700), (5, 2, 700), (5, 0, 712), (5, 0, 720), (5, 1, 720)}. The non-exceptional triples (i, j, k) do not give any positive integer solution to Eq. (3.15) or (3.16). 3.2.1. The elementary approach to some exceptional triples Thirty-eight of the above exceptional triples have been solved using an elementary approach, as follows. Lemma 3.7. If k ≡ 3 or 4 (mod 5), then (3.16) has no solutions (x, z). Proof. We now assume that (x, z) is a solution of (3.16). If k ≡ 3 (mod 5), then we have 2k − 1 ≡ 0 (mod 5), and by (3.16), x2 ≡ kz − (2k − 1)5 ≡ 3z (mod 5). Further, since 2 ∤ z, we get 1 = (3z/5) = (3/5) = −1, a contradiction, where (∗/∗) is the Legendre symbol. If k ≡ 4 (mod 5), then we have x2 ≡ kz − (2k − 1)5 ≡ (−1)z − 25 ≡ −1 − 2 ≡ 2 (mod 5). Hence, we can get a similar contradiction that 1 = (2/5) = −1. Thus, the lemma is proved. □ Lemma 3.8. If 2 | k and k +1 has an odd prime divisor p with p ≡ ±3 (mod 8), then (3.16) has no solutions (x, z). Proof. By (3.16), since 2 ∤ z, we have x2 ≡ kz − (2k − 1)5 ≡ (−1)z − (−3)5 ≡ −1 + 243 ≡ 242 ≡ 2 · 112 (mod k + 1). It implies that, for every odd prime divisor p of k + 1, we have 1 = (2 · 112/p) = (2/p) = (−1)(p2 −1)/8 and p ≡ ±1 (mod 8). Therefore, if p ≡ ±3 (mod 8), then (3.16) has no solutions (x, z). □ Notice that if 2 | k and every odd prime divisor p of k + 1 satisfies p ≡ ±1 (mod 8), then either k + 1 ≡ 1 (mod 8) or k + 1 ≡ −1 (mod 8). Hence, by Lemma 3.8, we can obtain the following lemma immediately. Lemma 3.9. If k ≡ 2 or 4 (mod 8), then (3.16) has no solutions (x, z). Lemma 3.10. For k ∈ {120, 156, 180, 220, 244, 304, 316, 324, 360, 364, 372, 376, 412, 420, 444, 460, 492, 516, 532, 544, 612, 652, 660, 664, 684, 700}, (3.16) has no solutions (x, z). Proof. By Lemmas 3.7–3.9, (3.16) has no solutions (x, z) for k ∈ {244, 304, 324, 364, 444, 544, 664, 684}, k ∈ {120, 360, 376} and k ∈ {156, 180, 220, 316, 372, 412, 420, 460, 492, 516, 532, 612, 652, 660, 700}, respectively. □ Denote the rank of the elliptic curve Ei jk by r . Here, we separate the above remaining twentynine exceptional triples (i, j, k) depending on whether r = 0, r = 1 and r = 2, respectively. 998 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 s w t 3 p t c p I V p A 3.2.2. The case r = 0 For the triples (i, j, k) ∈ {(5, 1, 456), (5, 2, 552), (5, 1, 616), (3, 2, 652), (5, 1, 720)}, there are no rational points (so no S-integral points) on Ei jk under the assumption that r = 0 which is proved by descent algorithms of MAGMA. 3.2.3. The case r = 1 For each remaining triple (i, j, k) (in total twentyfour triples), the rank of Ei jk is 1, i.e. r = 1 except for (i, j, k) = (3, 2, 664). We performed two-, four- and eight-descent algorithms or two- , four-, three- and twelve-descent algorithms for these triples. Since MAGMA found a generator for each of them, it was successful to show non-existence of S-integral points on Ei jk for the exceptional twentythree triples. The rank 1 curves frequently have generators of large height. We can estimate the height of a generator in advance using the G-Z formula [12], as for example used by A. Bremner [6] in treating the family of curves y2 = x(x2 + p). Having an estimate of the height in advance tells us whether it is likely that standard descent arguments, as programmed into MAGMA, will be uccessful in finding the generator. For twentythree curves we are considering here, MAGMA as able to compute generators for all cases, using a combination of three-, four-, eight-, and welve-descent algorithms. .2.4. The case r = 2 The single instance of rank 2 was at (i, j, k) = (3, 2, 664). MAGMA found only S-integral oint (6435758912 : 516297057335360 : 1) on the corresponding curve under the assumption hat 1 ≤ r ≤ 2 and its generator (402234932 : 8067141520865 : 1). By eight-descent algorithm, we found two independent points which are generators. So, it is confirmed that r = 2 and this urve has only S-integral point (6435758912 : 516297057335360 : 1). But it does not give any ositive integer solution to Eq. (3.15). To sum up, Theorem 1.1 is proved. For the computations, we used iMAC computer with the following characteristics: Processor ntel i5, 2.7 GHz, 16 GB RAM, 1600 MHz DDR3. All computations are done by Magma 2.24-5. The MAGMA [5] files used to carry out the computations in this paper are available at: htt ://gsoydan.home.uludag.edu.tr/images/programs.zip. cknowledgments We are grateful to Professor Andrew Bremner for his generous helps about MAGMA computations and his useful ideas and would like to thank Professor Benjamin Matschke for his useful idea that shows how to reduce to S-integral points on Mordell equations (3.15)–(3.16) and sharing results of computations of his SAGE codes with us and to Professor Jennifer Balakrishnan for enabling my connection with him. We also cordially thank an anonymous referee for carefully reading our paper and for giving such constructive comments which substantially helped improving the quality of the paper. G. S. was supported by the Research Fund of Bursa Uludag University under Project No: F-2020/8. References [1] M. Bennett, N. Billerey, Sums of two S-units via Frey-Hellegouarch curves, Math. Comp. 305 (2017) 1375–1401. 999 http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://gsoydan.home.uludag.edu.tr/images/programs.zip http://refhub.elsevier.com/S0019-3577(22)00028-3/sb1 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb1 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb1 E.K. Mutlu, M. Le and G. Soydan Indagationes Mathematicae 33 (2022) 992–1000 [2] M.A. Bennett, I. Chen, S.R. Dahmen, S. Yazdani, Generalized fermat equations: a miscellany, Int. J. Number Theory 11 (2015) 1–28. [3] M.A. Bennett, P. Mihǎilescu, S. Siksek, The generalized fermat equation, in: J.F. Nash Jr., M. Th Rassias (Eds.), Open Problems in Mathematics, Springer, New York, 2016, pp. 173–205. [4] M.A. Bennett, C. Skinner, Ternary diophantine equations via galois representations and modular forms, Canad. J. Math. 56 (2004) 23–54. [5] W. Bosma, J. Cannon, C. Playoust, The magma algebra system I, the user language, J. Symbolic Comput. 24 (1997) 235–265. [6] A. Bremner, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 265, Kluwer Acad. Publ. Dordrecht, 1989. [7] H. Cohen, Number Theory II: Analytic and Modern Tools, Springer, 2007. [8] J. Cremona, Elliptic Curve Data, http://johncremona.github.io/ecdata/ and LMFDB - The L-functions and Modular Forms Database, http://www.lmfdb.org/ or Elliptic curves over Q, http://www.lmfdb.org/EllipticCur ve/Q/. [9] H. Darmon, A. Granville, On the equations zm = F(x, y) and Ax p + Byq = Czr , Bull. London Math. Soc. 27 (1995) 513–543. [10] M.-J. Deng, J. Guo, A.-J. Xu, A note on the Diophantine equation x2 + (2c − 1)m = cn , Bull. Aust. Math. Soc. 98 (2018) 188–195. [11] Y. Fujita, N. Terai, On the generalized Ramanujan-Nagell equation x2 + (2c − 1)m = cn , Acta Math. Hungar. 162 (2020) 518–526. [12] B.H. Gross, D.B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986) 225–320. [13] W. Ivorra, A. Kraus, Quelques résultats sur les équations ax p + by p = cz2, Canad. J. Math. 58 (2006) 115–153. [14] M.-H. Le, Some exponential diophantine equations I: The equation D1x2 − D2 y2 = λkz , J. Number Theory 55 (1995) 209–221. [15] M.H. Le, G. Soydan, A brief survey on the generalized lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020) 473–523. [16] A. Pethő, H.G. Zimmer, J. Gebel, E. Herrmann, Computing all S-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 127 (1999) 383–402. [17] S. Siksek, The modular approach to Diophantine equations, Panor. Synthèses 36 (2012) 151–179. [18] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math. 141 (3) (1995) 553–572. [19] N. Terai, A note on the diophantine equation x2 + qm = cn , Bull. Aust. Math. Soc. 90 (2014) 20–27. [20] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141 (1995) 443–551. 1000 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb2 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb2 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb2 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb3 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb3 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb3 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb4 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb4 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb4 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb5 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb5 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb5 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb6 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb7 http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://johncremona.github.io/ecdata/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://www.lmfdb.org/EllipticCurve/Q/ http://refhub.elsevier.com/S0019-3577(22)00028-3/sb9 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb9 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb9 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb10 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb10 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb10 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb11 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb11 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb11 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb12 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb13 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb13 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb13 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb14 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb14 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb14 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb15 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb15 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb15 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb16 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb16 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb16 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb17 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb18 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb19 http://refhub.elsevier.com/S0019-3577(22)00028-3/sb20 A modular approach to the generalized Ramanujan–Nagell equation Introduction Preliminaries The modular approach Signature (n,n,2) Proof of maintheo The case y7 prime The case y=3 or y=5 The elementary approach to some exceptional triples The case r=0 The case r=1 The case r=2 Acknowledgments References