https://www.revistas.ucn.cl https://revistaproyecciones.cl https://doi.org/10.22199/issn.0717-6279-2019-05-0071 https://portal.issn.org/resource/ISSN/0717-6279# https://orcid.org/0000-0002-7950-8450 https://orcid.org/0000-0002-0236-3097 https://creativecommons.org/licenses/by/4.0/ 1138 Sahsene Altınkaya and Sibel Yalın 1. Introduction and definitions Fibonacci polynomials, Lucas polynomials, Lucas-Lehmer polynomials, Cheby- chev polynomials, Pell polynomials, Morgan-Voyce polynomials, Orthogo- nal polynomials and the other special polynomials and their generalizations are of wide spectra in a variety of branches such as Physics, Engineering, Architecture, Nature, Art, Number Theory, Combinatorics and Numerical analysis (see, for example, [8], [10], [11], [12], [14], [15], [16] and [17]). The well-known (p, q)-Lucas polynomials are defined by the following definition: Definition 1.1. (see [7]) Let p(x) and q(x) be polynomials with real co- efficients. The (p, q)-Lucas polynomials Lp,q,n(x) are established by the recurrence relation Lp,q,n(x) = p(x)Lp,q,n−1(x) + q(x)Lp,q,n−2(x) (n ≥ 2), from which the first few Lucas polynomials can be found as Lp,q,0(x) = 2, Lp,q,1(x) = p(x), Lp,q,2(x) = p2(x) + 2q(x), Lp,q,3(x) = p3(x) + 3p(x)q(x), . . . . (1.1) For the special cases of p(x) and q(x), we can get the polynomials given in Table 1. Table 1: Special cases of the Lp,q,n(x) with given initial conditions are given. p(x) q(x) Lp,q,n(x) x 1 Lucas polynomials Ln(x) 2x 1 Pell-Lucas polynomials Dn(x) 1 2x Jacobsthal-Lucas polynomials jn(x) 3x -2 Fermat-Lucas polynomials fn(x) 2x -1 Chebyshev polynomials first kind Tn(x) Theorem 1.1. (see [7]) Let G{Lp,q,n(x)}(z) be the generating function of the (p, q)-Lucas polynomial sequence Lp,q,n(x). Then G{Lp,q,n(x)}(z) = ∞X n=0 Lp,q,n(x)z n = 2− p(x)z 1− p(x)z − q(x)z2 . rvidal Cuadro de texto 1094 (p, q)-Lucas polynomials and their applications to bi-univalent... 1139 Let A be the class of functions f of the form f(z) = z + a2z 2 + a3z 3 + · · · ,(1.2) which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1} and normalized under the condition f(0) = f 0(0) − 1 = 0. Further, by S we represent the class of all functions in A which are univalent in ∆. With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in ∆. Given functions f, g ∈ A, f is subordinate to g if there exists a Schwarz function w ∈ Λ, where Λ = {w : w (0) = 0, |w (z)| < 1, z ∈ ∆} , such that f (z) = g (w (z)) (z ∈ ∆) . We show this subordination by f ≺ g or f (z) ≺ g (z) (z ∈ ∆) . In particular, if the function g is univalent in∆, the above subordination is equivalent to f(0) = g(0), f(∆) ⊂ g(∆). According to the Koebe-One Quarter Theorem [4], it ensures that the image of ∆ under every univalent function f ∈ A contains a disc of radius 1/4. Thus every univalent function f ∈ A has an inverse f−1 satisfying f−1 (f (z)) = z and f ¡ f−1 (w) ¢ = w ³ |w| < r0 (f) , r0 (f) ≥ 1 4 ´ , where f−1 (w) = w − a2w 2 + ³ 2a22 − a3 ´ w3 − ³ 5a32 − 5a2a3 + a4 ´ w4 + · · · . (1.3) A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆. Let Σ indicate the class of bi-univalent functions in ∆ given rvidal Cuadro de texto 1095 1140 Sahsene Altınkaya and Sibel Yalın by (1.2). For a brief history and interesting examples in the class Σ, see [13] (see also [1], [2], [3], [6] and [9]). In the present paper, by using the Lp,q,n(x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szeg problem for this new function class. Definition 1.2. A function f ∈ Σ is said to be in the class WΣ (τ, µ, η;x) (τ ∈ C\{0}, µ ≥ 0, η ≥ 0; z, w ∈ ∆) if the following subordinations are satisfied: ∙ 1 + 1 τ µ (1− µ+ 2η) f(z) z + (µ− 2η)f 0(z) + ηzf 00(z)− 1 ¶¸ ≺ G{Lp,q,n(x)}(z)−1 and ∙ 1 + 1 τ µ (1− µ+ 2η) g(w) w + (µ− 2η)g0(w) + ηwg00(w)− 1 ¶¸ ≺ G{Lp,q,n(x)}(w)−1 where the function g is given by (1.3). It is interesting to note that the special values of τ, µ and η lead the class WΣ (τ, µ, η;x) to various subclasses, we illustrate the following subclasses: 1. For µ = 1+2η, we get the class WΣ (τ, 1 + 2η, η;x) =WΣ (τ, η;x). A function f ∈ Σ is said to be in the class WΣ (τ, η;x) (τ ∈ C\{0}, µ ≥ 0, z, w ∈ ∆) if the following subordinations are satisfied: ∙ 1 + 1 τ ¡ f 0(z) + ηzf 00(z)− 1 ¢¸ ≺ G{Lp,q,n(x)}(z)− 1 and ∙ 1 + 1 τ ¡ g0(w) + ηwg00(w)− 1 ¢¸ ≺ G{Lp,q,n(x)}(w)− 1 where the function g is given by (1.3). rvidal Cuadro de texto 1096 (p, q)-Lucas polynomials and their applications to bi-univalent... 1141 2. For η = 0, we obtain the class WΣ (τ, µ, 0;x) = WΣ (τ, µ;x). A func- tion f ∈ Σ is said to be in the class WΣ (τ, µ;x) (τ ∈ C\{0}, µ ≥ 0; z, w ∈ ∆) if the following subordinations are satisfied: ∙ 1 + 1 τ µ (1− µ) f(z) z + µzf 0(z)− 1 ¶¸ ≺ G{Lp,q,n(x)}(z)− 1 and ∙ 1 + 1 τ µ (1− µ) g(w) w + µg0(w)− 1 ¶¸ ≺ G{Lp,q,n(x)}(w)− 1 where the function g is given by (1.3). 3. For η = 0 and µ = 1, we get the class WΣ (τ, 1, 0;x) = WΣ (τ ;x). A function f ∈ Σ is said to be in the class WΣ (τ, µ;x) (τ ∈ C\{0}; z, w ∈ ∆) if the following subordinations are satisfied: ∙ 1 + 1 τ ¡ f 0(z)− 1 ¢¸ ≺ G{Lp,q,n(x)}(z)− 1 and ∙ 1 + 1 τ ¡ g0(w)− 1 ¢¸ ≺ G{Lp,q,n(x)}(w)− 1 where the function g is given by (1.3). 2. Coefficient bounds In this section, we shall make use of the (p, q)-Lucas polynomials to get the estimates on the coefficients |a2| and |a3| for functions in the class WΣ (τ, µ, η;x) proposed by Definition 1.2. rvidal Cuadro de texto 1097 1142 Sahsene Altınkaya and Sibel Yalın Theorem 2.1. Let f given by (1.2) be in the class WΣ (τ, µ, η;x) . Then |a2| ≤ |τ | |p(x)| p |p(x)|r¯̄̄h (1 + 2µ+ 2η)τ − (1 + µ)2 i p2(x)− 2 (1 + µ)2 q(x) ¯̄̄ and |a3| ≤ |τ |2 p2(x) (1 + µ)2 + |τ | |p(x)| 1 + 2µ+ 2η . Proof. Let f ∈ WΣ (τ, µ, η;x) . From Definition 1.2, for some analytic functions Φ,Ψ such that Φ(0) = Ψ(0) = 0 and |Φ(z)| < 1, |Ψ(w)| < 1 for all z, w ∈ ∆, we can write 1+ 1 τ µ (1− µ+ 2η) f(z) z + (µ− 2η)f 0(z) + ηzf 00(z)− 1 ¶ = G{Lp,q,n(x)}(Φ(z))−1, 1+ 1 τ µ (1− µ+ 2η) g(w) w + (µ− 2η)g0(w) + ηwg00(w)− 1 ¶ = G{Lp,q,n(x)}(Ψ(w))−1, or equivalently 1 + 1 τ ³ (1− µ+ 2η)f(z)z + (µ− 2η)f 0(z) + ηzf 00(z)− 1 ´ = −1 + Lp,q,0(x) + Lp,q,1(x)Φ(z) + Lp,q,2(x)Φ 2(z) + · · · , (2.1) 1 + 1 τ ³ (1− µ+ 2η)g(w)w + (µ− 2η)g0(w) + ηwg00(w)− 1 ´ = −1 + Lp,q,0(x) + Lp,q,1(x)Ψ(w) + Lp,q,2(x)Ψ 2(w) + · · · . (2.2) From the equalities (2.1) and (2.2), we obtain that 1 + 1 τ ³ (1− µ+ 2η)f(z)z + (µ− 2η)f 0(z) + ηzf 00(z)− 1 ´ = 1 + Lp,q,1(x)t1z + £ Lp,q,1(x)t2 + Lp,q,2(x)t 2 1 ¤ z2 + · · · , (2.3) and rvidal Cuadro de texto 1098 (p, q)-Lucas polynomials and their applications to bi-univalent... 1143 1 + 1 τ ³ (1− µ+ 2η)g(w)w + (µ− 2η)g0(w) + ηwg00(w)− 1 ´ = 1 + Lp,q,1(x)s1w + £ Lp,q,1(x)s2 + Lp,q,2(x)s 2 1 ¤ w2 + · · · . (2.4) It is fairly well-known that if |Φ(z)| = ¯̄̄ t1z + t2z 2 + t3z 3 + · · · ¯̄̄ < 1 (z ∈ ∆) and |Ψ(w)| = ¯̄̄ s1w + s2w 2 + s3w 3 + · · · ¯̄̄ < 1 (w ∈ ∆), then |tk| ≤ 1 and |sk| ≤ 1 (k ∈N).(2.5) Thus, upon comparing the corresponding coefficients in (2.3) and (2.4), we have 1 τ (1 + µ)a2 = Lp,q,1(x)t1,(2.6) 1 τ (1 + 2µ+ 2η)a3 = Lp,q,1(x)t2 + Lp,q,2(x)t 2 1,(2.7) − 1 τ (1 + µ)a2 = Lp,q,1(x)s1(2.8) and 1 τ (1 + 2µ+ 2η) ³ 2a22 − a3 ´ = Lp,q,1(x)s2 + Lp,q,2(x)s 2 1.(2.9) From the equations (2.6) and (2.8), we can easily see that t1 = −s1,(2.10) 2 τ2 (1 + µ)2 a22 = L2p,q,1(x) ³ t21 + s21 ´ .(2.11) If we add (2.7) to (2.9), we get rvidal Cuadro de texto 1099 1144 Sahsene Altınkaya and Sibel Yalın 2 τ (1 + 2µ+ 2η)a22 = Lp,q,1(x) (t2 + s2) + Lp,q,2(x) ³ t21 + s21 ´ .(2.12) Clearly, by using (2.11) in the equality (2.12), we have 2 h (1 + 2µ+ 2η)τL2p,q,1(x)− (1 + µ)2 Lp,q,2(x) i τ2L2p,q,1(x) a22 = Lp,q,1(x) (t2 + s2) . (2.13) which gives |a2| ≤ |τ | |p(x)| p |p(x)|r¯̄̄h (1 + 2µ+ 2η)τ − (1 + µ)2 i p2(x)− 2 (1 + µ)2 q(x) ¯̄̄ . Moreover, if we subtract (2.9) from (2.7), we obtain 2 τ (1 + 2µ+ 2η)(a3 − a22) = Lp,q,1(x) (t2 − s2) + Lp,q,2(x) ³ t21 − s21 ´ . (2.14) Then, in view of (2.10) and (2.11), (2.14) becomes a3 = τ2L2p,q,1(x) ¡ t21 + s21 ¢ 2 (1 + µ)2 + τLp,q,1(x) (t2 − s2) 2(1 + 2µ+ 2η) . It is seen from (1.1) and (2.5) that |a3| ≤ |τ |2 p2(x) (1 + µ)2 + |τ | |p(x)| 1 + 2µ+ 2η . 2 rvidal Cuadro de texto 1100 (p, q)-Lucas polynomials and their applications to bi-univalent... 1145 Corollary 2.1. Let f given by (1.2) be in the class WΣ (τ, η;x) . Then |a2| ≤ |τ | |p(x)| p |p(x)|r¯̄̄h 3(1 + 2η)τ − 4 (1 + η)2 i p2(x)− 8 (1 + η)2 q(x) ¯̄̄ and |a3| ≤ |τ |2 p2(x) 4 (1 + η)2 + |τ | |p(x)| 3(1 + 2η) . Corollary 2.2. Let f given by (1.2) be in the class WΣ (τ, µ;x) . Then |a2| ≤ |τ | |p(x)| p |p(x)|r¯̄̄h (1 + 2µ)τ − (1 + µ)2 i p2(x)− 2 (1 + µ)2 q(x) ¯̄̄ and |a3| ≤ |τ |2 p2(x) (1 + µ)2 + |τ | |p(x)| 1 + 2µ . Corollary 2.3. Let f given by (1.2) be in the class WΣ (τ ;x) . Then |a2| ≤ |τ | |p(x)| p |p(x)|p |(3τ − 4)p2(x)− 8q(x)| and |a3| ≤ |τ |2 p2(x) 4 + |τ | |p(x)| 3 . 3. Fekete-Szeg problem The classical Fekete-Szeg inequality, presented by means of Loewner’s method, for the coefficients of f ∈ S is¯̄̄ a3 − ξa22 ¯̄̄ ≤ 1 + 2 exp(−2ξ/(1− ξ)) for ξ ∈ [0, 1) . As ξ → 1−, we have the elementary inequality ¯̄ a3 − a22 ¯̄ ≤ 1. Moreover, the coefficient functional Γξ(f) = a3 − ξa22 rvidal Cuadro de texto 1101 1146 Sahsene Altınkaya and Sibel Yalın on the normalized analytic functions f in the unit disk∆ plays an important role in function theory. The problem of maximizing the absolute value of the functional Γξ(f) is called the Fekete-Szeg problem, see [5]. In this section, we aim to provide Fekete-Szeg inequalities for functions in the class Tn Σ (τ ;x). These inequalities are given in the following theorem. Theorem 3.1. Let f given by (1.2) be in the class WΣ (τ, µ, η;x) and ξ ∈ R. Then ¯̄ a3 − ξa22 ¯̄ ≤ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ |p(x)| (1 + 2µ+ 2η) |τ | , |1− ξ| ≤ ¯̄̄̄ ¯ 1τ2 − (1 + µ)2 (1 + 2µ+ 2η)τ3 µ 1 + 2q(x) p2(x) ¶¯̄̄̄ ¯ |τ |2 ¯̄ p3(x) ¯̄ |1− ξ|¯̄̄h (1 + 2µ+ 2η)τ − (1 + µ)2 i p2(x)− 2 (1 + µ)2 q(x) ¯̄̄ , |1− ξ| ≥ ¯̄̄̄ ¯ 1τ2 − (1 + µ)2 (1 + 2µ+ 2η)τ3 µ 1 + 2q(x) p2(x) ¶¯̄̄̄ ¯ Proof. From (2.13) and (2.14) a3 − ξa22 = τ2L3p,q,1(x) (1− ξ) (t2 + s2) 2 h (1 + 2µ+ 2η)τL2p,q,1(x)− (1 + µ)2 Lp,q,2(x) i + τLp,q,1(x) (t2 − s2) 2(1 + 2µ+ 2η) = Lp,q,1(x) ∙µ K(ξ, x) + 1 2(1 + 2µ+ 2η)τ ¶ t2 + µ K(ξ, x)− 1 2(1 + 2µ+ 2η)τ ¶ s2 where K (ξ, x) = τ2L2p,q,1(x) (1− ξ) 2 h (1 + 2µ+ 2η)τL2p,q,1(x)− (1 + µ)2 Lp,q,2(x) i . Along the way, in view of (1.1), we conclude that rvidal Cuadro de texto 1102 (p, q)-Lucas polynomials and their applications to bi-univalent... 1147 ¯̄ a3 − ξa22 ¯̄ ≤ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ |p(x)| (1 + 2µ+ 2η) |τ | , 0 ≤ |K(ξ, x)| ≤ 1 2(1 + 2µ+ 2η) |τ | 2 |p(x)| |K(ξ, x)| , |K(ξ, x)| ≥ 1 2(1 + 2µ+ 2η) |τ | 2 Corollary 3.1. Let f given by (1.2) be in the classWΣ (τ, η;x) and ξ ∈ R. Then ¯̄ a3 − ξa22 ¯̄ ≤ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ |p(x)| 3(1 + 2η) |τ | , |1− ξ| ≤ ¯̄̄̄ ¯ 1τ2 − 4 (1 + η)2 3(1 + 2η)τ3 µ 1 + 2q(x) p2(x) ¶¯̄̄̄ ¯ |τ |2 ¯̄ p3(x) ¯̄ |1− ξ|¯̄̄h 3(1 + 2η)τ − 4 (1 + η)2 i p2(x)− 8 (1 + η)2 q(x) ¯̄̄ , |1− ξ| ≥ ¯̄̄̄ ¯ 1τ2 − 4 (1 + η)2 3(1 + 2η)τ3 µ 1 + 2q(x) p2(x) ¶¯̄̄̄ ¯ . Corollary 3.2. Let f given by (1.2) be in the classWΣ (τ, µ;x) and ξ ∈ R. Then ¯̄ a3 − ξa22 ¯̄ ≤ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ |p(x)| (1 + 2µ) |τ | , |1− ξ| ≤ ¯̄̄̄ ¯ 1τ2 − (1 + µ)2 (1 + 2µ)τ3 µ 1 + 2q(x) p2(x) ¶¯̄̄̄ ¯ |τ |2 ¯̄ p3(x) ¯̄ |1− ξ|¯̄̄h (1 + 2µ)τ − (1 + µ)2 i p2(x)− 2 (1 + µ)2 q(x) ¯̄̄ , |1− ξ| ≥ ¯̄̄̄ ¯ 1τ2 − (1 + µ)2 (1 + 2µ)τ3 µ 1 + 2q(x) p2(x) ¶¯̄̄̄ ¯ Corollary 3.3. Let f given by (1.2) be in the class WΣ (τ ;x) and ξ ∈ R. Then rvidal Cuadro de texto 1103 https://doi.org/10.1016/j.crma.2015.09.003 https://doi.org/10.1112/jlms/s1-8.2.85 https://doi.org/10.1090/S0002-9939-1967-0206255-1 https://doi.org/10.1155/2012/264842 https://doi.org/10.1007/BF00247676 https://bit.ly/35xXS9e https://doi.org/10.1007/978-94-011-3586-3_12 https://bit.ly/2rYK2hF https://doi.org/10.1016/j.aml.2010.05.009 https://bit.ly/2M7hvgM https://doi.org/10.2140/memocs.2016.4.55 https://doi.org/10.1007/s11139-016-9862-5 https://bit.ly/36TMDIJ Copyright of Proyecciones - Journal of Mathematics is the property of Universidad Catolica del Norte, Departamento de Matematicas and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.