The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components

No Thumbnail Available

Date

2019-08

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Walter de Gruyter

Abstract

There is a growing interest in designing lightweight and low-cost vehicles. In this research, the Harris hawks optimization algorithm (the HHO), the salp swarm algorithm (SSA), the grasshopper optimization algorithm(GOA), and the dragonfly algorithm (DA) are introduced to solve shape optimization problems in the automotive industry. This research is the first application of the HHO, the SSA, the GOA, and the DA to shape design optimization problems in the literature. In this paper, the HHO, the SSA, and the DA algorithms are used for shape optimization of a vehicle brake pedal to prove how the HHO, the SSA, the GOA, and the DA can be used for solving shape optimization problems. The results show the ability of the HHO, the SSA, the GOA, and the DA to design better optimal components.

Description

Keywords

Harris hawks algorithm, Salp swarm algorithm, Grasshopper optimization algorithm, Dragonfly algorithm, Structural optimization, Optimal machining parameters, Multiobjective optimization, Gravitational search, Genetic algorithm, Immune algorithm, Topology desing, Hybrid approach, Taguchis method, Optimum design, Water cycle, Automotive industry, Structural design, Structural optimization, Vehicles, Low costs, Optimization algorithms, Salp swarms, Shape designs, Shape optimization problem, Structural design optimization, Vehicle brakes, Vehicle components, Shape optimization

Citation

Yıldız, B. S. ve Yıldız A. R. (2019). ''The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components''. Materials Testing, 61(8), 744-748