JEOTERMAL ENERJİ KULLANILARAK SIVI HİDROJEN ÜRETİMİ İÇİN GELİŞTİRİLEN ORC DESTEKLİ ÇOK FONKSİYONLU BİR SİSTEMİN MODELLENMESİ, TERMODİNAMİK OPTİMİZASYONU VE EKSERGOEKONOMİK ANALİZİ

Ali Hüsnü BADEMLİOĞLU



T.C. BURSA ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

# JEOTERMAL ENERJİ KULLANILARAK SIVI HİDROJEN ÜRETİMİ İÇİN GELİŞTİRİLEN ORC DESTEKLİ ÇOK FONKSİYONLU BİR SİSTEMİN MODELLENMESİ, TERMODİNAMİK OPTİMİZASYONU VE EKSERGOEKONOMİK ANALİZİ

Ali Hüsnü BADEMLİOĞLU 0000-0001-6944-4900

Prof. Dr. Ömer KAYNAKLI (Danışman)

DOKTORA TEZİ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

BURSA-2020

### **TEZ ONAYI**

Ali Hüsnü BADEMLİOĞLU tarafından hazırlanan "JEOTERMAL ENERJİ KULANILARAK SIVI HİDROJEN ÜRETİMİ İÇİN GELİŞTİRİLEN ORC DESTEKLİ ÇOK FONKSİYONLU BİR SİSTEMİN MODELLENMESİ, TERMODİNAMİK OPTİMİZASYONU VE EKSERGOEKONOMİK ANALİZİ" adlı tez çalışması aşağıdaki jüri tarafından oy birliği ile Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı'nda **DOKTORA TEZİ** olarak kabul edilmiştir.

#### Danışman

- : Prof. Dr. Ömer KAYNAKLI
- Başkan : Prof. Dr. Ömer KAYNAKLI 0000-0002-9763-6464 Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Anabilim Dalı
- Üye : Prof. Dr. Recep YAMANKARADENİZ 0000-0003-0087-2629 Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Anabilim Dalı
- Üye : Prof. Dr. Mehmet İhsan KARAMANGİL 0000-0001-5965-0313 Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Otomotiv Mühendisliği Anabilim Dalı
- Üye : Prof. Dr. Yusuf Ali KARA 0000-0001-5598-7293 Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Anabilim Dalı
- Üye : Dr. Öğr. Üyesi Kemal Furkan SÖKMEN 0000-0001-8647-4861 Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Anabilim Dalı

Yukarıdaki sonucu onaylarım Prof. Dr. Hüseyj Enstitü



# U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,
- başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,
- kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

# beyan ederim.

31/12/2020

# Ali Hüsnü BADEMLİOĞLU

# ÖZET

### Doktora Tezi

# JEOTERMAL ENERJİ KULLANILARAK SIVI HİDROJEN ÜRETİMİ İÇİN GELİŞTİRİLEN ORC DESTEKLİ ÇOK FONKSİYONLU BİR SİSTEMİN MODELLENMESİ, TERMODİNAMİK OPTİMİZASYONU VE EKSERGOEKONOMİK ANALİZİ

### Ali Hüsnü BADEMLİOĞLU

Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı

# Danışman: Prof. Dr. Ömer KAYNAKLI

Bu çalışmada, sıvı hidrojen üretimi için geliştirilen jeotermal enerji kaynaklı ve alt modül olarak sırasıyla ORC sistemi, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve hidrojen sıvılaştırma çevrimlerinden oluşan kapsamlı, çok fonksiyonlu bir sistem modellenmiş, modellenen sistemin termodinamik optimizasyonu ve eksergoekonomik analizleri gerçekleştirilmiştir. Sıvı hidrojen üretimi için modellenen sistemin termodinamik performansı ORC sistemlerinde kullanılan farklı soğutucu akışkanlar (R123, R245fa, R601, n-Hexane) için farklı buharlaştırıcı sıcaklıklarında (100°C-150°C) incelenmiştir. Ayrıca çalışma kapsamında farklı sıvılaştırma çevrimleri ve absorbsiyonlu soğutma sisteminde kullanılan eriyik çiftleri dikkate alınarak hidrojen üretim sistemi için altı farklı model oluşturulmuştur. Modellerin enerji ve ekserji analizleri gerçekleştirilmiş, sıvı hidrojen üretim performansları karşılaştırılmış ve sistem için optimum çalışma parametreleri belirlenmiştir. Optimum çalışma şartları için eksergoekonomik analizler gerçekleştirilmiştir.

Oluşturulan tüm modeller birlikte ele alındığında, ön soğutmalı Claude sıvılaştırma sisteminin kullanıldığı ve absorbsiyonlu soğutma çevriminde NH<sub>3</sub>-H<sub>2</sub>O eriyik çiftinin tercih edildiği Model 2'nin termodinamik performansının diğer modellere kıyasla daha yüksek olduğu ve hidrojen üretim miktarı açısından ise daha kullanılabilir olduğu belirlenmiştir. Sabit çalışma şartlarında, soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak Model 2'de üretilen hidrojen miktarı maksimum 0,18049 kg/s olarak hesaplanmış, enerji ve ekserji verimi ise sırasıyla maksimum %11,56 ve %35,09 olarak belirlenmiştir. 150°C buharlaştırıcı sıcaklığı ve n-Hexane için Model 2'nin eksergoekonomik analizleri gerçekleştirilmiş ve elektroliz ünitesi 441,206 USD/h ile en yüksek yatırım maliyetine sahip komponent olmuştur. Ayrıca sistemde, ekserji yıkım maliyeti en yüksek olan komponentin 61,206 USD/h maliyet ile Claude sıvılaştırma sistemindeki (2) numaralı eşanjör olduğu belirlenmiştir. Sıvılaştırılan hidrojenin birim ekserji maliyeti 11,277 USD/GJ olarak hesaplanmıştır.

Anahtar Kelimeler: ORC, jeotermal, hidrojen, enerji, ekserji, eksergoekonomik, sistem 2020, xii + 195 sayfa.

### ABSTRACT

#### PhD Thesis

# MODELLING, THERMODYNAMIC OPTIMIZATION AND EXERGOECONOMIC ANALYSIS OF AN ORC AIDED MULTIFUNCTIONAL SYSTEM UTILIZING GEOTHERMAL ENERGY FOR THE PRODUCTION OF LIQUID HYDROGEN

# Ali Hüsnü BADEMLİOĞLU

Bursa Uludağ University Graduate School of Natural and Applied Sciences Department of Mechanical Engineering

#### Supervisor: Prof. Dr. Ömer KAYNAKLI

In this study, a comprehensive, multifunctional system consisting of ORC system, high temperature electrolysis system, absorption refrigeration system and hydrogen liquefaction system, developed for liquid hydrogen production, aided from geothermal energy, was modeled and thermodynamic optimization and exergoeconomic analyzes of the modeled system were performed. The thermodynamic performance of the system modeled for liquid hydrogen production was investigated at different evaporator temperatures (100°C-150°C) for different refrigerants (R123, R245fa, R601, n-Hexane) used in ORC systems. In addition, within the scope of the study, six different models were created for the hydrogen production system by considering the different liquefaction cycles and the solution pairs used in the absorption refrigeration system. Energy and exergy analyze of the models were performed, liquid hydrogen production performances were compared, and optimum operating parameters were determined for the system. Exergoeconomic analysis were performed for optimum operating conditions, and the exergoeconomic analysis were performed for optimum operating conditions, and the exergoeconomic performances of the components that made up the system were evaluated.

Considering all created models, it was determined that the thermodynamic performance of Model 2, in which the precooled Claude liquefaction system is used and the NH<sub>3</sub>-H<sub>2</sub>O solution pair is preferred in the absorption refrigeration cycle, was higher than the other models and more usable in terms of the amount of hydrogen production. Under constant operating conditions, the amount of hydrogen produced in Model 2 depending on the refrigerant and evaporator temperature was calculated as maximum 0,18049 kg/h, the energy and exergy efficiency was determined as 11,56% and 35,09% respectively. Exergoeconomic analysis of Model 2 for 150°C evaporator temperature and n-Hexane was performed and the electrolysis unit became the component with the highest investment cost with 441,206 USD/h. Furthermore, it was determined that the component with the highest exergy destruction cost in the system was the heat exchanger (2) in the Claude liquefaction system with a cost of 61,206 USD/h. The unit exergetic cost of liquefied hydrogen was calculated as 11,277 USD/GJ.

**Key words:** ORC, geothermal, hydrogen, energy, exergy, exergoeconomic, system **2020, xii + 195 pages.** 

# TEŞEKKÜR

Tez çalışmalarım süresince yardım ve desteğini hiçbir zaman esirgemeyen, bilgi ve deneyimleriyle bana her konuda yol gösteren ve beni akademik hayata hazırlayan, öğrencisi olmaktan onur duyduğum çok değerli danışman hocam Prof. Dr. Ömer KAYNAKLI'ya sonsuz teşekkürlerimi sunarım.

Çalışmamın her aşamasında değerli fikirleriyle beni yönlendiren, engin bilgi ve tecrübeleriyle çalışmama değer katan saygıdeğer hocam Prof. Dr. Recep YAMANKARADENİZ'e en içten teşekkürlerimi sunarım.

Çalışmam esnasında yardımlarını esirgemeyen değerli arkadaşlarım Arş. Gör. Abdullah DÜZCAN'a ve Arş. Gör. Ahmet Serhan CANBOLAT'a çok teşekkür ederim.

Hayatım boyunca vermiş olduğum tüm kararlarda beni destekleyen, her zaman yanımda olan, sevgilerini, maddi ve manevi yardımlarını esirgemeyen çok değerli annem Nazan BADEMLİOĞLU'na ve ablam Deren ERMAN'a sonsuz teşekkürlerimi sunarım.

Son olarak, yapmış olduğum bu çalışmayı desteğini her zaman hissettiğim rahmetli babam Tahir BADEMLİOĞLU'nun kıymetli anısına ithaf ederim.

Ali Hüsnü BADEMLİOĞLU 31/12/2020

|                                                                | Sayfa |
|----------------------------------------------------------------|-------|
| ÖZET                                                           | i     |
| ABSTRACT                                                       | ii    |
| TEŞEKKÜR                                                       | ii    |
| SİMGELER ve KISALTMALAR DİZİNİ                                 | vi    |
| ŞEKİLLER DİZİNİ                                                | viii  |
| ÇİZELGELER DİZİNİ                                              | xi    |
| 1. GİRİŞ                                                       | 1     |
| 2. KAYNAK ARAŞTIRMASI                                          | 5     |
| 2.1 Organik Rankine Çevrimi ile İlgili Çalışmalar              | 5     |
| 2.2 Yüksek Sıcaklıklı Elektroliz Sistemi ile İlgili Çalışmalar | 12    |
| 2.3 Absorbsiyonlu Soğutma Sistemi ile İlgili Çalışmalar        | 14    |
| 2.4 Hidrojen Sıvılaştırma Sistemleri ile İlgili Çalışmalar     |       |
| 3. MATERYAL VE YÖNTEM                                          | 21    |
| 3.1 Enerji Analizi                                             | 21    |
| 3.1.1 Kütle Dengesi                                            | 21    |
| 3.1.2 Enerji Dengesi                                           | 22    |
| 3.2 Ekserji Analizi                                            | 22    |
| 3.2.1 Fiziksel Ekserji                                         | 24    |
| 3.2.2 Kimyasal Ekserji                                         | 24    |
| 3.2.3 Ekserji Dengesi                                          |       |
| 3.3 Eksergoekonomik Analiz                                     |       |
| 3.3.1 Ekonomik Parametreler                                    | 27    |
| 3.3.2 SPECO Yöntemi                                            |       |
| 3.3.3 Ekserjiye Bağlı Maliyet Denge Denklemleri                | 29    |
| 3.3.4 Eksergoekonomik Performans Parametreleri                 | 31    |
| 3.4 Organik Rankine Çevrimi (ORC)                              |       |
| 3.4.1 Organik Rankine Çevriminin Enerji Analizi                |       |
| 3.4.2 Organik Rankine Çevriminin Ekserji Analizi               |       |
| 3.4.3 Organik Rankine Çevriminin Eksergoekonomik Analizi       |       |
| 3.5 Yüksek Sıcaklıklı Elektroliz Sistemi                       | 41    |
| 3.5.1 Yüksek Sıcaklıklı Elektroliz Sisteminin Enerji Analizi   | 45    |
| 3.5.2 Yüksek Sıcaklıklı Elektroliz Sisteminin Ekserji Analizi  | 49    |

# İÇİNDEKİLER

| 3.5.3 Yüksek Sıcaklıklı Elektroliz Sisteminin Eksergoekonomik Analizi        | 53  |
|------------------------------------------------------------------------------|-----|
| 3.6 Absorbsiyonlu Soğutma Sistemi                                            | 55  |
| 3.6.1 Absorbsiyonlu Soğutma Sisteminin Enerji Analizi                        | 56  |
| 3.6.2 Absorbsiyonlu Soğutma Sisteminin Ekserji Analizi                       | 62  |
| 3.6.3 Absorbsiyonlu Soğutma Sisteminin Eksergoekonomik Analizi               | 66  |
| 3.7 Gaz Sıvılaştırma Sistemleri                                              | 68  |
| 3.7.1 Linde-Hampson Sıvılaştırma Sistemi                                     | 68  |
| 3.7.2 Ön Soğutmalı Linde-Hampson Sıvılaştırma Sistemi                        | 70  |
| 3.7.3 Ön Soğutmalı Claude Sıvılaştırma Sistemi                               | 71  |
| 3.7.4 Ön Soğutmalı Heylandt Sıvılaştırma Sistemi                             | 72  |
| 3.7.5 Gaz Sıvılaştırma Sistemlerinin Enerji Analizi                          | 74  |
| 3.7.6 Gaz Sıvılaştırma Sistemlerinin Ekserji Analizi                         | 82  |
| 3.7.7 Gaz Sıvılaştırma Sistemlerinin Eksergoekonomik Analizi                 | 85  |
| 3.8 Sıvı Hidrojen Üretim Sisteminin Enerji ve Ekserji Verimi                 | 87  |
| 3.9 Sistem Modellemesi                                                       | 88  |
| 4. BULGULAR VE TARTIŞMA                                                      | 93  |
| 4.1. ORC Sisteminin Termodinamik Performansı                                 | 96  |
| 4.2. Model 1 için Analiz Sonuçları                                           | 106 |
| 4.3. Model 2 için Analiz Sonuçları                                           | 121 |
| 4.4. Model 3 için Analiz Sonuçları                                           | 129 |
| 4.5. Model 4 için Analiz Sonuçları                                           | 137 |
| 4.6. Model 5 için Analiz Sonuçları                                           | 149 |
| 4.7. Model 6 için Analiz Sonuçları                                           | 158 |
| 4.8. Modellerin Termodinamik Performanslarının Karşılaştırılması             | 166 |
| 4.8.1. Kullanılan Farklı Soğutucu Akışkanlar için Performans Karşılaştırması | 166 |
| 4.8.2. Farklı Buharlaştırıcı Sıcaklıkları için Performans Karşılaştırması    | 169 |
| 4.9. Eksergoekonomik Analiz Sonuçları                                        | 172 |
| 5. SONUÇ                                                                     | 182 |
| KAYNAKLAR                                                                    | 185 |
| ÖZGEÇMİŞ                                                                     | 193 |

# SİMGELER ve KISALTMALAR DİZİNİ

| Simgeler             | Açıklama                                            |
|----------------------|-----------------------------------------------------|
| A                    | vüzev alanı (m <sup>2</sup> )                       |
| C                    | birim ekserii maliyeti (USD/GJ)                     |
| C <sub>E</sub>       | vakıt birim ekserii maliyeti (USD/GJ)               |
| C <sub>P</sub>       | ürün birim ekserii maliyeti (USD/GJ)                |
| $C_{r}$              | özgül isi (kJ/kg K)                                 |
| Ċ                    | ekserii maliyeti (USD/h)                            |
| Ċ-                   | ekserii yıkım maliyeti (USD/h)                      |
| ĊD<br>ĊCI            | satin alma maliyati (USD)                           |
| $C_k$                | äzgül aksorii (kI/kg)                               |
| e<br>o <sup>ch</sup> | standart kimyasal aksarij (kI/kmal)                 |
| e<br>Ė               | stanuart Kiniyasar ekserji (KJ/Kinor)               |
| L<br>f               | eksergeekenemik fektör (%)                          |
| Jk                   | vercekimi ivmesi $(m/s^2)$                          |
| y<br>h               | özgül entalpi (kI/kg)                               |
| i<br>i               | okaorii vikimi (kW)                                 |
| i                    | bilesik faiz oranı (%)                              |
| i<br>m               | kütlesel debi (ka/s)                                |
| т<br>M.              | mol ağırlığı (kg/kmol)                              |
| P                    | hor agingi (kg/kmor)                                |
| Ċ                    | st (kW)                                             |
| Y<br>r               | geri dönüsüm oranı (r)                              |
| r,                   | hağıl maliyet farkı (%)                             |
| R<br>R               | evrensel gaz sabiti (I/mol K)                       |
| S                    | özgül entroni (kI/kg K)                             |
| у<br>Т               | sicaklik (°C)                                       |
| Ū                    | toplam isi transfer katsavisi ( $W/m^2 K$ )         |
| v                    | $\ddot{o}$ zgül hacim (m <sup>3</sup> /kg)          |
| V                    | hız (m/s)                                           |
| Ŵ                    | is (kW)                                             |
| X                    | konsantrasvon orani (%)                             |
| VSIII                | sıvılaşma oranı (%)                                 |
| Z                    | türbine gönderilen gaz oranı (%)                    |
| Ż                    | komponent toplam vatırım maliyeti (USD/h)           |
| $\dot{Z}_{\nu}^{CI}$ | komponent ilk yatırım maliyeti (USD/h)              |
| $\dot{Z}_{L}^{OM}$   | komponent bakım, onarım ve işletme maliyeti (USD/h) |
| -κ<br>ε              | ısı esaniör etkenliği (%)                           |
| τ                    | villik calisma saati (h)                            |
| φ                    | bakım, onarım ve işletme faktörü (%)                |
| ,<br>η               | verim (%)                                           |
| $\dot{\Delta}T_{ln}$ | logaritmik sıcaklık farkı (°C)                      |

# Kısaltmalar Açıklama

| absorber                            |
|-------------------------------------|
| yıllık ödeme tutarı                 |
| absorbsiyonlu soğutma sistemi       |
| buharlaştırıcı                      |
| yatırım maliyeti geri kazanım oranı |
| dolaşım oranı                       |
| ısı eşanjörü                        |
| fiziksel                            |
| paranın gelecekteki değeri          |
| üst 1s1l değer                      |
| nokta                               |
| jeotermal                           |
| komponent                           |
| kaynatıcı                           |
| kinetik enerji                      |
| kızdırma                            |
| kimyasal                            |
| karışım odası                       |
| kompresör                           |
| kısılma vanası                      |
| minimum                             |
| yıl                                 |
| organik Rankine çevrimi             |
| pompa                               |
| potansiyel enerji                   |
| paranın şimdiki değeri              |
| seperatör                           |
| soğutma suyu                        |
| soğutma tesir katsayısı             |
| türbin                              |
| yoğuşturucu                         |
| ölü hal                             |
|                                     |

# ŞEKİLLER DİZİNİ

|                                                                                    | Sayfa         |
|------------------------------------------------------------------------------------|---------------|
| ekil 1.1. Hidrojen enerjisi uygulama alanları                                      | 2             |
| ekil 3.1. Isı geri kazanımlı ORC modülünün şematik (a) ve T-s (b) diyagramları     | 33            |
| ekil 3.2. Yüksek sıcaklıklı elektroliz sistemi için gerekli minimum enerji ihtiyac | 1 <b>n</b> 1n |
| sıcaklıkla değişimi                                                                | 42            |
| ekil 3.3. Yüksek sıcaklıklı elektroliz sistemi tesisat şeması                      | 44            |
| ekil 3.4. Absorbsiyonlu soğutma sisteminin tesisat şeması                          | 56            |
| ekil 3.5. Linde-Hampson sıvılaştırma sisteminin tesisat şeması                     | 69            |
| ekil 3.6. Linde-Hampson sıvılaştırma sisteminin T-s diyagramı                      | 69            |
| ekil 3.7. On Soğutmalı Linde-Hampson sıvılaştırma sisteminin tesisat şeması        | 70            |
| ekil 3.8. On Soğutmalı Linde-Hampson sıvılaştırma sisteminin T-s diyagramı         | 71            |
| ekil 3.9. On Soğutmalı Claude sıvılaştırma sisteminin tesisat şeması               | 72            |
| ekil 3.10. On Soğutmalı Claude sıvılaştırma çevriminin T-s diyagramı               | 72            |
| ekil 3.11. On Soğutmalı Heylandt sıvılaştırma sisteminin tesisat şeması            | 73            |
| ekil 3.12. On Sogutmali Heylandt sivilaştırma sisteminin 1-s diyagrami             |               |
| ekil 3.13. Sivilaşabilen hidrojen oranının belirlenmesi için seçilen kontrol hacmı |               |
| ekil 3.14. Model 1 ve Model 4 için sivi hidrojen uretim sisteminin tesisat şeması  | 90            |
| ekil 3.15. Model 2 ve Model 5 için sivî hidrojen uretim sisteminin tesisat şemasi  | 91            |
| ekil 3.16. Model 3 ve Model 6 için sivî hidrojen uretim sisteminin tesisat şemasi  |               |
| ekii 4.1. ORC sisteminde kullanilan larkii sogulucu akişkan dedilerinin bunarlaş   |               |
| akil 4.2 OBC sisteminda kullanılan farklı soğutusu akışkanlar isin (a) türkin isi  | 90            |
| (h) nomna isinin huharlastura saakluži ila dažisimi                                |               |
| ekil 4.3. OBC sisteminde kullanılan farklı soğutucu akışkanlar için (a) voğustur   | 97            |
| atılan ve (b) esanjörde transfer olan ısı miktarının huharlaştırıcı sıcaklıč       | i ile         |
| değişimi                                                                           | 90            |
| ekil 4.4. ORC sisteminde kullanılan farklı soğutucu akışkanlar icin (a)            | ••••••        |
| buharlaştırıcıdaki ekserii vıkımının ve (h) buharlaştırıcı ekserii verimin         | in            |
| buharlaştırıcı sıcaklığı ile değisimi                                              | 100           |
| ekil 4.5. ORC sisteminde kullanılan farklı soğutucu akıskanlar icin (a) türbindek  | i             |
| ekserii vikiminin ve (b) türbin ekserii veriminin buharlastırıcı sıcaklığı         | ile           |
| değisimi                                                                           | 101           |
| ekil 4.6. ORC sisteminde kullanılan farklı soğutucu akıskanlar icin (a)            |               |
| yoğusturucudaki ekserji yıkımının ve (b) yoğusturucu ekserji veriminin             | L             |
| buharlaştırıcı sıcaklığı ile değişimi                                              | 102           |
| ekil 4.7. ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) pompada    | ki            |
| ekserji yıkımının ve (b) pompa ekserji veriminin buharlaştırıcı sıcaklığı          | ile           |
| değişimi                                                                           | 103           |
| ekil 4.8. ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) ısı        |               |
| eşanjöründeki ekserji yıkımının ve (b) ısı eşanjörü ekserji veriminin              |               |
| buharlaştırıcı sıcaklığı ile değişimi                                              | 104           |
| ekil 4.9. ORC sisteminde kullanılan farklı soğutucu akışkanlar için ORC sistemi    | 1s1l          |
| veriminin buharlaştırıcı sıcaklığı ile değişimi                                    | 105           |
| ekil 4.10. ORC sisteminde kullanılan farklı soğutucu akışkanlar için ORC sistem    | ni            |
| ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi                            | 106           |
| ekil 4.11. Model 1 için ön soğutmalı Linde-Hampson sisteminde üretilen sıvı hic    | drojen        |
| miktarının buharlaştırıcı sıcaklığı ile değişimi                                   | 107           |

| Şekil 4.12.                            | Model 1 için (a) elektroliz işinin ve (b) geri dönüşüm oranının buharlaştırıcı                 |
|----------------------------------------|------------------------------------------------------------------------------------------------|
|                                        | sıcaklığı ile değişimi                                                                         |
| Şekil 4.13.                            | Model 1 için seperatör çıkışındaki hidrojen sıcaklığının buharlaştırıcı sıcaklığı ile değisimi |
| Sekil 4.14.                            | Model 1 icin absorbsivonlu soğutma sisteminde soğutulan hidroienin cıkıs                       |
| <i>ş</i> • • • • • • • • • •           | sıcaklığının buharlaştırıcı sıcaklığı ile değişimi                                             |
| Sekil 4.15.                            | Model 1 icin ön soğutmalı Linde-Hampson sıvılastırma sisteminde (a)                            |
| ,                                      | kompresör isinin ve (b) toplam sıvılaştırma isinin buharlaştırıcı sıcaklığı ile                |
|                                        | değisimi                                                                                       |
| Sekil 4.16.                            | Model 2 icin ön soğutmalı Claude sisteminde üretilen sıvı hidroien                             |
| 3                                      | miktarının buharlastırıcı sıcaklığı ile değisimi                                               |
| Sekil 4.17.                            | Model 2 icin (a) elektroliz isinin ve (b) elektroliz modülü geri dönüsüm                       |
| ······································ | oranının buharlastırıcı sıcaklığı ile değisimi                                                 |
| Sekil 4.18.                            | Model 2 icin ön soğutmalı Claude sıvılaştırma sisteminde (a) kompresör                         |
| ·;·····                                | isinin. (b) türbin isinin ve (c) toplam sıvılastırma isinin buharlastırıcı                     |
|                                        | sıcaklığı ile değisimi                                                                         |
| Sekil 4.19                             | Model 3 icin ön soğutmalı Heylandt sıyılaştırma sisteminde üretilen sıyı                       |
| Şenn 1.17.                             | hidrojen miktarının buharlaştırıcı şıcaklığı ile değişimi                                      |
| Sekil 4 20                             | Model 3 icin (a) elektroliz isinin ve (b) elektroliz modülü geri dönüsüm                       |
| Şenn 1.20.                             | oranının huharlaştırıcı sıcaklığı ile değişimi                                                 |
| Sekil 4 21                             | Model 3 icin ön soğutmalı Heylandt sıyılaştırma sisteminde (a) kompresör                       |
| ŞCKII 7.21.                            | isinin (b) türbin isinin ve (c) toplam sıvılaştırma isinin bubarlaştırıcı                      |
|                                        | sucaklığı ile değişimi                                                                         |
| Sabil 1 22                             | Model 4 icin ön soğutmalı Linde Hampson sıyılaştırma sisteminde üretilen                       |
| ŞCKII <del>4</del> .22.                | suu hidrojen miktarının buharlaştırıcı sıçaklığı ile değişimi                                  |
| Salvil 1 22                            | Model 4 join (a) elektroliz isinin ve (b) elektroliz modülü gori dönüsüm                       |
| ŞCKII 4.23.                            | oronunu huharlasturus susekliği ile değişimi                                                   |
| Salii 1 21                             | Model 4 join separatär eikisindeki hidrojen sisekličinin hyberlestiriet                        |
| ŞEKII 4.24.                            | sugelități île değişimi                                                                        |
| Salii 1 25                             | Model 4 join absorbsiventu sočutno sisteminde sočutulon hidrojenin sukus                       |
| ŞCKII 4.23.                            | sugaldičinih byhorlogima sigulita sistemina sogutulali marojemi çıkış                          |
| Salii 1 26                             | Model 4 join ön soğutmeli Linde Hommoon suyilestirme sisteminde (a)                            |
| Şekii 4.20.                            | kommessän isinin va (h) tanlam avvlastimas isinin hykarlastimas avaltivä ila                   |
|                                        | kompresor işinin ve (b) topiam sıvnaştırma işinin bunariaştırici sıcakrığı ne                  |
| Sal:1 4 27                             | degișimi                                                                                       |
| Şekii 4.27.                            | Model 5 için on sogumalı Claude sıvilaştırma sisteminde uretilen sıvi                          |
| 0-1-11 4 20                            | marojen miktarinin bunariaştirici sicakilgi ile değişimi                                       |
| Şekil 4.28.                            | Model 5 için (a) elektroliz işinin ve (b) elektroliz modulu geri donuşum                       |
| C 1 1 4 20                             | oraninin bunarlaştirici sıcaklığı ile degişimi                                                 |
| Şekil 4.29.                            | Model 5 için on sogutmali Claude sivilaştırma sisteminde (a) kompresor                         |
|                                        | işinin, (b) turbin işinin ve (c) toplam sıvılaştırma işinin buharlaştırici                     |
| G 1 1 4 90                             | sicakligi ile değişimi                                                                         |
| Şekil 4.30.                            | Model 6 için ön soğutmalı Heylandt sıvılaştırma sisteminde üretilen sıvı                       |
| ~ 1 11 1 0 1                           | hidrojen miktarinin buharlaştırici sıcaklığı ile değişimi                                      |
| Şekil 4.31.                            | Model 6 ıçın (a) elektrolız ışının ve (b) elektrolız modülü geri dönüşüm                       |
| 0 1 11 4 00                            | oranının buharlaştırıcı sıcaklığı ile değişimi                                                 |
| Şekıl 4.32.                            | Model 6 için ön soğutmalı Claude sıvılaştırma sisteminde (a) kompresör                         |
|                                        | ışının, (b) türbin işinin ve (c) toplam sıvılaştırma işinin buharlaştırıcı                     |
|                                        | sıcaklığı ile değişimi                                                                         |

| Şekil 4.33. Farklı modeller için üretilen sıvı hidrojen miktarının değişimi      | 166         |
|----------------------------------------------------------------------------------|-------------|
| Şekil 4.34. Farklı modeller için gerekli elektroliz işinin değişimi              | 167         |
| Şekil 4.35. Farklı modeller için toplam sıvılaştırma işinin değişimi             | 168         |
| Şekil 4.36. Farklı modeller için sıvı hidrojen üretim sistemi enerji veriminin   | değişimi    |
|                                                                                  |             |
| Şekil 4.37. Farklı modeller için sıvı hidrojen üretim sistemi ekserji veriminin  | değişimi    |
|                                                                                  |             |
| Şekil 4.38. Farklı modeller için üretilen sıvı hidrojen miktarının buharlaştırıc | ı sıcaklığı |
| ile değişimi                                                                     |             |
| Şekil 4.39. Farklı modeller için sıvı hidrojen üretim sistemi enerji veriminin   |             |
| buharlaştırıcı sıcaklığı ile değişimi                                            | 171         |
| Şekil 4.40. Farklı modeller için sıvı hidrojen üretim sistemi ekserji veriminin  | L           |
| buharlaştırıcı sıcaklığı ile değişimi                                            | 171         |
|                                                                                  |             |

# ÇİZELGELER DİZİNİ

# Sayfa

| Çizelge 1.1. Türkiye'de elektrik enerjisi üretilen jeotermal sahalar ve kuyu sıcaklıkları.4                        |
|--------------------------------------------------------------------------------------------------------------------|
| Çizelge 2.1. ORC sistemleriyle ilgili literatürde yapılan çalışmalar ve parametreleri11                            |
| Çizelge 2.2. Absorbsiyonlu soğutma sistemleriyle ilgili literatürde yapılan çalışmalar ve                          |
| parametreleri17                                                                                                    |
| Çizelge 3.1. Bazı maddelerin mol ağırlıkları ve standart kimyasal ekserjileri25                                    |
| Çizelge 3.2. ORC sisteminde kullanılan komponentlerin satın alma maliyet denklemleri                               |
|                                                                                                                    |
| Çizelge 3.3. Kullanılan komponentler için toplam ısı transfer katsayıları                                          |
| Cizelge 3.4. ORC sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge                                |
| denklemleri ve vardımcı esitlikler                                                                                 |
| Cizelge 3.5. Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin satın                               |
| alma maliyet denklemleri                                                                                           |
| Cizelge 3.6. Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin ekseriive                           |
| bağlı maliyet denge denklemleri ve vardımcı esitlikler                                                             |
| Cizelge 3.7. Absorbsivonlu soğutma sisteminde kullanılan komponentlerin satın alma                                 |
| maliyet denklemleri 66                                                                                             |
| Cizelge 3.8. Absorbsivonlu soğutma sisteminde kullanılan komponentlerin ekseriiye                                  |
| hağlı maliyet denge denklemleri ve vardımcı esitlikler 66                                                          |
| Cizelge 3.9. Ön soğutmalı Claude sıyılaştırma sisteminde kullanılan komponentlerin                                 |
| çizeige 5.7. On sogutinan Claude sivilaştırma sisteminde kunannan komponentierin<br>satın alma maliyet denklemleri |
| Cizelge 3.10. Ön soğutmalı Claude sıyılaştırma sisteminde kullanılan komponentlerin                                |
| ekseriive bağlı maliyet denge denklemleri ve vardımcı esitlikler                                                   |
| Cizalga 2.11 Calisma kansamında aluşturulan modallar                                                               |
| Cizalga 4.1. Kullanılan soğutucu akışkanların tarmafiziksal özalliklari                                            |
| Cizelge 4.2. OBC sistemi join dizeun peremetroleri ve celleme certleri                                             |
| Cizelge 4.2. OKC sistemi için dizaylı parametreleri ve çalışına şartıarı                                           |
| çızeige 4.5. Tüksek sıcaklıklı elektroliz sistelili içili dizaylı paralletreleti ve çalışılla                      |
| Cizalga 1.4 NH- H-O ariviči va LiPr H-O ariviči kullandan absarbsivanlu sočutna                                    |
| çizcige 4.4. 1013-1120 eriyigi ve Erbi-1120 eriyigi kunannan absorbsiyonnu sogutna                                 |
| Cizalga 4.5. Hidroian suvilasturma sistemlari join dizava parametralari va calisma sartlari                        |
| Çizelge 4.5. Hidi ojeli sivilaştırma sistemleri için dizaylı parametreleri ve çanşına şartıarı                     |
| Cizalaa 4.6. Earkly sažutuou akuskanlar jain Madal 12 alusturan alt sistemlarin va tüm                             |
| Çizelge 4.0. Farklı sogulucu akişkanlar için, woder 1 Toluşturan alı sistemlerin ve tum                            |
| Sistemin energi ve eksergi verimen                                                                                 |
| Çizelge 4.7. 150°C bunariaştirici sicaklığında, n-Hexane için Model 1'in termotiziksel                             |
|                                                                                                                    |
| Çizelge 4.8. 150°C buharlaştirici sicaklığında, n-Hexane için Model 1'i oluşturan                                  |
| Komponentierin enerji ve ekserji performanslari                                                                    |
| Çızelge 4.9. 101,325 kPa basınç altında çalışan Lınde-Hampson azot sıvılaştırma                                    |
| sisteminin termofiziksel özellikleri                                                                               |
| Çizelge 4.10. 13 kPa basınç altında çalışan Linde-Hampson azot sıvılaştırma sisteminin                             |
| termofiziksel özellikleri                                                                                          |
| Çızelge 4.11. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'nin                                         |
| termofiziksel özellikleri                                                                                          |
| Çizelge 4.12. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'yi oluşturan                                |
| komponentlerin enerji ve ekserji performansları                                                                    |

| Çizelge 4.13. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ün termofiziksel özellikleri                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Çizelge 4.14. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ü oluşturan<br>komponentlerin enerii ve ekserii performansları                  |
| Çizelge 4.15. | Farklı soğutucu akışkanlar için, Model 4'ü oluşturan alt sistemlerin ve<br>tüm sistemin enerii ve ekserii verimleri                      |
| Çizelge 4.16. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ün termofiziksel<br>özellikleri                                                 |
| Çizelge 4.17. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ü oluşturan komponentlerin enerii ve ekserii performansları                     |
| Çizelge 4.18. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'in termofiziksel<br>özellikleri                                                 |
| Çizelge 4.19. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'i oluşturan<br>komponentlerin enerii ve ekserii performansları                  |
| Çizelge 4.20. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'nın<br>termofiziksel özellikleri                                                |
| Çizelge 4.21. | 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'yı oluşturan<br>komponentlerin enerii ve ekserii performansları                 |
| Çizelge 4.22. | Sıvı hidrojen üretim sistemini oluşturan komponentlerin satın alma, ilk<br>vatırım, bakım, onarım, işletme ve toplam vatırım maliyetleri |
| Çizelge 4.23. | Model 2 için oluşturulan sıvı hidrojen üretim sisteminin toplam<br>maliyetleri                                                           |
| Çizelge 4.24. | Model 2'yi oluşturan noktalardaki ekserji akımı, birim ekserji ve ekserji<br>maliyetleri                                                 |
| Çizelge 4.25. | Model 2'yi oluşturan komponentler için eksergoekonomik analiz<br>sonuçları                                                               |
|               |                                                                                                                                          |

# 1. GİRİŞ

Son yıllardaki hızlı nüfus artışı, sanayileşme, kentleşme ve gelişen küresel ticaret nedeniyle enerji talebi hızla artmakta, enerji üretimi ve tüketimi arasındaki fark her geçen gün büyümektedir. Bu duruma paralel olarak günümüzde artan enerji ihtiyacının yaklaşık %80'i fosil yakıtlardan sağlanmaktadır (Kumar ve ark. 2019). Ancak, dünya fosil yakıt rezervlerinin hızla tükeniyor olması ve fosil yakıt kaynaklı çevre sorunlarının ekolojiye verdiği ciddi zarar sürdürülebilir enerji kavramının önemini arttırmaktadır.

Sürdürülebilir enerji kavramı, birincil enerji kaynaklarından, çevreye dost teknolojiler kullanılarak yüksek verimle enerji elde edilmesini desteklemektedir. Bu kavramdan yola çıkarak sürdürülebilir enerji anlayışı, yakın gelecekte tükenecek olan veya günü geldiğinde önemini yitirecek olan enerji kaynakları yerine yenilenebilir enerji kaynaklarının kullanılmasını ve kullanım sonunda atık formda oluşan enerjiden daha sonraki süreçte girdi olarak yararlanılmasını içermektedir (Öztürk 2008).

Yenilenebilir enerji kaynağı "Doğanın kendi evrimi içinde bir sonraki gün aynen mevcut olabilen enerji kaynağı" veya "Enerji kaynağından alınan enerjiye eşit oranda veya kaynağın tükenme hızından daha çabuk bir şekilde kendini yenileyebilen enerji kaynağı" olarak tanımlanmaktadır (Dinçer ve ark. 2017, Zaim ve Çavşi 2018). Yenilenebilir enerji kaynaklarının kullanımı ile,

- Karbondioksit emisyonlarını azaltarak çevrenin korunmasına yardımcı olmak,
- Yerli kaynak olduğu için enerjide dışa olan bağımlılığı azaltmak,
- Yerli üretim ile birlikte istihdamı arttırmak,
- Enerji arz ve talep güvenliğini sağlamak,
- Sürdürülebilir bir ekonomik büyümeyi sağlamak amaçlanmaktadır.

Yenilenebilir enerji kaynakları başlıca güneş, rüzgar, jeotermal, hidrolik, biyokütle, dalga ve hidrojen enerjisi olarak sınıflandırılmaktadır. Yenilenebilir enerji kaynakları dünya elektrik üretiminde önemli bir yere sahip olmakla birlikte, toplam küresel elektrik üretiminin yaklaşık %23,7'si yenilenebilir enerji kaynaklarından sağlanmaktadır (Karagöl ve Kavaz 2017).

Dünyanın giderek artan enerji gereksinimini çevreyi kirletmeden ve sürdürülebilir olarak sağlayabilecek en ileri teknolojinin hidrojen enerjisi olduğu bugün bütün bilim adamlarınca kabul edilmektedir. Genellikle sudan elde edilen bu enerji yüksek verimlilik ile çevreye ve insana zarar vermeden yararlı enerjiye dönüştürülmektedir. Hidrojen enerjisi sürdürülebilirliği sayesinde dünyanın enerji sorununu çözmek için iyi bir alternatiftir.

Hidrojen bilinen yakıtlar içerisinde birim kütle başına en yüksek enerji içeriğine sahiptir. 140,9 MJ/kg üst ısıl değere ve 120,7 MJ/kg alt ısıl değere sahip olan hidrojenin bir kilogramı, 2,1 kg doğalgaz veya 2,8 kg petrolün sahip olduğu enerjiye sahiptir.

Bazı bilim çevrelerince hidrojen enerji kaynağından çok enerjisi taşıyıcısı olarak düşünülmektedir. Bununla birlikte, elektriğe 20. yüzyılın enerji taşıyıcısı, hidrojene ise 21. yüzyılın enerji taşıyıcısı diyen çevreler de bulunmaktadır. Hidrojen yerel olarak üretimi mümkün, kolayca ve güvenli olarak her yere taşınabilen, taşınması sırasında az enerji kaybı olan, ulaşım araçlarından ısınmaya, sanayiden mutfaklarımıza kadar her alanda yararlanacağımız bir enerji kaynağıdır. Hidrojen enerjisinin uygulama alanları Şekil 1.1'de verilmiştir.



Şekil 1.1. Hidrojen enerjisi uygulama alanları (Midilli ve ark. 2005)

Yapılan araştırmalar, mevcut şartlarda hidrojenin diğere yakıtlara oranla üç kat daha pahalı olduğunu ve hidrojenin yaygın bir enerji kaynağı olarak kullanımının hidrojen üretimindeki maliyet düşürücü teknolojik gelişmelere bağlı olacağını göstermektedir. Günlük veya mevsimlik dönemlerde oluşan ihtiyaç fazlası elektrik enerjisinin hidrojen enerjisine dönüştürülerek depolanması günümüz için önemli bir alternatif olmakla birlikte bu çalışmanın motivasyonunu oluşturmaktadır.

Güneş, jeotermal, rüzgar enerjisi gibi yenilenebilir enerji kaynaklarından elde edilen elektriğin sonradan kullanılmak üzere depolanması pratik ve ekonomik açıdan oldukça zor olmakta ve hidrojen kullanımı gündeme gelmektedir. Bu nedenle yenilenebilir enerji kaynaklarından elde edilip verimli bir şekilde kullanılamayan/depolanamayan elektriğin hidrojen üretiminde kullanılması ve üretilen hidrojenin depolanması muhtemel bir çözümdür.

Çeşitli yöntemler kullanılarak elde edilen hidrojen gazı tipik olarak yaklaşık -253°C sıcaklıkta sıvılaştırılarak depolanmaktadır. Sıvı hidrojen enerji sistemlerinin birincil enerji kaynağının elde edildiği her yerde kurulabilmesi, hidrojen sıvılaştırma teknolojisinin kurulu bir teknoloji olması ve karbon kullanılmamasından dolayı karbondioksit problemiyle karşılaşılmaması en önemli avantajlarındandır. Bununla birlikte sıvılaştırma esnasındaki enerji gereksinimi ve sıvı hidrojen için depolama maliyetlerinin yüksek olması sıvı hidrojen üretiminin düşündürücü yönleridir. Sıvılaştırma esnasındaki enerji gereksiniminin yenilenebilir enerji kaynaklarından sağlanması, sıvılaştırma prosesi için enerji ihtiyacının düşürülmesi ve bağlı olarak sıvılaştırma maliyetlerinin azaltılması sıvı hidrojen enerji sistemleri için önemli gereksinimler olmakla birlikte bu çalışmanın bir diğer önemli motivasyonunu oluşturmaktadır.

Bu çalışma kapsamında jeotermal enerji kaynağından yararlanılarak, sıvı hidrojen üretim sisteminin temel modülü olan Organik Rankine çevriminde (ORC) elektrik enerjisinin üretilmesi ve üretilen elektrik enerjisi diğer alt modüllerde (yüksek sıcaklıklı elektroliz ve hidrojen sıvılaştırma modüllerinde) kullanılarak sıvı hidrojen elde edilmesi amaçlanmaktadır.

Türkiye jeolojik ve coğrafik konumu nedeni ile aktif bir tektonik kuşak üzerinde bulunduğu için jeotermal açıdan dünya ülkeleri arasında zengin bir konuma sahiptir. Ancak sahip olduğumuz jeotermal kaynakların yalnızca %10'u elektrik enerjisi üretimi için uygundur. Türkiye'de elektrik enerjisi üretilen jeotermal sahalar ve kuyu sıcaklıkları Çizelge 1.1'de sunulmuştur. Çizelge 1.1'de verilen kuyu sıcaklıkları dikkate alınarak, bu çalışma kapsamında oluşturulan sıvı hidrojen üretim sisteminin enerji ihtiyacını karşılayacak jeotermal akışkan sıcaklığı 240°C olarak belirlenmiştir.

| Jeotermal Saha              | Sıcaklık (°C) | Jeotermal Saha           | Sıcaklık (°C) |
|-----------------------------|---------------|--------------------------|---------------|
| Manisa-Alaşehir-Köseali     | 287           | Kütahya-Simav            | 162           |
| Manisa-Alaşehir             | 265           | Aydın-Umurlu             | 155           |
| Manisa-Salihli-Caferbey     | 249           | İzmir-Seferihisar        | 153           |
| Denizli-Kızıldere           | 242           | Denizli-Bölmekaya        | 147           |
| Aydın-Germencik-Ömerbeyli   | 239           | Aydın-Hıdırbeyli         | 146           |
| Manisa-Alaşehir-Kurudere    | 214           | İzmir-Dikili-H. Çiftliği | 145           |
| Aydın-Yılmazköy             | 192           | Aydın-Sultanhisar        | 145           |
| Aydın-Pamukören             | 188           | Aydın-Bozyurt            | 143           |
| Manisa-Alaşehir-Kavaklıdere | 188           | Denizli-Karataç          | 137           |
| Manisa-Salihli-Göbekli      | 182           | İzmir-Balçova            | 136           |
| Kütahya-Şaphane             | 181           | İzmir-Dikili-Kaynarca    | 130           |
| Çanakkale-Tuzla             | 174           | Aydın-Nazilli-Güzelköy   | 127           |
| Aydın-Salavatlı             | 171           | Aydın-Atça               | 124           |
| Denizli-Tekkehamam          | 168           | Denizli-Sarayköy-Gerali  | 114           |

Çizelge 1.1. Türkiye'de elektrik enerjisi üretilen jeotermal sahalar ve kuyu sıcaklıkları (Kaya 2015)

#### 2. KAYNAK ARAŞTIRMASI

Bu bölümde, çalışma kapsamında modellenen jeotermal enerji kaynaklı sıvı hidrojen üretim sistemini oluşturan alt modüllerle ilgili literatürde yapılmış olan çalışmalar sunulmuştur. Öncelikle sistemin temelini oluşturan Organik Rankine çevrimiyle ilgili literatürdeki çalışmalara yer verilmiş ve bu çalışmalarda dikkate alınan sistem ve çalışma parametreleri özetlenmiştir. Daha sonra sırasıyla sistemi oluşturan yüksek sıcaklıklı elektroliz sistemi, absorbsiyonlu soğutma sistemi ve hidrojen sıvılaştırma sistemleri ile ilgili literatür çalışmaları derlenmiştir.

### 2.1 Organik Rankine Çevrimi ile İlgili Çalışmalar

Genellikle, orta ve yüksek sıcaklıklardaki jeotermal kaynaklardan elektrik üretmek amacıyla kullanılan ORC sistemleri literatürdeki birçok çalışmanın temelini oluşturmaktadır. Kaynakli ve ark. (2017) sabit çalışma şartları için yardımcı ısı eşanjörünün kullanılmadığı en temel ve basit yapıdaki bir ORC çevriminin termodinamik analizini gerçekleştirmiş ve soğutucu akışkan seçiminin sistemin performansı üzerindeki etkisini araştırmıştır. Bu çalışma kapsamında incelenen akışkanlar arasından R245fa'nın sabit çalışma şartlarında çevrim için en uygun akışkan olduğu belirlenmiştir.

Zare (2015), jeotermal enerji kaynaklı ORC çevriminin üç farklı konfigürasyonu için sistemin termodinamik ve ekonomik performansını karşılaştırmıştır. Çalışma kapsamında basit ORC, rejeneratörlü ORC ve ısı değiştiricili ORC modelleri incelenmiştir. Isı eşanjörlü ORC modeli termodinamik açıdan üstünken, basit ORC modelinin ise ekonomik açıdan daha uygun olduğu sonucuna ulaşılmıştır.

Canbolat ve ark. (2020), 145°C sıcaklığa sahip jeotermal kaynaktan yararlanılarak elektrik enerjisi üreten ısı geri kazanımlı ORC çevriminin birinci ve ikinci kanun analizlerini gerçekleştirmiştir. Farklı buharlaştırıcı basınçları için yapılan bu analizde çevrimin termodinamik performansı farklı soğutucu akışkanlar için karşılaştırılmıştır. Sabit çalışma şartlarında, buharlaştırıcı basıncı ve soğutucu akışkan dikkate alındığında çevrimin enerji ve ekserji verimleri sırasıyla maksimum %4,86 ve %19,78 artmıştır.

Yamankaradeniz ve ark. (2018), 140°C sıcaklığa sahip bir jeotermal kaynaktan yararlanarak elektrik enerjisi sağlayan ısı eşanjörlü ORC çevriminin enerji ve ekserji analizlerini gerçekleştirmiştir. Soğutucu akışkan olarak R600'ün kullanıldığı bu çalışmada, eşanjör etkenliği ve buharlaştırıcı sıcaklığı dikkate alınarak, çevrimin enerji ve ekserji verimleri sırasıyla %6,87 ve %6,21 oranında iyileştirilmiştir.

Bademlioglu ve ark. (2019a), 125°C sıcaklığa sahip jeotermal kaynaktan yararlanılarak elektrik enerjisi üreten basit ORC çevriminin ekserji analizini gerçekleştirmiştir. Buharlaştırıcıdaki soğutucu akışkan ile jeotermal akışkan arasındaki minimum sıcaklık farkına (pinch point) bağlı olarak yapılan analizlerde çevrim komponentlerinin ekserji performansı incelenmiş ve sistemin ekserji verimindeki değişim hesaplanmıştır. Çalışma kapsamında buharlaştırıcıdaki pinch point sıcaklık farkının ( $\Delta T_{buh}$ ) artmasıyla, R152a için sistemin ekserji verimindeki kaybın maksimum ve yaklaşık %11,7 olduğu, R123 için ise sistemin ekserji verimindeki kaybın minimum ve yaklaşık %9,03 olduğu belirlenmiştir.

Yari (2010) yüksek sıcaklıklı jeotermal kaynağı kullanan farklı yapıdaki çevrimlere sahip ORC sistemlerini incelemiştir. Bu kapsamda incelenen her çevrimin termodinamik modeli oluşturulmuş ve çevrimlerin birinci ve ikinci kanun analizleri gerçekleştirilmiştir. ORC konfigürasyonlarına bağlı olarak çevrimin maksimum birinci ve ikinci kanun verimi R123 için elde edilmiş olup sırasıyla %7,65 ve %38,76 olarak hesaplanmıştır.

Mokhtari ve ark. (2016), eş eksenli ısı eşanjörü kullanılan bir ORC çevriminin farklı soğutucu akışkanlar için termodinamik performansını incelemiştir. Bu kapsamda sistemin birinci ve ikinci kanun analizleri ve maliyet değerlendirmesi yapılarak optimum tasarım şartları belirlenmiştir. Soğutucu akışkan olarak R123 kullanılmasıyla, diğer akışkanlara göre çevrimden daha yüksek ısıl ve ekserji verimi elde edilmiş ve güç üretimi artmıştır.

Zare (2016), ısı kaynağı olarak jeotermal enerjiden yararlanılan, ORC ve Kalina çevrimi temelli iki farklı trijenerasyon sisteminin ikinci yasaya dayalı termodinamik analizlerini gerçekleştirmiştir. Yapılan bu çalışmada Kalina çevrimi temelli trijenerasyon sisteminin ekserji verimi yaklaşık %50 olarak hesaplanırken, ORC temelli sistemin ekserji verimi ise yaklaşık %46 olarak belirlenmiştir.

Kazemi ve Samadi (2016), ORC çevriminin üç farklı modeli (temel ORC, rejeneratörlü ORC ve iki kademeli buharlaştırıcı kullanılan ORC çevrimleri) için enerji ve ekserji analizlerini gerçekleştirmiştir. Çalışma kapsamında, buharlaştırıcı ve rejeneratör sıcaklıklarının, buharlaştırıcıdaki pinch point sıcaklık farkının ( $\Delta T_{buh}$ ) ve ara kızdırma sıcaklığının sistem üzerindeki etkisi araştırılmış ve optimum çalışma şartları belirlenmiştir. İki kademeli buharlaştırıcı kullanılan ORC çevriminin enerji ve ekserji performansının diğer modellere oranla daha yüksek olduğu sonucuna ulaşılmıştır.

Kaynak sıcaklığı olarak bir güneş kollektöründen geçen akışkanın ısısından yararlanan güneş enerjisi destekli ORC sistemleri günümüzde yaygın olarak kullanılmaktadır. Tchanche ve ark. (2009), düşük sıcaklıkta çalışan solar ORC çevriminin birinci ve ikinci kanun analizlerini gerçekleştirmiş ve sistemin termodinamik performansını dikkate alarak sistem için en uygun akışkanı belirlemiştir. Bu çalışmada incelenen 20 soğutucu akışkan içerisinden R134a'nın küçük ölçekli güneş enerjisi uygulamaları için uygun olduğu sonucuna ulaşılmıştır.

Scardigno ve ark. (2015), düşük enerjili ısı kaynağı tarafından desteklenen solar ORC çevriminin tasarım parametrelerinin çok amaçlı optimizasyonunu gerçekleştirmiştir. Bu çalışmada, sistemin birinci ve ikinci yasa analizleri dikkate alınarak sistemin termodinamik performansını maksimum, enerji maliyetini ise minimum yapan parametrelerin belirlenmesi amaçlanmıştır. Soğutucu akışkan olarak R32'nin kullanılması durumunda sistemin birinci kanun veriminin daha yüksek, sistemin ikinci kanun veriminin ve maliyet açısından performansının daha düşük olduğu belirlenmiştir.

Bu ve ark. (2013), güneş enerjisi destekli ORC çevrimi ile buhar sıkıştırma çevriminin entegre edilmesiyle oluşan buz yapıcısı için termodinamik bir model geliştirmişlerdir. Ayrıca farklı soğutucu akışkanlar için kollektör ve yoğuşturucu sıcaklıklarının sistem performansı üzerindeki etkisini incelemişlerdir.

Son yıllarda, enerji tasarrufunu sağlamak ve enerji dönüşümünü arttırmak amacıyla endüstriyel alanlarda ORC sistemleri kullanılarak atık ısıdan elektrik üretilmektedir. Quoilin ve ark. (2011), atık ısı geri kazanımlı ve düşük kapasiteli ORC çevriminin termodinamik ve termoekonomik optimizasyonunu gerçekleştirmiştir. Çalışma kapsamında, farklı soğutucu akışkanlar ve ekipman boyutları için çevrim performansı değerlendirilmiş ve n-bütan kullanılması durumunda optimum çalışma şartlarında sistemin verimi %5,22 olarak hesaplanmıştır. Ayrıca termoekonomik optimizasyon sonucu aynı akışkan için 2136 €/kW özgül maliyet, 4,2 kW net çıkış gücü elde edilmiştir.

Aneke ve ark. (2012), ORC çevriminin entegre edildiği buhar sıkıştırmalı soğutma sistemi ile atık ısı ile çalışan amonyak-su eriyikli absorbsiyonlu soğutma sistemlerinin termodinamik modellemeleri yapılmış ve sistemlerin performansları karşılaştırılmıştır. Bu çalışmada bir cips üretim tesisinde elde edilen atık ısının enerjisinden yararlanılmış ve ORC destekli buhar sıkıştırmalı soğutma çevriminin absorbsiyonlu soğutma çevrimine göre daha yüksek bir termodinamik performansa sahip olduğu belirlenmiştir.

Bademlioglu ve ark. (2019b), farklı soğutucu akışkanlar için ısı geri kazanımlı eşanjör kullanılan örnek bir ORC çevriminin performans analizini gerçekleştirmiştir. Bu çalışmada, 80°C ile 109°C sıcaklıkları arasında değişen atık ısı kaynak sıcaklığının ve eşanjör etkenliğinin sistem performansına etkisini araştırılmış ve farklı soğutucu akışkanlar için elde edilen performans karşılaştırılmıştır. Ayrıca sistemin performansını etkileyen parametrelerin etki oranları ve önem sırası Taguchi metodu kullanılarak değerlendirilmiştir. Sonuç olarak, yaklaşık %59,8 etki oranına sahip atık ısı kaynak sıcaklığının sistem performansı üzerindeki en etkili parametre olduğu belirlenmiştir.

Zare ve Mahmoudi (2015), gaz türbini ile entegre çalışan modüler helyum reaktöründen çıkan atık ısının geri kazanımı için kullanılan ORC ve Kalina çevrimlerinin termodinamik analizlerini gerçekleştirmiştir. Çalışma kapsamında iki kombine çevrimin birinci ve ikinci kanun analizleri yapılarak optimum çalışma şartları araştırılmıştır. ORC çevriminin kullanıldığı atık ısı kazanım sisteminin performansının daha yüksek olduğu belirlenmiştir.

Roy ve ark. (2010), ORC çevrimine dayalı atık ısı geri kazanım sisteminin termodinamik performansını incelemiştir. Bu kapsamda, farklı soğutucu akışkan ve diğer çalışma parametreleri için sistemin birinci ve ikinci kanun analizleri gerçekleştirilmiştir. Soğutucu akışkan olarak R123 kullanılması durumunda sistemin performansının maksimum olduğu belirlenmiş, sistemin birinci kanun verimi %25,3 ve ikinci kanun verimi ise %64,4 olarak hesaplanmıştır.

Bademlioglu ve ark. (2018), atık ısı kaynaklı ORC çevrimini modelleyerek sistemi etkileyen dokuz önemli parametrenin sistemin ısıl verimliliği üzerindeki etkisini araştırmıştır. Bu kapsamda parametrelerin etki oranı ve önem sırası Taguchi ve ANOVA istatiksel analiz yöntemleri kullanılarak belirlenmiş ve sistemin en iyi ve en kötü çalışma şartları tespit edilmiştir. Çalışmada, buharlaştırıcı ve yoğuşturucu sıcaklığı ile türbin veriminin ORC çevriminin ısıl verimliliği üzerindeki toplam etkisinin yaklaşık %70 olduğu sonucuna ulaşılmıştır. Bununla birlikte, sistemin ısıl verimliliği en iyi ve en kötü çalışma koşulları için sırasıyla %18,1 ve %9,6 olarak elde edilmiştir.

ORC sistemleri maksimum enerji kazanımı/dönüşümü için mevcut sistemlere entegre edilerek birçok deneysel ve uygulamalı çalışmalarda kullanılmaktadır. Kordlar ve Mahmoudi (2017), soğutucu akışkan olarak amonyak kullanılan ORC çevrimi ile amonyak-su eriyikli absorbsiyonlu soğutma çevriminden oluşan jeotermal enerji kaynaklı kombine güç çevriminin termodinamik ve eksergoekonomik analizlerini gerçekleştirmiş ve optimum çalışma parametreleri araştırmıştır. Yapılan bu çalışmada, minimum ürün maliyetini sağlayan optimum parametrelerin maksimum güç üretimini ve soğutma kapasitesini sağlamadığı sonucuna ulaşılmıştır.

He ve ark. (2017), ORC destekli mekanik buhar sıkıştırmalı desalinasyon (tuz giderme) sisteminin termodinamik performansını incelemiştir. ORC çevriminde kullanılan farklı soğutucu akışkanlar için sistemin birinci ve ikinci kanun analizleri gerçekleştirilmiş, optimum çalışma şartları araştırılmıştır. Tuzdan arındırılmış su üretimi ve enerji dönüşüm verimliliği açısından daha yüksek bir kaynatıcı sıcaklığının ve daha düşük bir çevre sıcaklığının daha faydalı olduğu belirlenmiştir.

Son yıllarda yapılan çalışmalarda, soğutucu akışkan olarak saf akışkanlar yerine zeotropik karışımlar da tercih edilmektedir. Heberle ve Brüggemann (2015), 100°C ile 180°C arasında değişen sıcaklığa sahip jeotermal enerji kaynaklı ORC çevriminin termoekonomik analizini gerçekleştirmişlerdir. Bu çalışma kapsamında soğutucu akışkan

olarak 13 farklı zeotropik karışım kullanılmış ve zeotropik akışkanların saf akışkanlara oranla sistemin ikinci kanun verimini yaklaşık %20,6 iyileştirdiği belirlenmiştir. Ayrıca propan/R600a, R600a/R601a ve R227ea/R245fa zeotropik karışımlarının en verimli saf akışkana kıyasla daha düşük elektrik üretim maliyeti sağladığı sonucuna ulaşılmıştır.

Deethayat ve ark. (2015), soğutucu akışkan olarak R245fa/R152a zeotropik karışımının kullanıldığı ısı geri kazanımlı 50kW kapasiteli bir ORC çevriminin termodinamik performansını incelemiştir. Bu çalışma kapsamında daha yüksek buharlaştırıcı sıcaklığı ve eşanjör etkenliğinin sistemin termodinamik performansını iyileştirdiği sonucuna ulaşılmış ve soğutucu akışkan karışımının yaklaşık %80 R245fa kütle fraksiyonuna sahip olmasının sistemin performansı açısından daha uygun olduğu belirlenmiştir.

Günümüzde ORC çevrimlerinin termodinamik performansını arttırmak amacıyla birçok parametrik analiz ve optimizasyon çalışmaları yapılmaktadır. Moloney ve ark. (2017), farklı türbin giriş sıcaklık ve basınç değerleri için süperkritik ORC çevriminin termodinamik performansını araştırmıştır. Bu çalışma kapsamında, çevrimin birinci ve ikinci kanun analizleri farklı soğutucu akışkanlar için gerçekleştirilmiş ve çevrimin enerji/ekserji verimliliğinin ve üretilen net işin optimizasyonu yapılmıştır.

Bademlioglu ve ark. (2020), atık ısıdan yararlanılarak elektrik üretimi için kullanılan ısı geri kazanımlı ORC çevriminin termodinamik performansı farklı çalışma parametreleri için incelemiştir. Çalışma parametrelerinin sistemin birinci ve ikinci kanun verimliliği üzerinde etki oranı ve önem sırası Taguchi ve ANOVA yöntemleri kullanılarak belirlenmiştir. Ayrıca, sistemin birinci ve ikinci kanun verimliliğinin eş zamanlı olarak değerlendirilmesini sağlayan Gri İlişkiler Analiz yöntemi kullanılmış ve parametrik bir optimizasyon gerçekleştirilmiştir. Gri İlişkiler Analiz yöntemi kullanılarak sistemin birinci ve ikinci kanun verimleri sırasıyla %18,1 ve %65,52 olarak elde edilmiştir.

ORC ile ilgili olarak bu bölümde verilen literatür çalışmalarında dikkate alınan sistem ve çalışma parametreleri Çizelge 2.1'de özetlenmiştir. Bu tez çalışması kapsamında sistemin temel modülünü oluşturan ORC sisteminin modellenmesinde Çizelge 2.1'de verilen parametre ve değer aralıkları göz önünde bulundurulmuştur.

|                               | An               | aliz            | Parametreler                       |                  |                          |               |                  |                  |                 |                  |                  |
|-------------------------------|------------------|-----------------|------------------------------------|------------------|--------------------------|---------------|------------------|------------------|-----------------|------------------|------------------|
| Çalışmalar                    | Birinci<br>Kanun | İkinci<br>Kanun | Soğutucu Akışkan                   | T <sub>buh</sub> | T <sub>yoğ</sub><br>(°C) | $T_{k_{1Zd}}$ | $\Delta T_{buh}$ | $\Delta T_{yoğ}$ | <i>E</i><br>(%) | $\eta_{T,s}$ (%) | $\eta_{P,s}$ (%) |
| Kaynakli ve ark. (2017)       | √                | Ttullull        | R134a, R236fa, R245fa, R600a       | 80-130           | 30                       | 5             |                  |                  |                 | 75               | 80               |
| Zare (2015)                   | ✓                | ✓               | R152a, R245fa, n-pentan            | 70-145           | 25-40                    | 0-40          | 3-10             |                  | 60-85           | 85               | 90               |
| Canbolat ve ark. (2020)       | ✓                | ✓               | R142b, R227ea, R245fa, R600, R600a | 53-122           | 25                       | 5             | 10               |                  | 70              | 85               | 80               |
| Yamankaradeniz ve ark. (2018) | √                | ✓               | R600a                              | 60-120           | 30                       | 5             | 10               | 3                | 20-80           | 85               | 80               |
| Bademlioglu ve ark. (2019a)   |                  | ✓               | R123, R152a, R245fa, R600a         | 100              | 30                       | 8             | 5-20             |                  |                 | 85               | 80               |
| Yari (2010)                   | ✓                | ✓               | R113, R123, n-pentan               | 120              | 40                       | 0             | 10               |                  | 80              | 80               | 90               |
| Mokhtari ve ark. (2016)       | $\checkmark$     | ✓               | R123, R134a, R245fa, R22           | 70-120           | 20-40                    | 0             |                  |                  | 70              | 85               | 79               |
| Zare (2016)                   |                  | ✓               | izobütan, n-pentan, R245fa, R152a  | 75-105           | 35                       | 0             | 10               |                  |                 | 85               | 85               |
| Kazemi ve Samadi (2016)       | $\checkmark$     | ✓               | R123, izobütan                     | 62-212           | 35                       | 0-20          | 5-20             | 5                |                 | 76               | 80               |
| Tchanche ve ark. (2009)       | $\checkmark$     | ✓               | 20 farklı soğutucu akışkan         | 60-100           | 35                       | 0             | 6                |                  |                 | 70               | 80               |
| Scardigno ve ark. (2015)      | ✓                | ✓               | siklopropan, R143, R32             | 75-135           | (-20)-60                 | 0             | 3-15             | 3-15             |                 | 80               | 75               |
| Bu ve ark. (2013)             | $\checkmark$     |                 | R123, R245fa, R600, R600a          | 60-160           | 35-45                    | 0             |                  |                  |                 | 85               | 90               |
| Quoilin ve ark. (2011)        | ✓                |                 | 8 farklı soğutucu akışkan          | 70-150           | 30-50                    | 5             | 10               | 10               |                 | 70               | 60               |
| Aneke ve ark. (2012)          |                  | ✓               | R245fa                             | 126,24           | 35,85                    | 0             | 2                | 2                |                 | 90               | 100              |
| Bademlioglu ve ark. (2019b)   | $\checkmark$     |                 | 6 farklı soğutucu akışkan          | 72-101           | 30                       | 5             |                  |                  | 40-90           | 85               | 80               |
| Zare ve Mahmoudi (2015)       | $\checkmark$     | ✓               | n-pentan                           | 100-190          | 35                       | 0             | 5-15             | 5-15             |                 | 85               | 85               |
| Roy ve ark. (2010)            | $\checkmark$     | ✓               | R12, R123, R134a                   | 75-115           | 27-27,82                 | 0             |                  |                  |                 | 100              | 100              |
| Bademlioglu ve ark. (2018)    | $\checkmark$     |                 | R123, R245fa, R600                 | 100-130          | 30-40                    | 0-10          | 0-15             | 0-10             | 0-75            | 75-85            | 75-90            |
| Kordlar ve Mahmoudi (2017)    | $\checkmark$     | ✓               | amonyak (R717)                     | 85-125           | 33-46                    | 0             | 5                | 5                |                 | 80               | 80               |
| He ve ark. (2017)             | $\checkmark$     | ✓               | R123, R134a, R245fa, R600a, R717   | 80               | 25                       | 0             | 10               | 10               |                 | 80               | 75               |
| Heberle ve Brüggemann (2015)  |                  | $\checkmark$    | 13 farklı zeotropik karışım        | 80               | 25                       | 0             | 5                | 5                | 100             | 80               | 75               |
| Deethayat ve ark. (2015)      | $\checkmark$     | $\checkmark$    | R245fa/R152a                       | 70-100           | 27                       | 0             | 6                | 3                | 60-80           | 85               | 80               |
| Moloney ve ark. (2017)        | $\checkmark$     | $\checkmark$    | 9 farklı soğutucu akışkan          | 170-240          | 25                       | 0             | 10               | 3                | 80              | 85               | 85               |
| Bademlioglu ve ark. (2020)    | $\checkmark$     | $\checkmark$    | R123, R245fa, R600                 | 100-130          | 30-40                    | 0-10          | 0-15             | 0-10             | 0-75            | 75-85            | 75-90            |
| Wang ve ark. (2017)           | $\checkmark$     | $\checkmark$    | HFE7000, HFE7100, HFE7500          | 66-112           | 28                       | 0             | 5                | 5                |                 | 80               | 80               |

# Çizelge 2.1. ORC sistemleriyle ilgili literatürde yapılan çalışmalar ve parametreleri

# 2.2 Yüksek Sıcaklıklı Elektroliz Sistemi ile İlgili Çalışmalar

Yüksek sıcaklıklı elektroliz sistemi hidrojen üretimi amacıyla yaygın olarak kullanılan önemli bir yöntemdir. Bununla birlikte literatürde yüksek sıcaklıklı elektroliz sisteminin termodinamik analizleri üzerine yapılan çalışmalar sınırlıdır.

Mingyi ve ark. (2008) yüksek sıcaklıklı elektroliz sisteminin termodinamik modelini oluşturmuştur. Bu çalışma kapsamında sistemin elektrik ve termal veriminin sistemin genel verimliliği üzerindeki etkisi incelenmiştir. Farklı çalışma parametreleri dikkate alınarak, 1000°C elektroliz sıcaklığında sistemin genel verimliliğinin %33 ile %59 arasında değiştiği belirlenmiş ve klasik elektroliz sistemlerine kıyasla yüksek sıcaklıklı elektroliz sisteminin yaklaşık iki kat daha verimli olduğu sonucuna ulaşılmıştır.

Sigurvinsson ve ark. (2006) jeotermal enerji kaynaklı yüksek sıcaklıklı elektroliz sisteminin modellemesini gerçekleştirmiştir. Bu çalışmada, elektroliz sistemi çıkış sıcaklığının enerji maliyeti üzerindeki etkisi araştırılmış ve sistemde kullanılan ısı eşanjörleri ile ilgili parametreler incelenmiştir. Sigurvinsson ve ark. (2007) önceki çalışmalarına benzer olarak jeotermal enerjinin yüksek sıcaklıklı elektroliz sistemindeki kullanılabilirliğini araştırmış ve sistemin optimum çalışma şartlarını belirlemeye yönelik tekno-ekonomik bir optimizasyon modeli oluşturmuştur.

Fujiwara ve ark. (2008) yüksek sıcaklıklı gaz soğutmalı reaktörler ile kombine çalışan yüksek sıcaklıklı elektroliz sisteminin performansını incelemiştir. Yapılan analizlerde, 800°C elektroliz sıcaklığına sahip sistemin hidrojen üretim verimliliği yaklaşık %54 olarak hesaplanmıştır.

Balta ve ark. (2009) jeotermal enerji destekli yüksek sıcaklıklı elektroliz sisteminin termodinamik performansını değerlendirmiştir. Bu çalışma kapsamında, yüksek sıcaklıklı elektroliz sisteminin birinci ve ikinci kanun analizleri gerçekleştirilmiştir. Sistemin enerji ve ekserji verimleri sırasıyla %87 ve %86 olarak hesaplanmıştır. Ayrıca sistemde ekserji yıkımının maksimum olduğu komponent hidrojen hattındaki yüksek sıcaklık eşanjörü olarak tespit edilmiştir.

Mansilla ve ark. (2007) jeotermal enerji kaynağından yararlanan yüksek sıcaklıklı elektroliz sisteminin optimizasyonunu gerçekleştirmiştir. Bu çalışma kapsamında, jeotermal kaynaklardan sağlanan termal enerjinin diğer kaynaklara göre daha düşük maliyetli olduğu belirlenmiştir. Ayrıca jeotermal enerji kaynakları ile desteklenen yüksek sıcaklıklı elektroliz sistemlerinin alkali tip elektroliz sistemlerine göre daha yüksek verime sahip olduğu belirlenmiştir.

Yadav ve Banerjee (2018) güneş enerjisi destekli yüksek sıcaklıklı elektroliz sistemini modellemiş ve farklı çalışma parametreleri için sistemin termodinamik ve ekonomik analizlerini gerçekleştirmiştir. Yapılan analizlerde, çalışma parametrelerine bağlı olarak sistemin enerji verimi %9,1 ile %12,1 arasında değiştiği belirlenmiştir. Bununla birlikte elde edilen hidrojen maliyetlerinin ise 12,1\$/kg ile 16\$/kg arasında değiştiği sonucuna ulaşılmıştır.

Kanoglu ve ark. (2011) jeotermal enerji destekli yüksek sıcaklıklı elektroliz sisteminin eksergoekonomik analizlerini gerçekleştirmiştir. Yapılan analizlerde üç farklı çevre sıcaklığı için enerji ve ekserji performansları incelenmiş, hidrojen üretim maliyetinin değerlendirmesi yapılmıştır. Çalışma kapsamında bir kg hidrojen üretimi için 133kWh enerji tüketildiği ve bu değerin yaklaşık 1,6 €/kg H<sub>2</sub> hidrojen maliyetine karşılık geldiği belirlenmiştir. Ayrıca 25°C, 11°C ve -1°C çevre sıcaklıkları için su buharının ekserji maliyeti sırasıyla 0,000509, 0,000544, ve 0,000574 €/kWh olarak hesaplanmıştır.

Balta ve ark. (2016) güneş enerjisi destekli yüksek sıcaklıklı elektroliz sisteminin termodinamik performansını değerlendirmiştir. Bu çalışma kapsamında sistemin birinci ve ikinci kanun analizleri gerçekleştirilmiştir. Sistemin enerji üretim bölümünün enerji ve ekserji verimleri sırasıyla %24,79 ve %22,36, hidrojen üretim bölümünün ise enerji ve ekserji verimi sırasıyla %87 ve %86 olarak hesaplanmıştır. Ayrıca yapılan analizler sonucunda sistemde üretilen hidrojen miktarının 0,057 kg/s olduğu belirlenmiştir.

#### 2.3 Absorbsiyonlu Soğutma Sistemi ile İlgili Çalışmalar

Genellikle proseslerdeki atık ısıyı kullanabilmesi, jeotermal ve güneş enerjisi gibi yenilenebilir enerji kaynakları ile desteklenebilmesi ve çevre dostu olması absorbsiyonlu soğutma sistemlerine olan ilgiyi her geçen gün arttırmaktadır.

Kaynakli ve Yamankaradeniz (2003) absorbsiyonlu soğutma sistemlerinde ısı geri kazanımı amacıyla kullanılan ısı eşanjörleri ve çalışma sıcaklıklarının sistemin performansına olan etkisini incelemiştir. Yapılan çalışmada sistemin performansına en fazla etkisi olan eşanjörün eriyik eşanjörü olduğu belirlenmiştir. Ayrıca sistemin performansının kaynatıcı ve buharlaştırıcı sıcaklıkları ile artarken, absorber ve yoğuşturucu sıcaklıkları ile azaldığı sonucuna ulaşılmıştır.

Novella ve ark. (2017) içten yanmalı motordaki emme havasını soğutmak amacıyla kullanılan absorbsiyonlu soğutma sisteminin termodinamik analizini gerçekleştirmiştir. Bu çalışma kapsamında sistemin performansını etkileyen farklı çalışma parametreleri incelenmiş ve sistemin STK değeri üzerindeki etkileri araştırılmıştır. Yapılan analizler sonucunda çalışma parametreleri dikkate alınarak sistemin performansında yaklaşık %4'e kadar bir iyileşme sağlanmıştır.

Ouadha ve El-Gotni (2013) bir dizel motordan çıkan atık ısı ile desteklenen, NH<sub>3</sub>-H<sub>2</sub>O eriyikli absorbsiyonlu soğutma sistemini modellemiş ve sistemin termodinamik analizini gerçekleştirmiştir. Çalışma kapsamında, yüksek kaynatıcı ve buharlaştırıcı sıcaklıkları ile düşük absorber ve yoğuşturucu sıcaklıklarında sistemin termodinamik performansının daha yüksek olduğu belirlenmiştir.

Abed ve ark. (2015) ejektörlü absorbsiyonlu soğutma sistemini modellemiş ve ısı geri kazanımının optimizasyonu üzerine çalışmıştır. Çalışma kapsamında, modellenen sistem ile klasik absorbsiyonlu soğutma sisteminin performansı karşılaştırılmıştır. Yapılan analizler sonucunda, modellenen sistemin klasik sisteme göre sistemin performansını yaklaşık %12,2 iyileştirdiği belirlenmiştir. Ayrıca modellenen sisteme soğutucu akışkan eşanjörü eklenerek sistemin soğutma kapasitesinin %4,85 oranında arttığı görülmüştür.

Saleh ve Mosa (2014) düz plakalı güneş kollektörü ile desteklenen LiBr-H<sub>2</sub>O eriyikli tek kademeli absorbsiyonlu soğutma sistemini modellemiş ve sistemin çalışma parametrelerinin optimizasyonunu gerçekleştirmiştir. Çalışma parametrelerine bağlı olarak, sistemin STK değerinin %32 ile %80 arasında değiştiği sonucuna ulaşılmıştır.

Tuğcu ve ark. (2016) jeotermal enerji destekli ve NH<sub>3</sub>-H<sub>2</sub>O eriyikli tek kademeli absorbsiyonlu soğutma sisteminin termodinamik performansını incelemiştir. Bu çalışma kapsamında farklı eriyik konsantrasyonları ve tasarım parametreleri için sistemin optimizasyonu gerçekleştirilmiş ve ekonomik maliyeti değerlendirilmiştir. Optimum çalışma şartlarında sistemin STK değeri ve ekserji verimi sırasıyla %57,22 ve %62,01 olarak hesaplanmıştır. Yapılan analizler sonucunda çalışma parametrelerine bağlı olarak sistemin maliyetinin 3 912 758 TL ile 59 803 554 TL arasında değiştiği belirlenmiştir.

Kaynakli ve Kilic (2007) LiBr-H<sub>2</sub>O eriyikli tek kademeli absorbsiyonlu soğutma sisteminin ayrıntılı termodinamik analizlerini gerçekleştirmiştir. Bu çalışmada, çalışma sıcaklıklarının ve eşanjör etkenliklerinin sistem performansı üzerindeki etkisi araştırılmıştır. Farklı çalışma şartları dikkate alınarak, eriyik eşanjörünün sistemin STK değerini maksimum %44'e kadar iyileştirebildiği, bununla birlikte soğutucu akışkan eşanjörünün ise STK değeri üzerinde sadece %2,8'lik bir etkisi olduğu belirlenmiştir.

Karamangil ve ark. (2010) absorbsiyonlu soğutma sistemleri üzerine detaylı bir literatür taraması sunmuş ve farklı çalışma parametrelerinin sistemin termodinamik performansı üzerindeki etkisini araştırmıştır. Absorbsiyonlu soğutma sisteminde kullanılan eriyik eşanjörünün, sistemin performansı üzerindeki etkisinin diğer eşanjörlere kıyasla daha fazla olduğu ve farklı çalışma parametrelerine bağlı olarak sistemin STK değerini yaklaşık %66 oranında iyileştirdiği tespit edilmiştir.

Joybari ve Haghighat (2016) LiBr-H<sub>2</sub>O eriyikli tek kademeli absorbsiyonlu soğutma sisteminin termodinamik performansını araştırmıştır. Bu kapsamda farklı çalışma parametreleri için sistemin ikinci kanun analizleri gerçekleştirilmiştir. Yapılan analizler sonucunda, sistemdeki toplam ekserji yıkımının yaklaşık %62'sinin absorber ve yoğuşturucu kaynaklı olduğu belirlenmiştir.

Canbolat ve ark. (2019) absorbsiyonlu soğutma sisteminin termodinamik performansını farklı çalışma paramereleri için incelemiştir. Çalışma parametrelerinin sistemin STK ve eSTK değerleri üzerindeki etki oranı ve önem sırası Taguchi ve ANOVA yöntemleri kullanılarak belirlenmiştir. Ayrıca çalışmada, STK ve eSTK değerlerinin eş zamanlı olarak değerlendirilmesini sağlayan Gri İlişkiler Analiz yöntemi kullanılmış ve parametrik bir optimizasyon gerçekleştirilmiştir. Gri İlişkiler Analiz yöntemi ile optimum çalışma şartlarında sistemin STK ve eSTK değerleri %62,6 ve %28,3 olarak hesaplanmıştır.

Modi ve ark. (2017) LiBr-H<sub>2</sub>O eriyikli tek kademeli absorbsiyonlu soğutma sisteminin birinci ve ikinci kanun analizlerini gerçekleştirmiştir. Bu kapsamda, absorbsiyonlu soğutma sisteminin enerji ve ekserji hesaplamaları için sayısal bir program geliştirilmiştir. Yapılan analizler sonucunda, optimum çalışma şartları altında sistemin STK değeri ve ekserji verimi sırasıyla yaklaşık %74 ve %25 olarak hesaplanmıştır.

Kumar ve ark. (2017) NH<sub>3</sub>-H<sub>2</sub>O eriyikli tek kademeli absorbsiyonlu soğutma sisteminin termodinamik performansını incelemiştir. Bu çalışmada farklı buharlaştırıcı ve yoğuşturucu sıcaklıkları için sistemin birinci ve ikinci kanun analizleri gerçekleştirilmiştir. Ayrıca, maksimum STK değeri ve minimum ekserji kaybını sağlayan optimum kaynatıcı sıcaklığı belirlenmiştir. Ekserji yaklaşımına karşılık gelen optimum kaynatıcı sıcaklığının enerji yaklaşımına kıyasla 11°C daha düşük olduğu bulunmuştur.

Yıldırım ve Yeşilata (2012) düşük sıcaklıkta ısı kaynağına ihtiyaç duyan absorbsiyonlu soğutma sisteminin termoekonomik optimizasyonu gerçekleştirmiş ve komponentlerin ısı transfer alanlarını hesaplamıştır. Yapılan analizlerde, optimum şartlar altında sistemin toplam tersinmezliğinin ilk duruma kıyasla %72,5 oranında azaldığı belirlenmiş ve sistem için gerekli ek yatırım maliyetinin geri ödeme süresi ise 4,2 yıl olarak hesaplanmıştır.

Absorbsiyonlu soğutma sistemi ile ilgili olarak bu bölümde verilen literatür çalışmalarında dikkate alınan sistem ve çalışma parametreleri Çizelge 2.2'de özetlenmiştir. Bu tez çalışması kapsamında sistemin önemli bir alt modülünü oluşturan absorbsiyonlu soğutma sisteminin modellenmesinde Çizelge 2.2'de verilen parametre ve değer aralıkları dikkate alınmıştır.

| Calismalar                        | Parametreler                                                                                      |                |                  |                |                       |                               |                                      |                  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------|----------------|------------------|----------------|-----------------------|-------------------------------|--------------------------------------|------------------|--|
|                                   | Eriyik Çifti                                                                                      | $T_{kay}$ (°C) | $T_{yoğ}(^{o}C)$ | $T_{buh}$ (°C) | T <sub>abs</sub> (°C) | $\varepsilon_{e \$ j, e}$ (%) | $\varepsilon_{e \lessgtr j, sa}$ (%) | $\eta_{P,s}$ (%) |  |
| Kaynakli ve Yamankaradeniz (2003) | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 75-120         | 20-50            | (-1,25)-20     | 20-50                 | 0-60                          | 0-60                                 | 100              |  |
| Novella ve ark. (2017)            | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 165            | 48               | -10            | 41                    | 70                            | 70                                   | 80               |  |
| Ouadha ve El-Gotni (2013)         | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 60-120         | 20-45            | (-10)-10       | 20-45                 | 70-100                        |                                      | 100              |  |
| Abed ve ark. (2015)               | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 60-10          | 20-50            | (-15)-15       | 20-50                 | 50                            | 60                                   | 100              |  |
| Saleh ve Mosa (2014)              | LiBr- H <sub>2</sub> O                                                                            | 70-95          | 25-45            | 4-10           | 25-45                 | 80                            |                                      | 100              |  |
| Tuğcu ve ark. (2016)              | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 70             | 30               | -4             | 30                    | 95                            |                                      | 100              |  |
| Kaynakli ve Kilic (2007)          | LiBr- H <sub>2</sub> O                                                                            | 65-104         | 30-48            | 4-10           | 30-48                 | 0-100                         | 0-100                                | 100              |  |
| Karamangil ve ark. (2010)         | NH <sub>3</sub> -H <sub>2</sub> O<br>LiBr- H <sub>2</sub> O<br>NH <sub>3</sub> -LiNO <sub>3</sub> | 75-105         | 30-50            | 5-15           | 30-50                 | 0-100                         | 0-100                                | 90               |  |
| Ketfi ve ark. (2015)              | LiBr- H <sub>2</sub> O                                                                            | 90             | 40               | 7              | 40                    | 70                            |                                      | 100              |  |
| Joybari ve Haghighat (2016)       | LiBr- H <sub>2</sub> O                                                                            | 80             | 40               | 7              | 40                    | 100                           |                                      | 100              |  |
| Canbolat ve ark. (2019)           | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 90-130         | 28-38            | (-5)-10        | 28-38                 | 60-90                         | 60-90                                | 60-90            |  |
| Aman ve ark. (2014)               | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 80             | 30               | 2              | 30                    | 80                            |                                      | 100              |  |
| Modi ve ark. (2017)               | LiBr- H <sub>2</sub> O                                                                            | 75-110         | 40               | 8-15           | 40                    | 70                            |                                      | 100              |  |
| Kumar ve ark. (2017)              | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 60-140         | 30-45            | (-5)-5         | 30-45                 | 80                            |                                      | 95               |  |
| Fernández-Seara ve Sieres (2006)  | NH <sub>3</sub> -H <sub>2</sub> O                                                                 | 115            | 30               | -10            | 30                    | 70                            | 70                                   | 50               |  |
| Yıldırım ve Yeşilata (2012)       | LiBr- H <sub>2</sub> O                                                                            | 73             | 32,9             | 5              | 36,33                 | 100                           |                                      | 100              |  |

Çizelge 2.2. Absorbsiyonlu soğutma sistemleriyle ilgili literatürde yapılan çalışmalar ve parametreleri

# 2.4 Hidrojen Sıvılaştırma Sistemleri ile İlgili Çalışmalar

Fosil yakıtların hızla tükendiği günümüzde, hidrojen teknolojileri her geçen gün gelişmektedir. Bu duruma bağlı olarak son yıllarda hidrojen sıvılaştırma yöntemlerine olan ilgi artmakta ve bu konuda yapılan çalışmalar önem kazanmaktadır.

Kanoglu ve ark. (2016) NH<sub>3</sub>-H<sub>2</sub>O eriyikli absorbsiyonlu soğutma sistemi ile Claude hidrojen sıvılaştırma sisteminden oluşan entegre bir sistemi modellemiş ve bu sistemin termodinamik performansını incelemiştir. Bu çalışma kapsamında sistemin birinci ve ikinci kanun analizleri sabit çalışma şartları için gerçekleştirilmiştir. Yapılan analizler sonucunda entegre sistemin enerji ve ekserji verimleri sırasıyla %16,2 ve %67,9 olarak hesaplanmıştır. Ayrıca absorbsiyonlu soğutma sistemi kullanılarak sıvılaştırma için gerekli olan net işten %25,4 tasarruf sağlandığı sonucuna ulaşılmıştır.

Yuksel ve ark. (2019) çeşitli atık maddelerin enerjisinden yararlanılarak modellenen kombine hidrojen üretimi ve sıvılaştırma sisteminin termodinamik performansını incelemiş, sistemin birinci ve ikinci kanun analizlerini gerçekleştirmiştir. Yapılan çalışma kapsamında kombine sistemin enerji ve ekserji verimi sırasıyla %61,57 ve %58,15 olarak hesaplanmıştır. Ayrıca atık maddelerin gazlaştırılmasının hidrojen üretimi ve sıvılaştırılması için kullanılabilir bir alternatif olduğu belirlenmiştir.

Corumlu ve ark. (2018) güneş enerjisi destekli entegre bir hidrojen üretim ve sıvılaştırma sistemini modellemiş ve termodinamik performansını değerlendirmiştir. Bu çalışma kapsamında, fotovoltaik sistem, PEM elektrolizörü ve Linde-Hampson hidrojen sıvılaştırma sisteminden oluşan entegre sistemin enerji ve ekserji verimi sırasıyla %22,97 ve %19,55 olarak hesaplanmıştır.

Yilmaz (2020) jeotermal enerji destekli hidrojen sıvılaştırma sisteminin termodinamik performansını ve yaşam döngü maliyet analizini bilgisayar ortamında gerçekleştirmiştir. Yapılan analizler sonucunda sıvılaştırma sistemi için gereken net iş 8,6 kWh/kg LH<sub>2</sub> (sıvı hidrojen) olarak hesaplanmıştır. Ayrıca elektrik ve sıvılaştırılmış hidrojenin birim maliyetleri ise sırasıyla 0,012 \$/kWh ve 1,44 \$/kg LH<sub>2</sub> olarak belirlenmiştir. Sadaghiani ve ark. (2017) karışık soğutucu akışkanlı sadece bir soğutma çevriminin kullanıldığı hidrojen sıvılaştırma sisteminin performansını araştırmıştır. Bu çalışma kapsamında sistemin enerji, ekserji analizleri gerçekleştirilmiş ve eksergoekonomik performansı değerlendirilmiştir. Yapılan analizler sonucunda hidrojeni sıvılaştırmak için gerekli net iş 7,646 kWh/kg LH<sub>2</sub> olarak belirlenmiş, sistemin ikinci kanun verimi ise yaklaşık %32 olarak hesaplanmıştır. Ayrıca, sistemde kullanılan bazı ısı eşanjörlerinin eksergoekonomik faktörünün diğer komponentlere göre daha düşük olduğu belirlenmiş ve bu komponentlerin termodinamik performansılarının iyileştirilmesi önerilmiştir.

Ozcan ve Dincer (2016) nükleer enerji tabanlı entegre bir hidrojen üretim ve sıvılaştırma sisteminin termodinamik analizlerini gerçekleştirmiştir. Bu çalışma kapsamında alt sistemlerin enerji ve ekserji performansları değerlendirilmiş ve entegre sistemin birinci ve ikinci kanun verimi sırasıyla %18,6 ve %31,4 olarak hesaplanmıştır. Ayrıca, entegre sistemi oluşturan alt sistemlerden dört aşamalı Mg-CI çevrimindeki ekserji yıkımının maksimum olduğu ve toplam ekserji yıkımının %41'ini oluşturduğu belirlenmiştir.

Yuksel ve ark. (2018) jeotermal enerji destekli hidrojen sıvılaştırma sisteminin termodinamik performansı araştırılmıştır. Bu çalışmada entegre sistemin ve alt sistemlerin birinci ve ikinci kanun analizleri gerçekleştirilmiştir. Yapılan analizler sonucunda, jeotermal akışkan sıcaklığının entegre sistemin performansında en etkili parametre olduğu belirlenmiş ve jeotermal akışkan sıcaklığının 130°C'den 200°C'ye arttırılması ile sistemin hidrojen üretim hızı 0,0062 kg/s'den 0,0558 kg/s'ye yükselmiştir.

Ansarinasab ve ark. (2019) iki bağımsız soğutma çevriminden (karışık soğutucu akışkanlı) oluşan geleneksel hidrojen sıvılaştırma sisteminin eksergoekonomik ve eksergoçevresel analizlerini gerçekleştirmiştir. Bu çalışma kapsamında sistemi oluşturan soğutma çevrimlerinin ekserji verimi sırasıyla yaklaşık %67,5 ve %52,2 olarak hesaplanmış, tüm sistemin ekserji verimi ise %55,5 olarak belirlenmiştir. Sistemde yer alan pompa ve kompresörlerin eksergoekonomik faktörünün diğer komponentlere kıyasla daha yüksek olduğu tespit edilmiştir. Bununla birlikte yapılan eksergoçevresel analizler sonucunda ise pompa ve bazı türbinlerin eksergoçevresel faktörünün daha yüksek olduğu sonucuna ulaşılmıştır.

Yilmaz ve ark. (2019) gazların sıvılaştırılması amacıyla yaygın olarak kullanılan çevrimlerin termodinamik performansını araştırmıştır. Bu kapsamda Linde-Hampson çevrimi, ön soğutmalı Linde-Hampson çevrimi, Claude çevrimi ve Kapitza çevriminin birinci ve ikinci kanun analizleri gerçekleştirilmiş ve performans parametreleri değerlendirilmiştir. Yapılan analizler sonucunda incelenen bu sıvılaştırma sistemlerinin ekserji verimleri sırasıyla %13,4, %21,8, %62,9 ve %77,2 olarak hesaplanmıştır.

Kanoglu ve ark. (2007) jeotermal enerjinin hidrojen sıvılaştırılmasında kullanımını araştırmış ve bu amaçla üç model geliştirmiş ve bu modelleri termodinamik açıdan incelemiştir. Bu çalışma kapsamında, uygun performans kriterleri tanımlanarak jeotermal su sıcaklığının ve hidrojen ön soğutma sıcaklığının sistem performansı üzerindeki etkileri araştırılmıştır.

Yilmaz ve ark. (2018) OTEC (okyanus termal enerji dönüşümü) sistemleri ile desteklenen entegre hidrojen üretim ve sıvılaştırma sistemini modellemiş, birinci ve ikinci kanun analizlerine dayalı performansını değerlendirmiştir. Bu çalışma kapsamında, entegre sistemin enerji ve ekserji verimi sırasıyla %43,49 ve %36,49 olarak hesaplanmıştır. Ayrıca yapılan analizler sonucunda hidrojen üretimi ve sıvılaştırılması için OTEC sitemlerinin iyi bir alternatif olduğu belirlenmiştir.

Yilmaz ve Kaska (2018) jeotermal enerji destekli ve absorbsiyonlu ön soğutma sistemi ile entegre çalışan hidrojen sıvılaştırma sistemini modellemiş ve termoekonomik optimizasyonunu gerçekleştirmiştir. Yapılan optimizasyon sonucunda sıvılaştırılmış hidrojenin ekserji maliyeti 1,349 \$/kg LH<sub>2</sub> olarak belirlenmiştir. Ayrıca modellenen bu entegre sistem ile elde edilen sıvı hidrojenin ekserji maliyetinin temel sıvılaştırma sistemlerine kıyasla yaklaşık %11 daha az olduğu tespit edilmiştir. Yilmaz (2018) önceki çalışmasına benzer bir entegre sistemin eksergoekonomik optimizasyonu için genetik algoritma metodunu kullanmıştır. Bu çalışma kapsamında, hidrojenin sıvılaştırılması için gerekli olan net iş 10,06 kWh/kg LH<sub>2</sub> olarak hesaplanmıştır. Ayrıca optimizasyon sonucunda sıvılaştırılmış hidrojenin birim ekserji maliyeti 1,114 \$/kg LH<sub>2</sub> olarak bulunmuştur.
## **3. MATERYAL VE YÖNTEM**

Bu bölümde jeotermal enerji kaynağından yararlanılarak sıvı hidrojen üretimi için geliştirilen sistemin alt modüllerini oluşturan ORC modülü, yüksek sıcaklıklı elektroliz modülü, absorbsiyonlu soğutma modülü ve sıvılaştırma modülleri termodinamiksel olarak incelenmiş ve bu modüllerin enerji, ekserji ve eksergoekonomik analizleri için gerekli olan bağıntıları sunulmuştur.

## 3.1 Enerji Analizi

Bu tez çalışması kapsamında sürekli akışlı açık sistemlerin enerji analizleri gerçekleştirilmiştir. Sürekli akışlı açık sistemlerde, akışkanın kontrol hacminden sürekli bir akışı vardır. Akışkanın özellikleri, kontrol hacmi içinde bir noktadan diğerine farklılıklar gösterebilir ancak verilen bir noktada zamanla değişmez. Genel olarak, sürekli akışlı açık sistemlerin enerji analizinin temelini kontrol hacmindeki kütle ve enerji dengesi oluşturmaktadır.

#### 3.1.1 Kütle Dengesi

Sürekli akışlı açık sistemlerde, kontrol hacmi içindeki toplam kütle zamanla değişmez. Bu durumda kütlenin korunumu ilkesine dayalı bir yaklaşımla kontrol hacmine giren toplam kütlenin, kontrol hacminden çıkan toplam kütleye eşit olması gerekir. Sürekli akışlı açık sistemlerdeki kütle dengesi aşağıdaki şekilde ifade edilebilir.

$$\sum \dot{m}_g = \sum \dot{m}_{\varsigma} \tag{3.1}$$

Burada,  $\dot{m}_g$  kontrol hacmine giren birim zamandaki kütle (kütlesel debi),  $\dot{m}_{c}$  ise kontrol hacminden çıkan birim zamandaki kütledir.

## 3.1.2 Enerji Dengesi

Sürekli akışlı açık sistemlerde, kontrol hacmindeki toplam enerji sabittir. Böylece kontrol hacmindeki toplam enerji değişimi sıfır olur. Bu nedenle tüm biçimlerde (iş, ısı ve kütle) kontrol hacmine giren enerji miktarı, kontrol hacminden çıkan enerji miktarına eşit olmalıdır. Sürekli akışlı açık sistemler için enerjinin korunumu aşağıdaki şekilde ifade edilebilir.

$$\dot{Q}_g + \dot{W}_g + \sum_g \dot{m} \left( h + \frac{V^2}{2} + gz \right) = \dot{Q}_{\varsigma} + \dot{W}_{\varsigma} + \sum_{\varsigma} \dot{m} \left( h + \frac{V^2}{2} + gz \right)$$
(3.2)

Bu bağıntıda kullanılan  $\dot{Q}$  ısı miktarını,  $\dot{W}$  iş miktarını, h özgül entalpiyi, V hızı, g yerçekimi ivmesini ve z ise bir referans noktasına göre yüksekliği ifade etmektedir.

Eşitlik (3.2)'de gerekli düzenlemeler yapıldığında enerji dengesi,

$$\dot{Q} - \dot{W} = \sum_{\varsigma} \dot{m} \left( h + \frac{V^2}{2} + gz \right) - \sum_{g} \dot{m} \left( h + \frac{V^2}{2} + gz \right)$$
(3.3)

şeklinde yazılabilir. Kontrol hacmindeki kinetik ve potansiyel enerji değişimi sıfır kabul edilirse sürekli akışlı açık sistemler için enerji dengesi aşağıdaki halini alır.

$$\dot{Q} - \dot{W} = \sum \dot{m}_{\rm c} h_{\rm c} - \sum \dot{m}_g h_g \tag{3.4}$$

## 3.2 Ekserji Analizi

Jeotermal bir kuyu gibi yeni bir enerji kaynağı bulunduğu zaman ilk yapılan işlemlerden biri, kaynakta bulunan enerjinin miktarını yaklaşık olarak belirlemektir. Ancak yalnızca bu bilgiye sahip olmak, burada bir güç santrali yapmaya karar vermek için yeterli değildir. Asıl bilinmesi gereken, kaynağın iş potansiyelidir yani, enerji miktarının ne kadarının yararlı işe dönüştürülebileceğinin bilinmesidir. Enerjinin işe dönüştürülemeyen bölümü, atık ısı olarak çevreye verileceğinden dolayı önem taşımayacaktır. Bu nedenle, belirli bir haldeki ve miktardaki enerjinin yararlı iş potansiyelinin belirlenmesi önemlidir. Buradan yola çıkarak, belirli bir haldeki sistemden elde edilebilecek maksimum iş potansiyeli ekserji olarak tanımlanmaktadır (Çengel ve Boles 2012).

Bir sistemden maksimum yararlı iş elde edebilmek için, hal değişimi sonunda sistemin ölü halde olması gerekir. Bir sistemin ölü halde olması, çevresi ile termodinamik dengede bulunması demektir. Ölü haldeki bir sistem, çevresinin sıcaklığı ve basıncındadır, çevresine göre kinetik ve potansiyel enerjiye sahip değildir ve çevresi ile tepkimeye girmez. Bu çalışma kapsamında ölü hal şartları,  $T_0 = 20^{\circ}$ C ve  $P_0 = 101,325$  kPa olarak kabul edilmiştir (Scardigno ve ark. 2015, Mokhtari ve ark. 2016, Canbolat ve ark. 2020).

Bir sistemde nükleer, elektrik, manyetik ve yüzey gerilimleri ihmal edildiğinde sistemin ekserjisi fiziksel, kimyasal, potansiyel ve kinetik ekserji olarak incelenebilir. Bu durumda sistemin toplam özgül ekserjisi,

$$e_i = e_{fiz} + e_{kim} + e_{pe} + e_{ke} \tag{3.5}$$

şeklinde yazılabilir. Burada,  $e_i$  sistemin toplam özgül ekserjisini,  $e_{fiz}$  sistemin fiziksel ekserjisini,  $e_{kim}$  kimyasal ekserjisini,  $e_{pe}$  potansiyel ekserjisini ve  $e_{ke}$  kinetik enerjisini ifade etmektedir. Bulunduğu çevresine göre hareketsiz bir sistemde, potansiyel ve kinetik enerjiler sıfır olarak kabul edilebilir ve sistemin toplam özgül ekserjisi fiziksel ve kimyasal ekserjiden oluşur. Bu durumda sistemin toplam özgül ekserjisi aşağıdaki şekilde ifade edilir.

$$e_i = e_{fiz} + e_{kim} \tag{3.6}$$

Sistemdeki toplam ekserji akımı ise,

$$\dot{E}_i = \dot{m}_i e_i \tag{3.7}$$

bağıntısı yardımıyla hesaplanır. Burada  $\dot{m}_i$  sistemde dolaşan akışkanın kütlesel debisidir.

### 3.2.1 Fiziksel Ekserji

Bir sistemin çevresi ile sadece termal etkileşimi sonucunda tersinir hal değişimi ile mevcut sıcaklık ve basınç şartlarından ( $T_i$  ve  $P_i$ ), çevre şartları ( $P_0$  ve  $T_0$ ) ile termodinamik dengeye getirildiğinde sistemden elde edilebilecek maksimum iş fiziksel ekserji olarak tanımlanmaktadır (Kotas 1985). Bir sistemin fiziksel ekserjisi,

$$e_{fiz} = (h_i - h_0) - T_0(s_i - s_0)$$
(3.8)

bağıntısı yardımıyla hesaplanır. Bir sistemde iki durum arasındaki fiziksel ekserji farkı ise aşağıdaki şekilde ifade edilir.

$$e_{fiz_1} - e_{fiz_2} = (h_1 - h_2) - T_0(s_1 - s_2)$$
(3.9)

## 3.2.2 Kimyasal Ekserji

Bir sistemin çevresiyle kimyasal denge haline geldiğinde 1sı transferi ve madde alışverişinden dolayı yaptığı maksimum iş kimyasal ekserji olarak tanımlanmaktadır.

Bazı uygun çevre malzemelerinin özellikleri referans alınarak maddelerin standart kimyasal ekserjileri hesaplanmıştır. Standart kimyasal ekserjiler, standart çevre sıcaklığına ve basıncına bağlıdır. Standart kimyasal ekserji değerleri dikkate alınarak saf maddelerin kimyasal ekserjisi,

$$\dot{E}_{kim} = \dot{m} \left( \frac{e^{ch}}{M_A} \right) \tag{3.10}$$

bağıntısı kullanılarak hesaplanabilir. Bu bağıntıda  $e^{ch}$  maddenin standart kimyasal ekserjisini,  $M_A$  maddenin mol ağırlığını,  $\dot{m}$  maddenin kütlesel debisini ifade etmektedir. Bu çalışma kapsamında kullanılan bazı maddelerin mol ağırlıkları ve standart kimyasal ekserjileri Çizelge 3.1'de verilmiştir.

| Madde               | Mol Ağırlığı<br>(kg/kmol) | Standart Kimyasal Ekserjisi<br>(kJ/kmol) |
|---------------------|---------------------------|------------------------------------------|
| $H_2O(g)$           | 18,02                     | 9437                                     |
| H <sub>2</sub> O(s) | 18,02                     | 900                                      |
| $H_2(g)$            | 2,02                      | 236090                                   |
| O <sub>2</sub> (g)  | 32                        | 3970                                     |
| N <sub>2</sub> (g)  | 28,01                     | 720                                      |
| NH <sub>3</sub> (g) | 17,03                     | 341250                                   |
| LiBr(g)             | 86,85                     | 101600                                   |

**Çizelge 3.1.** Bazı maddelerin mol ağırlıkları ve standart kimyasal ekserjileri (Kotas 1985, Bejan ve ark. 1996, Balta ve ark. 2009, Palacios-Bereche ve ark. 2012)

Gaz karışımlarının kimyasal ekserjisi,

$$\dot{E}_{kim} = \dot{m} \left( \sum y_k \frac{e_k^{ch}}{M_{A_k}} + \bar{R}T_0 \sum \frac{y_k \ln y_k}{M_{A_k}} \right)$$
(3.11)

denklemi yardımıyla hesaplanır. Burada  $y_k$  toplam gaz içerisindeki k'nıncı gazın mol oranını,  $e_k^{ch}$  k'nıncı gazın standart kimyasal ekserjisini,  $M_{A_k}$  k'nıncı gazın mol ağırlığını ve  $\overline{R}$  evrensel gaz sabitini ifade etmektedir.

Genellikle absorbsiyonlu soğutma sistemlerinde kullanılan eriyiklerin kimyasal ekserjisi,

$$\dot{E}_{kim} = \dot{m} \left[ \left( \frac{X}{M_{A_{sa}}} \right) e_{sa}^{ch} + \left( \frac{1 - X}{M_{A_{abs}}} \right) e_{abs}^{ch} \right]$$
(3.12)

eşitliğinden yararlanılarak belirlenir (Kordlar ve Mahmoudi 2017). Burada  $e_{sa}^{ch}$  sistemde soğutucu akışkan görevindeki maddenin standart kimyasal ekserjisini,  $e_{abs}^{ch}$  sistemdeki diğer maddenin standart kimyasal ekserjisini, X konsantrasyon oranını,  $M_{A_{sa}}$  ve  $M_{A_{abs}}$  ise sistemde dolaşan maddelerin mol ağırlığını ifade etmektedir.

## 3.2.3 Ekserji Dengesi

Belirli bir kontrol hacmi ele alındığında enerji korunumunun aksine ekserji korunumundan söz edilemez. Bir hal değişimi süresince bir sistemin ekserji değişimi, sistem sınırlarındaki hal değişimi süresince yok olan ekserjiye eşit miktardaki bir ekserji geçişinden daha azdır. Bu duruma bağlı olarak ekserji dengesi aşağıdaki şekilde yazılabilir.

$$\sum \dot{E}_{giren} - \sum \dot{E}_{\varsigma \iota kan} - \dot{I} = \Delta \dot{E}_{sistem}$$
(3.13)

Bu bağıntıda  $\dot{E}_{giren}$  ekserji girişini,  $\dot{E}_{cikan}$  ekserji çıkışını,  $\dot{I}$  ekserji yıkımını (tersinmezlik) ve  $\Delta \dot{E}_{sistem}$  ise sistemin toplam ekserjisindeki değişimi ifade etmektedir. Sürekli rejimde ekserji dengesi ele alındığında sistem içerisindeki ekserji değişimi sıfır olacaktır. Bu durumda birim zamandaki ekserji dengesi aşağıda verilen bağıntıyla ifade edilebilir.

$$\sum \dot{E}_{giren} - \sum \dot{E}_{\varsigma\iota kan} = \dot{I} \tag{3.14}$$

#### 3.3 Eksergoekonomik Analiz

Eksergoekonomik analiz, ekserji temelli termodinamik analizi ekonomik verilerle destekleme prensibine dayanmaktadır (Bejan ve ark. 1996). Termal sistemlerin maliyet etkinliği değerlendirilerek sistemin iyileştirilmesi ve geliştirilmesi amacıyla kullanılan eksergoekonomik analiz yöntemi, termal sistemlerde gerçekleşen ekserji yıkımı ile maliyet tutarının ilişkilendirilmesini sağlamaktadır.

Bu tez çalışması kapsamında modellenen sistemin eksergoekonomik analizleri için SPECO yöntemi kullanılmıştır. SPECO yöntemine geçmeden önce eksergoekonomik analizler için gerekli olan ekonomik parametreler tanımlanmalıdır.

### 3.3.1 Ekonomik Parametreler

Bugünkü bir paranın, belirli bir bileşik faiz oranı üzerinden belirli periyotlarda işletilmesi durumunda, paranın gelecekteki değeri,

$$FW = PW(1+i)^n \tag{3.15}$$

bağıntısı kullanılarak hesaplanır (Bejan ve ark. 1996). Burada FW paranın gelecekteki değerini, PW paranın şimdiki değerini, i bileşik faiz oranını ve n ise yıl cinsinden periyodunu ifade etmektedir.

Genellikle ekonomik analizlerde, gelecek *n* zaman sonra yapılacak olan harcamaların ve kazanılacak olan gelirlerin şimdiki değerlerinin bilinmesi önemlidir. Gelecekteki belirli bir *FW* tutarındaki paranın belirli bir faiz veya iskonto oranıyla indirgenmesi sonucu elde edilen *PW* tutarındaki bugünkü değeri aşağıda verilen bağıntı yardımıyla hesaplanabilir.

$$PW = FW \frac{1}{(1+i)^n}$$
(3.16)

Eşitlik (3.16)'dan yararlanılarak paranın şimdiki değer faktörü aşağıdaki şekilde elde edilir (Bejan ve ark. 1996, Balli ve ark. 2008).

$$PWF = \frac{1}{(1+i)^n}$$
(3.17)

Yıllık ödemeler (anüite), belirli bir zaman süreci içerisinde, eşit zaman aralıklarında meydana gelen eşit miktardaki para hareketleridir. Genellikle kullanılan zaman aralığı bir yıldır. Kira, kredi, sigorta ve yakıt ödemeleri, tahvil faizleri, çalışan ücretleri gibi harcamaların yıllık ödemeleri aşağıda verilen denklem yardımıyla belirlenir. Burada *AC* yıllık ödeme tutarını ifade etmektedir.

$$AC = FW \frac{i}{(1+i)^n - 1}$$
(3.18)

Bir yıllık ödemenin şimdiki değeri, belirli bir dönem sonundaki yıllık ödeme toplamının, yıllık ödeme başlangıcında efektif bir faiz oranıyla yatırılmış olması durumundaki parasal değeridir ve aşağıda verilen bağıntı yardımıyla hesaplanabilir.

$$\frac{PW}{AC} = \frac{(1+i)^n - 1}{i(1+i)^n}$$
(3.19)

Eşitlik (3.19)'da verilen bağıntının sağ tarafı, şimdiki değer faktörünün üniform serisi (Uniform Series Present Worth Factor) olarak tanımlanmaktadır. Bu değerin tersi ise, yatırım maliyeti geri kazanım oranı (Capital Recovery Factor) olarak ifade edilir (Mohammadkhani ve ark. 2014, Ahmadi ve ark. 2016, Ghazizade-Ahsaee ve ark. 2019).

$$CRF = \frac{AC}{PW} = \frac{i(1+i)^n}{(1+i)^n - 1}$$
(3.20)

## 3.3.2 SPECO Yöntemi

Eksergoekonomik analizler için kullanılan birçok farklı yöntem literatürde bulunmaktadır. Bu tez çalışması kapsamında modellenen sistemin eksergoekonomik analizleri için SPECO yöntemi olarak tanımlanan özgül ekserji maliyetlendirme metodu kullanılmıştır. Genel olarak SPECO yöntemi üç aşamadan oluşmaktadır (Lazzaretto ve Tsatsaronis 2006):

- Sisteme ait komponentlerin giriş ve çıkışındaki ekserji akımı değerlerinin belirlenmesi.
- Yakıt ve ürün olarak tanımlanan ekserji akımlarının her bir komponent için saptanması.
- Belirlenen ekserji akımı değerlerine ait maliyetlerin hesaplanması.

SPECO yönteminin ilk aşamasındaki hesaplamalar ekserji analizi temelinde gerçekleştirilir. Ekserji akımları belirlendikten sonra ikinci aşamada yakıt (F) ve ürün (P) tanımlamalarının yapılması ve her bir komponent için belirlenmesi gerekir. Bu kapsamda, herhangi bir sistem alt bileşenine giren akış, o bileşenin "yakıtı (F)" olarak, herhangi bir

sistem alt bileşeninden ayrılan akış ise o bileşenin "ürünü (P)" olarak tanımlanmaktadır. Yapılan ürün ve yakıt tanımlamalarına göre her bir komponent için ekserjiye bağlı maliyet denge denklemleri ve yardımcı denklemler oluşturulur. Son aşamada ise, oluşturulan denklemlerden yararlanılarak ekserji akımına bağlı maliyetler belirlenir.

Bu çalışma kapsamında sistemi oluşturan her bir alt modüldeki komponentler için ekserjiye bağlı maliyet denge denklemleri ve yardımcı denklemler oluşturulmuş ve bu denklemler modül bazında çalışmanın ilerleyen bölümlerinde verilmiştir.

## 3.3.3 Ekserjiye Bağlı Maliyet Denge Denklemleri

Bir kütle veya enerji akımının ekserjiye bağlı maliyeti bu akışı üretmek için kullanılan ekserji miktarına bağlı olarak hesaplanır. Akışın birim ekserji maliyeti,

$$c_i = \frac{\dot{C}_i}{\dot{E}_i} \tag{3.21}$$

bağıntısı kullanılarak belirlenebilir. Burada  $c_i$  herhangi bir i noktasındaki birim ekserji maliyetini,  $\dot{C}_i$  ekserji maliyetini ve  $\dot{E}_i$  ekserji akımını ifade etmektedir. Bu şekilde sisteme giren ve sistemden çıkan madde akışı, güç ve ısı ile transfer edilen ekserji maliyetleri aşağıda verilen denklemler yardımıyla hesaplanabilir.

$$\dot{C}_g = c_g \dot{E}_g = c_g \left( \dot{m}_g e_g \right) \tag{3.22}$$

$$\dot{C}_{\varsigma} = c_{\varsigma} \dot{E}_{\varsigma} = c_{\varsigma} \left( \dot{m}_{\varsigma} e_{\varsigma} \right) \tag{3.23}$$

$$\dot{C}_w = c_w \dot{E}_w = c_w \dot{W} \tag{3.24}$$

$$\dot{C}_q = c_q \dot{E}_q \tag{3.25}$$

Sistemdeki herhangi bir komponent için, ekserji maliyet dengesine bağlı olarak ürünlerin toplam ekserji maliyeti girdilerin toplam ekserji maliyetine eşittir. Dışarıdan ısı alan ve iş üreten bir komponent için ekserji maliyet dengesi,

$$\sum \dot{C}_g + \dot{C}_q + \dot{Z}_k = \sum \dot{C}_{\varsigma} + \dot{C}_w \tag{3.26}$$

$$\sum (c_g \dot{E}_g) + (c_q \dot{E}_q) + \dot{Z}_k = \sum (c_{\varsigma} \dot{E}_{\varsigma}) + (c_w \dot{W})$$
(3.27)

eşitlikleri kullanılarak yazılabilir. Bu bağıntılarda kullanılan  $\dot{Z}_k$  komponentin toplam yatırım maliyetini ifade etmektedir. Komponentin toplam yatırım maliyeti, o komponentin ilk yatırım maliyeti ile bakım, onarım ve işletme maliyetlerinin toplamıdır ve aşağıda verilen bağıntı ile gösterilebilir.

$$\dot{Z}_{k} = \dot{Z}_{k}^{CI} + \dot{Z}_{k}^{OM} \tag{3.28}$$

Bu bağıntıda  $\dot{Z}_{k}^{CI}$  ilk yatırım maliyetini,  $\dot{Z}_{k}^{OM}$  ise bakım, onarım ve işletme maliyetini tanımlamaktadır.  $\dot{Z}_{k}^{CI}$  ilk yatırım maliyeti,

$$\dot{Z}_{k}^{CI} = \frac{\dot{C}_{k}^{CI}CRF}{\tau}$$
(3.29)

bağıntısından yararlanılarak hesaplanır. Burada  $\dot{C}_{k}^{CI}$  komponentin satın alma maliyetini,  $\tau$  ise yıllık çalışma süresini ifade etmektedir. Bu tez çalışması kapsamında sistemin yıllık çalışma süresi 7884 saat olarak belirlenmiştir. Geri kalan süre ise sistemin periyodik bakımı için ayrılan zamandır. Komponentlere ait satın alma maliyet denklemleri modül bazında çalışmanın ilerleyen bölümlerinde verilmiştir.

Benzer şekilde  $\dot{Z}_k^{OM}$  bakım, onarım ve işletme maliyeti ise aşağıda verilen denklem kullanılarak belirlenir.

$$\dot{Z}_k^{OM} = \dot{Z}_k^{CI} \varphi \tag{3.30}$$

Eşitlik (3.30)'da verilen  $\varphi$  bakım, onarım ve işletme maliyet faktörü olarak tanımlanmaktadır. Bu tez çalışması kapsamında  $\dot{Z}_k^{OM}$  değeri, her bir komponentin ilk yatırım maliyetinin %20'si olarak belirlenmiştir (Wang ve Dai 2016, Tozlu ve ark. 2018).

### 3.3.4 Eksergoekonomik Performans Parametreleri

Sistemde yer alan komponentlerin bireysel performanslarını belirlemek amacıyla sıklıkla kullanılan parametrelerden biri eksergoekonomik faktördür. Eksergoekonomik faktör, ekserjiden bağımsız yatırım maliyetlerinin toplam yatırım maliyeti içerisindeki oranı olarak tanımlanmaktadır (Bejan ve ark. 1996). Bir komponentin eksergoekonomik faktörü ( $f_k$ ) aşağıda verilen eşitlik yardımıyla hesaplanır.

$$f_{k} = \frac{\dot{Z}_{k}}{\dot{Z}_{k} + \dot{C}_{D}} = \frac{\dot{Z}_{k}^{CI} + \dot{Z}_{k}^{0M}}{\dot{Z}_{k}^{CI} + \dot{Z}_{k}^{0M} + (c_{F_{k}}\dot{I}_{k})}$$
(3.31)

Bu bağıntıda  $\dot{C}_D$  komponentteki ekserji yıkımı maliyetini,  $\dot{I}_k$  komponentteki ekserji yıkımını ve  $c_{F_k}$  ise komponentin yakıt (giren akış) birim ekserji maliyetini ifade etmektedir.

Sistemdeki herhangi bir komponent için hesaplanan eksergoekonomik faktörün düşük olması, komponentin ilk yatırım maliyeti artacak olsa dahi ekserji verimliliğinin iyileştirilmesiyle sistemin tamamından bir maliyet tasarrufu sağlanabileceğini göstermektedir. Ayrıca eksergoekonomik faktörün düşük olması durumunda ekserji verimi düşük de olsa daha düşük maliyetli bir eleman da seçilebilir (Bejan ve ark. 1996). Eksergoekonomik faktörün yüksek olması ise, komponentin ekserji verimliliğinden taviz verilerek yatırım maliyetinde bir düşüş yapılabileceğini göstermektedir.

Eksergoekonomik performansı belirlemek amacıyla kullanılan bir diğer önemli parametre ise bağıl maliyet farkıdır. Bağıl maliyet farkı, komponente giren yakıt (giren akış) ve çıkan ürünün (çıkan akış) birim ekserji maliyetleri arasındaki farkın birim ekserji maliyetine oranını ifade etmektedir. Sistemde kullanılan bir komponent için bağıl maliyet farkı aşağıdaki eşitlikte verilmiştir.

$$r_k = \frac{c_P - c_F}{c_F} \tag{3.32}$$

Bir komponentin bağıl maliyet farkının yüksek olması, bu komponentin termodinamik performansının iyileştirilmesinin ve yatırım maliyetinin azaltılmasının gerekli olduğunu göstermektedir. Buradaki temel amaç ürün (çıkan akış) birim ekserji maliyetinin azaltılmasıdır.

## 3.4 Organik Rankine Çevrimi (ORC)

Organik Rankine çevrimleri (ORC) düşük sıcaklık aralıklarında çalışan, akışkan olarak su yerine molekül ağırlığı daha yüksek hidrokarbon bileşenli organik akışkanların kullanıldığı güç üretim sistemleridir. Genellikle sıcaklığın düşük olduğu ısı geri kazanım uygulamaları için tercih edilen ORC sistemleri, başta jeotermal enerji olmak üzere güneş enerjisi, biyokütle enerjisi ve atık ısı kaynaklarından elektrik üretilmesi amacıyla kullanılmaktadır (Yamankaradeniz ve ark. 2018).

ORC sistemleri termodinamiksel olarak Rankine çevrimleri ile benzer çalışma prensibine sahiptir. ORC sistemlerinde enerji kaynağının 1s1s1 (5-6) buharlaştırıcı yardımıyla çevrimde dolaşan soğutucu akışkana aktarılır ve soğutucu akışkanın buharlaşması sağlanır (4a-1). Daha sonra yüksek sıcaklık ve basınçtaki soğutucu akışkan türbinde, yoğuşturucu basıncına kadar genişletilerek iş üretilir (1-2). Türbin çıkışında 1s1 eşanjörüne giren soğutucu akışkanın 1s1s1 burada buharlaştırıcı girişindeki soğutucu akışkana aktarılır. Böylece türbin çıkışındaki soğutucu akışkanın sıcaklığı düşerken (2-2a), buharlaştırıcı girişindeki soğutucu akışkanın sıcaklığı düşerken (2-2a), buharlaştırıcı girişindeki soğutucu akışkanın sıcaklığının artması sağlanır (4-4a). Sıcaklığı azalan soğutucu akışkan yoğuşturucuda soğutma suyu yardımıyla (7-8) soğutularak yoğuşturulur. Yoğuşturucudan ayrılan doymuş sıvı haldeki soğutucu akışkan pompada basınçlandırılarak buharlaştırıcı girişindeki ısı eşanjörüne gönderilir (3-4). Son olarak 1s1 eşanjöründe transfer olan 1s1 nedeniyle sıcaklığı artan soğutucu akışkan buharlaştırıcıya girerek çevrimi tamamlar (4-4a). Bu çalışma kapsamında sıvı hidrojen üretimi için geliştirilen sistemde kullanılan 1s1 geri kazanımlı ORC modülünün şematik diyagramı (a) ve T-s diyagramı (b) Şekil 3.1'de verilmiştir (Bademlioglu ve ark. 2020).



Şekil 3.1. Isı geri kazanımlı ORC modülünün şematik (a) ve T-s (b) diyagramları

Bu çalışmada, çevrimde ana eleman olarak çalışan buharlaştırıcı, türbin, yoğuşturucu ve pompaya ilave olarak ısı eşanjörü kullanılmaktadır. Isı eşanjörü yardımıyla, buharlaştırıcı kapasitesinin (kaynaktan çekilen ısıl enerji miktarının) azaltılması ve sistemin termodinamik performansının iyileştirilmesi amaçlanmaktadır.

# 3.4.1 Organik Rankine Çevriminin Enerji Analizi

Termodinamiğin birinci kanun denklemlerinden yararlanılarak, ısı geri kazanımlı organik Rankine çevriminin enerji analizi için çevrimi oluşturan komponentlerin enerji denklemleri aşağıda verilmiştir (Zare 2016, Kordlar ve Mahmoudi 2017, Bademlioglu ve ark. 2018, Canbolat ve ark. 2020).

Termodinamiğin birinci kanunu türbine uygulanırsa,

$$\dot{Q}_{12s} - \dot{W}_{T_s} = \dot{H}_{2s} - \dot{H}_1 = \dot{m}(h_{2s} - h_1) \tag{3.33}$$

denklemi elde edilir. Bu denklemde,  $\dot{H}$  entalpiyi, h özgül entalpiyi ve  $\dot{m}$  soğutucu akışkan debisini ifade etmektedir. Gerekli düzenlemeler yapılarak izentropik türbin işi ifadesi aşağıdaki denklem yardımıyla hesaplanır.

$$\dot{W}_{T_{\rm s}} = \dot{m}(h_{2s} - h_1) \tag{3.34}$$

1-2 arasındaki gerçek türbin işi ve türbin çıkışındaki gerçek özgül entalpi değeri ise,

$$\eta_{T,s} = \frac{\dot{W}_T}{\dot{W}_{T_s}} = \frac{h_1 - h_2}{h_1 - h_{2s}} \tag{3.35}$$

eşitliğinden yararlanılarak hesaplanır. Bu denklemde  $\dot{W}_{T_s}$  izentropik türbin işini,  $\dot{W}_T$  gerçek türbin işini ve  $\eta_{T,s}$  türbin izentropik verimini ifade etmektedir.

2-3 noktası arasında yoğuşturucudaki ısı değişimi,

$$\dot{Q}_{yo\check{g}} = \dot{Q}_{23} = \dot{m}(h_{2a} - h_3)$$
 (3.36)

bağıntısıyla hesaplanır. Burada  $\dot{Q}_{yog}$  yoğuşturucudan atılan ısı miktarını ifade etmektedir. Ayrıca soğutma suyunun giriş-çıkış şartlarına ve termofiziksel özelliklerine bağlı olarak yoğuşturucudan atılan ısı miktarı aşağıda verilen denklem yardımıyla da elde edilir.

$$\dot{Q}_{yo\check{g}} = \dot{m}_{ss} C_{P_{ss}} (T_{ss_{clkis}} - T_{ss_{giris}})$$
(3.37)

Bu denklemde  $\dot{m}_{ss}$  soğutma suyu debisi,  $C_{P_{ss}}$  soğutma suyunun özgül 18181,  $T_{ss_{giris}}$  ve  $T_{ss_{cikis}}$  soğutma suyunun giriş ve çıkış sıcaklıklarıdır.

3-4s arasında pompada izentropik sıkıştırma gerçekleşmektedir. Pompada kullanılan soğutucu akışkanın sıkıştırılamaz olduğu kabul edilerek ( $v_3 = v_{4s}$ ) pompanın özgül işi (1 kg iş yapan akışkanı sıkıştırmak için gerekli olan iş),

$$-w_{P_{34s}} = \int v \, dP = v_3(P_4 - P_3) = h_{4s} - h_3 \tag{3.38}$$

denklemi yardımıyla hesaplanır. Eşitlik (3.38) kullanılarak pompa çıkışındaki soğutucu akışkanın özgül entalpisi için aşağıdaki denklem elde edilir.

$$h_{4s} = v_3(P_4 - P_3) + h_3 \tag{3.39}$$

3-4 arasındaki gerçek pompa işi ve pompa çıkışındaki özgül entalpi değeri,

$$\eta_{P,s} = \frac{\dot{W}_{P_s}}{\dot{W}_P} = \frac{h_{4s} - h_3}{h_4 - h_3} \tag{3.40}$$

bağıntısı kullanılarak belirlenir. Bu denklemde  $\dot{W}_{P_s}$  izentropik pompa işini,  $\dot{W}_P$  gerçek pompa işini ve  $\eta_{P,s}$  ise pompa izentropik verimini ifade etmektedir.

4a-1 arasında jeotermal enerji kaynağından yararlanılarak sabit basınçta soğutucu akışkana ısı verilmektedir. Buharlaştırıcıda jeotermal akışkandan soğutucu akışkana aktarılan ısı miktarı aşağıda verilen denklem yardımıyla hesaplanır.

$$\dot{Q}_{buh} = \dot{Q}_{4a1} = \dot{m}(h_1 - h_{4a})$$
 (3.41)

Türbin çıkışı ile buharlaştırıcı girişi arasında bulunan ısı eşanjöründe gerçekleşen ısı transferi ile 2a noktasındaki (yoğuşturucu girişindeki) soğutucu akışkanın sıcaklığı azalırken, 4a noktasındaki (buharlaştırıcı girişindeki) soğutucu akışkanın sıcaklığı artar. Isı eşanjöründe gerçekleşen ısı transferi,

$$\dot{Q}_{eşj} = \dot{m}C_{P_2}(T_2 - T_{2a}) \tag{3.42}$$

$$\dot{Q}_{e,j} = \dot{m}C_{P_4}(T_{4a} - T_4) \tag{3.43}$$

bağıntılarıyla hesaplanır. Bu bağıntılarda  $C_{P_2}$  2 noktasındaki soğutucu akışkanın özgül 1sısı,  $C_{P_4}$  ise 4 noktasındaki soğutucu akışkanın özgül ısısıdır. Eşitlik (3.42) ve (3.43)'den yararlanılarak,

$$\dot{Q}_{eşj} = \varepsilon (\dot{m}C_P)_{min}(T_2 - T_4) \tag{3.44}$$

denklemi elde edilir. Burada  $\varepsilon$  1s1 eşanjörünün etkenliğini,  $(\dot{m}C_P)_{min}$  ise 2 ve 4 noktası için hesaplanan  $(\dot{m}C_P)$  değerlerinden düşük olan değeri ifade etmektedir.

Organik Rankine çevrimini oluşturan komponentlerin ısıl hesaplamaları yapıldığında,

$$\eta_{ORC} = \frac{\dot{W}_{net}}{\dot{Q}_{buh}} = \frac{\left(\dot{W}_T - \left|\dot{W}_P\right|\right)}{\dot{Q}_{buh}}$$
(3.45)

bağıntısı yardımıyla çevrimin ısıl verimi hesaplanır.

## 3.4.2 Organik Rankine Çevriminin Ekserji Analizi

Termodinamiğin ikinci kanun denklemlerinden yararlanılarak, ısı geri kazanımlı organik Rankine çevriminin ekserji analizi için çevrimi oluşturan komponentlerin ekserji denklemleri aşağıda verilmiştir (Yari 2010, Zare ve Mahmoudi 2015, Yamankaradeniz ve ark. 2018, Bademlioglu ve ark. 2019a).

1-2 arasında türbindeki ekserji yıkımı,

$$\dot{I}_T = \dot{E}_1 - \left(\dot{E}_2 + \dot{W}_T\right) \tag{3.46}$$

denklemiyle elde edilir. Burada  $I_T$  türbindeki ekserji yıkımını ifade etmektedir. Eşitlik (3.46)'dan yararlanılarak türbinin ekserji verimi aşağıdaki bağıntı ile hesaplanır.

$$\eta_{ex,T} = \frac{\dot{W}_T}{\left(\dot{E}_1 - \dot{E}_2\right)}$$
(3.47)

2a-3 arasında yoğuşturucudaki ekserji yıkımı,

$$\dot{I}_{yo\breve{g}} = \left(\dot{E}_{2a} + \dot{E}_7\right) - \left(\dot{E}_3 + \dot{E}_8\right) \tag{3.48}$$

bağıntısı ile ifade edilir. Burada 7 ve 8 noktaları soğutma suyunun giriş ve çıkış noktaları olup bu noktalardaki ekserji akımı ( $\dot{E}_7$  ve  $\dot{E}_8$ ) hesaplanırken soğutma suyunun ölü hal şartları dikkate alınır. Yoğuşturucunun ekserji verimi ise aşağıdaki denklem yardımıyla hesaplanır.

$$\eta_{ex,yo\check{g}} = \frac{\left(\dot{E}_8 - \dot{E}_7\right)}{\left(\dot{E}_{2a} - \dot{E}_3\right)} \tag{3.49}$$

3-4 arasında pompadaki ekserji yıkımı,

$$\dot{I}_P = \left( \dot{E}_3 + \dot{W}_P \right) - \dot{E}_4 \tag{3.50}$$

denklemiyle elde edilir. Eşitlik (3.50)'den yararlanılarak pompanın ekserji verimi ise aşağıdaki bağıntı ile hesaplanır.

$$\eta_{ex,P} = \frac{\left(\dot{E}_4 - \dot{E}_3\right)}{\dot{W}_P} \tag{3.51}$$

4a-1 arasında buharlaştırıcıdaki ekserji yıkımı,

$$\dot{I}_{buh} = \left(\dot{E}_{4a} + \dot{E}_5\right) - \left(\dot{E}_1 + \dot{E}_6\right) \tag{3.52}$$

bağıntısı yardımıyla hesaplanır. Burada 5 ve 6 noktaları jeotermal akışkanın buharlaştırıcıya giriş ve çıkış noktaları olup bu noktalardaki ekserji akımı ( $\dot{E}_5$  ve  $\dot{E}_6$ )

hesaplanırken jeotermal suyun ölü hal şartları dikkate alınır. Buharlaştırıcının ekserji verimi ise aşağıdaki şekilde ifade edilir.

$$\eta_{ex,buh} = \frac{\left(\dot{E}_1 - \dot{E}_{4a}\right)}{\left(\dot{E}_5 - \dot{E}_6\right)} \tag{3.53}$$

2-4 arasında ısı eşanjöründeki ekserji yıkımı,

$$\dot{I}_{e,j} = (\dot{E}_2 + \dot{E}_4) - (\dot{E}_{2a} + \dot{E}_{4a})$$
(3.54)

denklemiyle elde edilir. Eşitlik (3.54)'den yararlanılarak ısı eşanjörünün ekserji verimi aşağıdaki bağıntı yardımıyla hesaplanır.

$$\eta_{ex,e\$j} = \frac{\left(\dot{E}_{4a} - \dot{E}_{4}\right)}{\left(\dot{E}_{2} - \dot{E}_{2a}\right)} \tag{3.55}$$

Çevrimi oluşturan her bir noktanın ekserji akımı hesaplandığında sistemin ikinci kanun performansı olarak,

$$\eta_{ex,ORC} = \frac{\dot{W}_{net}}{\left(\dot{E}_5 - \dot{E}_6\right)} = \frac{\left(\dot{W}_T - \left|\dot{W}_P\right|\right)}{\left(\dot{E}_5 - \dot{E}_6\right)}$$
(3.56)

bağıntısı yardımıyla sistemin ekserji verimi hesaplanır.

#### 3.4.3 Organik Rankine Çevriminin Eksergoekonomik Analizi

Organik Rankine çevriminin eksergoekonomik analizi için sistemde kullanılan komponentlerin satın alma maliyetlerinin hesaplanması gerekir. Bu kapsamda çevrimde kullanılan komponentlerin satın alma maliyetlerinin belirlenmesi amacıyla kullanılan maliyet denklemleri Çizelge 3.2'de verilmiştir.

**Çizelge 3.2.** ORC sisteminde kullanılan komponentlerin satın alma maliyet denklemleri (El-Emam ve Dincer 2013, Boyaghchi ve Heidarnejad 2014, Akrami ve ark. 2017, Turton ve ark. 2018, Noroozian ve ark. 2019)

| Komponent      | Satın Alma Maliyeti Denklemi [USD]                                                                           |
|----------------|--------------------------------------------------------------------------------------------------------------|
| Buharlaştırıcı | $\log_{10} \dot{C}_{buh} = 4,6420 + 0,3698 \log_{10}(A_{buh}) + 0,0025[\log_{10}(A_{buh})]^2$                |
| Türbin         | $\dot{C}_T = 4750 \left( \dot{W}_T \right)^{0,75}$                                                           |
| Isı Eşanjörü   | $\log_{10} \dot{C}_{e_{\$}j} = 4,6656 - 0,1557 \log_{10} (A_{e_{\$}j}) + 0,1547 [\log_{10} (A_{e_{\$}j})]^2$ |
| Yoğuşturucu    | $\dot{C}_{yo\check{g}} = 1773\dot{m}$                                                                        |
| Pompa          | $\dot{C}_P = 1120 (\dot{W}_P)^{0.8}$                                                                         |

Çizelge 3.2'de verilen denklemlere göre buharlaştırıcı ve ısı eşanjörünün satın alma maliyetlerinin tespiti için bu komponentlerdeki ısı transfer yüzey alanlarının hesaplanması gerekir. Isı eşanjörü ve buharlaştırıcı gibi benzer komponentlerde toplam ısı transfer katsayısı, ısı transfer yüzey alanı ve logaritmik sıcaklık farkına dayalı transfer olan ısı miktarı,

$$\dot{Q} = UA\Delta T_{ln} \tag{3.57}$$

bağıntısı kullanılarak belirlenir. Burada U toplam ısı transfer katsayısını, A ısı transfer yüzey alanını ve  $\Delta T_{ln}$  ise logaritmik sıcaklık farkını ifade etmektedir. Bu çalışma kapsamında kullanılan komponentler için belirlenen ortalama toplam ısı transfer katsayıları Çizelge 3.3'de verilmiştir.

**Çizelge 3.3.** Kullanılan komponentler için toplam ısı transfer katsayıları (Kordlar ve Mahmoudi 2017, Parikhani ve ark. 2018, Sadat ve ark. 2019)

| Komponent      | Toplam Isı Transfer Katsayısı, U (W/m² K) |
|----------------|-------------------------------------------|
| Kaynatıcı      | 1600                                      |
| Yoğuşturucu    | 1100                                      |
| Absorber       | 600                                       |
| Buharlaştırıcı | 900                                       |
| Isı Eşanjörü   | 1000                                      |

Isı eşanjörü ve benzeri bir komponentteki logaritmik sıcaklık farkı,

$$\Delta T_{ln} = \frac{(T_{h1} - T_{c2}) - (T_{h2} - T_{c1})}{\ln\left(\frac{T_{h1} - T_{c2}}{T_{h2} - T_{c1}}\right)}$$
(3.58)

eşitliğinden yararlanılarak hesaplanır. Burada  $T_{h1}$  ve  $T_{h2}$  sırasıyla sıcak akışkanın komponente giriş ve çıkış sıcaklığını,  $T_{c1}$  ve  $T_{c2}$  ise sırasıyla soğuk akışkanın komponente giriş ve çıkış sıcaklığını ifade etmektedir.

Sistemle ilgili yatırım maliyetleri ekonomik parametreler dikkate alınarak hesaplandıktan sonra her bir komponent için ürün ve yakıt tanımlamaları yapılarak ekserjiye bağlı maliyet denge denklemleri ve yardımcı denklemler oluşturulur. ORC sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler Çizelge 3.4'de verilmiştir.

**Çizelge 3.4.** ORC sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler

| Komponent      | Ekserjiye Bağlı Maliyet Denge Denklemleri                                                      | Yardımcı<br>Eşitlikler   |
|----------------|------------------------------------------------------------------------------------------------|--------------------------|
| Buharlaştırıcı | $c_{4a}\dot{E}_{4a} + c_5\dot{E}_5 + \dot{Z}_{buh} = c_1\dot{E}_1 + c_6\dot{E}_6$              | $c_{5} = c_{6}$          |
| Türbin         | $c_1 \dot{E}_1 + \dot{Z}_T = c_{e_T} \dot{W}_T + c_2 \dot{E}_2$                                | $c_{1} = c_{2}$          |
| Isı Eşanjörü   | $c_2 \dot{E}_2 + c_4 \dot{E}_4 + \dot{Z}_{e \$ j} = c_{2a} \dot{E}_{2a} + c_{4a} \dot{E}_{4a}$ | $c_2 = c_{2a}$           |
| Yoğuşturucu    | $c_{2a}\dot{E}_{2a} + c_7\dot{E}_7 + \dot{Z}_{yo\breve{g}} = c_3\dot{E}_3 + c_8\dot{E}_8$      | $c_{2a} = c_3$ $c_7 = 0$ |
| Pompa          | $c_{3}\dot{E}_{3} + c_{e_{P}}\dot{W}_{P} + \dot{Z}_{P} = c_{4}\dot{E}_{4}$                     |                          |

### 3.5 Yüksek Sıcaklıklı Elektroliz Sistemi

Günümüzde hidrojen üretimi için bilinen en basit ve yaygın yöntem elektroliz prosesidir. Genel olarak elektroliz, elektrik enerjisi kullanılarak suyun hidrojen ve oksijen atomlarına ayrılmasıdır ve aşağıda verilen kimyasal denklemle gösterilir.

$$2H_2 0 \to 2H_2 + O_2 \tag{3.59}$$

Hidrojen üretimi açısından elektroliz yönteminin en önemli faydası, hidrojenin elektroliz yöntemiyle yüksek saflıkta elde edilebilmesidir. Ancak yüksek elektrik enerjisi tüketimi nedeniyle bu yöntem oldukça maliyetli olmaktadır. Bu durum jeotermal enerji, güneş enerjisi ve rüzgâr enerjisi gibi yenilenebilir enerji kaynaklarının kullanım ihtiyacını arttırmaktadır.

Son yıllarda gelişen yüksek sıcaklıklı elektroliz uygulamasının diğer klasik elektroliz yöntemlerine göre daha yüksek verimli olması yüksek sıcaklıklı elektroliz uygulamasına olan ilgiyi her geçen gün arttırmaktadır. Yüksek sıcaklıklı elektroliz uygulamalarında su molekülü yaklaşık 900°C - 1000°C sıcaklık aralığında bileşenlerine ayrılmakta ve gerekli olan enerji elektrik ve ısı olarak sağlanmaktadır. Genel olarak, yüksek sıcaklıklı elektroliz uygulamalarında su molekülünün bileşenlerine ayrışması yüksek sıcaklıkta gerçekleştirilerek su molekülünün elektrolizi için gerekli olan elektrik enerjisi ihtiyacı azalırken sistemin verimi artmaktadır. Yüksek sıcaklıklı elektroliz sistemindeki toplam enerji ihtiyacı aşağıda verilen bağıntıyla ifade edilir.

$$\Delta H = \Delta G + T \Delta S \tag{3.60}$$

Bu eşitlikte,  $\Delta G$  Gibbs enerjisindeki değişim veya gerekli olan minimum iş, T mutlak sıcaklık,  $\Delta S$  entropi farkı ve  $\Delta H$  ise entalpi değişimi veya toplam enerji ihtiyacıdır.  $\Delta G$  elektrik olarak sağlanması gereken enerjiyi ve  $T\Delta S$  ısıl enerjiyi belirtmektedir. Yüksek sıcaklıklı elektroliz sisteminde minimum enerji ihtiyacının sıcaklık ile değişimi Şekil 3.2'de verilmiştir.



Şekil 3.2. Yüksek sıcaklıklı elektroliz sistemi için gerekli minimum enerji ihtiyacının sıcaklıkla değişimi (Jonsson ve ark. 1992)

Şekil 3.2'de görüldüğü gibi yüksek sıcaklıklı elektroliz uygulamasında elektroliz sıcaklığına bağlı olarak elektroliz için gerekli minimum enerji ihtiyacındaki değişim oldukça azdır. Bununla birlikte, elektroliz sıcaklığının artmasıyla sistemin ısıl enerji ihtiyacı artarken, elektrik enerjisi ihtiyacı azalmaktadır. Jonsson ve ark. (1992) hidrojen üretiminde jeotermal enerjinin kullanımını araştıran bir fizibilite çalışması sunmuşlardır. Bu çalışma kapsamında, yüksek sıcaklıklı elektroliz sistemi içi gerekli minimum enerji ihtiyacı elektroliz sıcaklığına bağlı olarak hesaplanmış ve optimum çalışma aralığı belirlenmiştir. Belirlenen optimum çalışma aralığı Şekil 3.2'de verilen taralı alanda gösterilmiştir.

Tez çalışması kapsamında oluşturulan yüksek sıcaklıklı elektroliz sisteminin tesisat şeması Şekil 3.3'de verilmiştir. Çevre şartlarında sisteme giren elektroliz suyu pompada basınçlandırıldıktan sonra karışım odasına gönderilir (22-23). Karışım odasında elektrolizde ayrıştırılamayan su (27) ile karışan elektroliz suyu (23-24) daha sonra ısı değiştiricisi yardımıyla yüksek sıcaklıklı elektroliz sistemi giriş sıcaklığına kadar ısıtılır (24-25). Isıtılan elektroliz suyu karışım odasından iki ayrı ısı eşanjörü grubuna gönderilir

(25-1-5). Her bir eşanjör grubu üç farklı çalışma basıncına sahip olan ısı eşanjörlerinden oluşmaktadır. Her iki eşanjör grubuna gönderilen elektroliz suyu yaklaşık 1000°C elektroliz sıcaklığına kadar ısıtılır (1-4, 5-8). Her iki eşanjör grubunda ısıtılan elektroliz suyu elektroliz öncesi karışım odasında karıştıktan (4-8-9) sonra elektrolize gönderilir. Elektroliz aşamasından sonra hidrojen ve ayrışmayan su birlikte bir eşanjör grubuna (10) oksijen ise diğer bir eşanjör grubuna (16) gönderilir. Oksijen eşanjör grubunda soğuyarak ve kısılma vanalarında basıncı düşürülerek yüksek sıcaklıklı elektroliz sistemini terk eder (21). Bununla birlikte diğer eşanjör grubuna sevk edilen hidrojen ve su öncelikle 1s1 eşanjöründe soğutularak (10-11) kısılma vanasına gönderilir ve burada basınçları düşürülür (11-11a). Kısılma vanasından ayrılan hidrojen ve suyun sahip oldukları sıcaklık farkı nedeniyle karışım odasında sıcaklıkları dengelenir (11a-12). Bu durum eşanjör grubundaki diğer eşanjörler için tekrarlanarak hidrojen ve suyun çıkış basıncına ulaşması sağlanır (15). Son olarak yüksek sıcaklıklı elektroliz sisteminden ayrılan hidrojen su karışımı seperatörde sabit sıcaklık ve basınçta ayrıştırılarak (15-26) hidrojen elde edilmiş olunur. Ayrışan su ise kısılma vanasında tekrar basıncı düşürülerek (26-27) karışım odasına gönderilir ve çevrime tekrar katılır (27-24).



Şekil 3.3. Yüksek sıcaklıklı elektroliz sistemi tesisat şeması

#### 3.5.1 Yüksek Sıcaklıklı Elektroliz Sisteminin Enerji Analizi

Termodinamiğin birinci kanun denklemlerinden yararlanılarak yapılan yüksek sıcaklıklı elektroliz sisteminin enerji analizi için öncelikle sistemde dolaşan akışkanların kütlesel debilerinin belirlenmesi gerekir. Sistemden üretilen hidrojen ve oksijen debileri sırasıyla,

$$\dot{m}_{H_2} = (1 - r)\dot{m}_{H_20} \frac{M_{H_2}}{M_{H_20}} + r\dot{m}_{H_20}$$
(3.61)

$$\dot{m}_{O_2} = \frac{(1-r)}{2} \dot{m}_{H_2O} \frac{M_{O_2}}{M_{H_2O}}$$
(3.62)

bağıntıları yardımıyla hesaplanır (Mansilla ve ark. 2007). Bu bağıntılarda kullanılan rifadesi elektroliz ünitesinde hidrojen ve oksijen moleküllerine ayrışamayan elektroliz su buharının sisteme giren toplam su buharına oranı olarak tanımlanmaktadır. Literatürde geri dönüşüm oranı olarak da ifade edilmektedir (Sigurvinsson ve ark. 2006). Ayrıca  $\dot{m}_{H_2}$ ve  $\dot{m}_{O_2}$ sırasıyla elektroliz ünitesinde üretilen hidrojenin ve oksijenin,  $\dot{m}_{H_2O}$  ise elektroliz ünitesine giren toplam elektroliz su buharının kütlesel debisini göstermekte iken  $M_{H_2}$ ,  $M_{O_2}$  ve  $M_{H_2O}$  sırasıyla hidrojen, oksijen ve su buharının molekül ağırlıklarını tanımlamaktadır. Elektroliz ünitesi için kütle dengesi,

$$\dot{m}_9 = \dot{m}_{10} + \dot{m}_{16} \tag{3.63}$$

olarak yazılabilir. Burada  $\dot{m}_9$  elektroliz ünitesine giren toplam su buharının kütlesel debisini,  $\dot{m}_{10}$  üretilen hidrojen ve ayrışmayan su buharının toplam kütlesel debisini,  $\dot{m}_{16}$  ise üretilen oksijenin kütlesel debisini ifade etmektedir.

Hidrojen tarafı eşanjör grubu 1, 3 ve 5 numaralı ısı eşanjörlerinden oluşmaktadır. Üretilen hidrojen ile ayrışmayan su buharı karışımının ısısından yararlanılarak elektroliz suyunun elektroliz sıcaklığına ısıtılması amaçlanmaktadır. Hidrojen tarafı ısı eşanjörlerinden transfer olan ısı miktarı aşağıdaki denklemler yardımıyla hesaplanır.

$$\dot{Q}_{e_{5}j,1} = \dot{m}_{1}(h_{2} - h_{1}) = \dot{m}_{14}(h_{14} - h_{15})$$
(3.64)

$$\dot{Q}_{e,j,1} = \varepsilon_{e,j,1} (\dot{m}C_P)_{min} (T_{14} - T_1)$$
(3.65)

$$\dot{Q}_{e_{5}j,3} = \dot{m}_2(h_3 - h_2) = \dot{m}_{12}(h_{12} - h_{13})$$
 (3.66)

$$\dot{Q}_{e,j,3} = \varepsilon_{e,j,3} (\dot{m}C_P)_{min} (T_{12} - T_2)$$
(3.67)

$$\dot{Q}_{e_{5}j,5} = \dot{m}_{3}(h_{4} - h_{3}) = \dot{m}_{10}(h_{10} - h_{11})$$
(3.68)

$$\dot{Q}_{e_{sj,5}} = \varepsilon_{e_{sj,5}} (\dot{m}C_P)_{min} (T_{10} - T_3)$$
(3.69)

Benzer şekilde oksijen tarafı eşanjör grubu 2, 4 ve 6 numaralı ısı eşanjörlerinden oluşmaktadır. Elde edilen yüksek sıcaklıktaki oksijenin ısısından yararlanılarak elektroliz suyunun ısıtılması amaçlanmaktadır. Oksijen tarafı ısı eşanjörlerinden transfer olan ısı miktarı,

$$\dot{Q}_{e_5j,2} = \dot{m}_5(h_6 - h_5) = \dot{m}_{20}(h_{20} - h_{21})$$
 (3.70)

$$\dot{Q}_{e_{5}j,2} = \varepsilon_{e_{5}j,2} (\dot{m}C_P)_{min} (T_{20} - T_5)$$
(3.71)

$$\dot{Q}_{e \neq j,4} = \dot{m}_6 (h_7 - h_6) = \dot{m}_{18} (h_{18} - h_{19})$$
 (3.72)

$$\dot{Q}_{e,j,4} = \varepsilon_{e,j,4} (\dot{m}C_P)_{min} (T_{18} - T_6)$$
(3.73)

$$\dot{Q}_{e_{\rm S}j,6} = \dot{m}_7(h_8 - h_7) = \dot{m}_{16}(h_{16} - h_{17}) \tag{3.74}$$

$$\dot{Q}_{e_{\rm S}j,6} = \varepsilon_{e_{\rm S}j,6} (\dot{m}C_P)_{min} (T_{16} - T_7)$$
(3.75)

bağıntıları yardımıyla hesaplanır. Burada  $(\dot{m}C_P)_{min}$  her bir ısı eşanjörüne ait giriş noktaları için hesaplanan  $(\dot{m}C_P)$  değerlerinden düşük olan değeri ifade etmektedir. Ayrıca  $\varepsilon_{eşj}$  değeri her bir ısı eşanjörünün etkenliği olarak tanımlanmaktadır.

Elektroliz ünitesinin enerji dengesi,

$$\dot{Q} - \dot{W}_{elektroliz} = \dot{m}_{10_{H_2}} \left(\bar{h}_f + \bar{h} - \bar{h}_0\right)_{10_{H_2}} + \dot{m}_{10_{H_20}} \left(\bar{h}_f + \bar{h} - \bar{h}_0\right)_{10_{H_20}} + \dot{m}_{16} \left(\bar{h}_f + \bar{h} - \bar{h}_0\right)_{16} - \dot{m}_9 \left(\bar{h}_f + \bar{h} - \bar{h}_0\right)_9$$
(3.76)

denklemi kullanılarak belirlenir (Balta ve ark. 2009). Burada  $\bar{h}_f$  akışkanın oluşum entalpisini,  $\bar{h}$  akışkanın bulunduğu sıcaklıktaki özgül entalpisini ve  $\bar{h}_0$  akışkanın ölü hal şartlarındaki özgül entalpisini ifade etmektedir.

Yüksek sıcaklıklı elektroliz sisteminin girişinde bulunan ve çevre şartlarındaki elektroliz suyunu basınçlandıran pompanın özgül işi,

$$-w_{P_{giris}} = \int v \, dP = \frac{v_{22}(P_{23} - P_{22})}{\eta_{P,isen}} = h_{23} - h_{22} \tag{3.77}$$

bağıntısı yardımıyla hesaplanır. Eşitlik (3.77)'den yararlanarak pompa işi ise aşağıda verilen denklem kullanılarak elde edilir.

$$\dot{W}_{P_{giris}} = \dot{m}_{22}(h_{23} - h_{22}) \tag{3.78}$$

Pompada basınçlandırılan su, elektroliz ünitesinde ayrışamayan su ile karışım odasında karışır. Karışım odasının kütle ve enerji dengesi,

$$\dot{m}_{23} = \dot{m}_{24} + \dot{m}_{27} \tag{3.79}$$

$$\dot{m}_{23}h_{23} = \dot{m}_{24}h_{24} + \dot{m}_{27}h_{27} \tag{3.80}$$

denklemleri yardımıyla ifade edilir. Elektroliz işinin azaltılması amacıyla, jeotermal enerjiden yararlanarak elektroliz suyunun sıcaklığını bir miktar arttırmak için giriş eşanjörü kullanılmaktadır. Giriş eşanjöründe jeotermal akışkan ile elektroliz suyu arasında gerçekleşen ısı transferi,

$$\dot{Q}_{eşj,giriş} = \dot{m}_{24}(h_{25} - h_{24}) = \dot{m}_{jeo}\left(h_{jeo_{giriş}} - h_{jeo_{\varsigmalklş}}\right)$$
(3.81)

$$\dot{Q}_{eşj,giriş} = \varepsilon_{eşj,giriş} (\dot{m}C_P)_{min} \left( T_{jeo_{giriş}} - T_{24} \right)$$
(3.82)

bağıntıları kullanılarak hesaplanır. Bu bağıntılarda kullanılan  $\dot{m}_{jeo}$  jeotermal akışkan debisini,  $h_{jeo_{giris}}$ ,  $h_{jeo_{çikıs}}$  jeotermal akışkanının sırasıyla giriş ve çıkış özgül entalpisini,  $T_{jeo_{giris}}$  ise jeotermal akışkanın eşanjöre giriş sıcaklığını ifade etmektedir.

Eşanjör giriş sıcaklığına ısıtılan elektroliz buharı karışım odasından iki ayrı eşanjör grubuna gönderilir. Eşanjör grubu öncesinde bulunan karışım odasının kütle ve enerji dengesi,

$$\dot{m}_{25} = \dot{m}_1 + \dot{m}_5 \tag{3.83}$$

$$\dot{m}_{25}h_{25} = \dot{m}_1h_1 + \dot{m}_5h_5 \tag{3.84}$$

bağıntılarıyla ifade edilir. Yüksek sıcaklıklı elektroliz sistemi içerisinde kullanılan diğer karışım odaları için kütle ve enerji dengesi Eşitlik (3.83) ve (3.84)'e benzer şekilde yazılabilir.

Hidrojen tarafı eşanjör grubunun çıkışında bulunan seperatör, hidrojen ve su karışımını sabit sıcaklık ve basınçta ayrıştırarak saf hidrojen elde edilmesini sağlar. Seperatördeki kütle dengesi aşağıdaki şekilde ifade edilir.

$$\dot{m}_{15_{H_2}} = \dot{m}_{28} \tag{3.85}$$

$$\dot{m}_{15_{H_2O}} = \dot{m}_{26} \tag{3.86}$$

Elektroliz sistemi içerisinde özellikle farklı çalışma basıncına sahip eşanjörler arasında basınç düşümünü sağlamak amacıyla kullanılan kısılma vanalarında entalpi değişimi sıfırdır.

Benzer şekilde, (6) numaralı kısılma vanasında seperatörden ayrılan yüksek basınçlı hidrojenin basıncı çevre şartlarına düşürülür. Hidrojenin Joule-Thomson katsayısının negatif olması nedeniyle kısılma vanasında basınç düşümü gerçekleşirken sıcaklık artmaktadır.

Yüksek sıcaklıklı elektroliz sisteminin enerji verimi,

$$\eta_{elektroliz} = \frac{\dot{m}_{15_{H_2}} H H V_{H_2}}{\dot{W}_{elektroliz} + (\dot{m}_1 h_1 + \dot{m}_5 h_5)}$$
(3.87)

bağıntısı yardımıyla hesaplanır. Bağıntıda kullanılan  $HHV_{H_2}$  hidrojenin üst ısıl değerini ifade etmekte olup, bu değer 140,9 MJ/kg'dır.

## 3.5.2 Yüksek Sıcaklıklı Elektroliz Sisteminin Ekserji Analizi

Termodinamiğin ikinci kanun denklemlerinden yararlanılarak, yüksek sıcaklıklı elektroliz sisteminin ekserji analizi için sistemi oluşturan komponentlerin ekserji denklemleri aşağıda verilmiştir (Kanoglu ve ark. 2011, Balta ve ark. 2016).

Hidrojen tarafı eşanjör grubunu oluşturan eşanjörlerdeki ekserji yıkımı,

$$\dot{I}_{e\$j,1} = \left(\dot{E}_1 + \dot{E}_{14_{H_2}} + \dot{E}_{14_{H_2}0}\right) - \left(\dot{E}_2 + \dot{E}_{15_{H_2}} + \dot{E}_{15_{H_2}0}\right)$$
(3.88)

$$\dot{I}_{e \neq j,3} = \left(\dot{E}_2 + \dot{E}_{12_{H_2}} + \dot{E}_{12_{H_2}o}\right) - \left(\dot{E}_3 + \dot{E}_{13_{H_2}} + \dot{E}_{13_{H_2}o}\right)$$
(3.89)

$$\dot{I}_{e\$j,5} = \left(\dot{E}_3 + \dot{E}_{10_{H_2}} + \dot{E}_{10_{H_2}o}\right) - \left(\dot{E}_4 + \dot{E}_{11_{H_2}} + \dot{E}_{11_{H_2}o}\right)$$
(3.90)

bağıntıları yardımıyla hesaplanır. Yukarıda verilen eşitliklerden yararlanarak hidrojen tarafı ısı eşanjör grubunu oluşturan eşanjörlerin ekserji verimi aşağıdaki bağıntılar kullanılarak elde edilir.

$$\eta_{ex,e_{5}j,1} = \frac{\left(\dot{E}_{2} - \dot{E}_{1}\right)}{\left(\dot{E}_{14_{H_{2}}} + \dot{E}_{14_{H_{2}0}}\right) - \left(\dot{E}_{15_{H_{2}}} + \dot{E}_{15_{H_{2}0}}\right)}$$
(3.91)

$$\eta_{ex,e_{5}j,3} = \frac{\left(\dot{E}_{3} - \dot{E}_{2}\right)}{\left(\dot{E}_{12_{H_{2}}} + \dot{E}_{12_{H_{2}0}}\right) - \left(\dot{E}_{13_{H_{2}}} + \dot{E}_{13_{H_{2}0}}\right)}$$
(3.92)

$$\eta_{ex,e_{5}j,5} = \frac{\left(\dot{E}_{4} - \dot{E}_{3}\right)}{\left(\dot{E}_{10_{H_{2}}} + \dot{E}_{10_{H_{2}0}}\right) - \left(\dot{E}_{11_{H_{2}}} + \dot{E}_{11_{H_{2}0}}\right)}$$
(3.93)

Benzer şekilde oksijen tarafı eşanjör grubunu oluşturan eşanjörlerdeki ekserji yıkımı ise,

$$\dot{I}_{e,j,2} = \left(\dot{E}_5 + \dot{E}_{20}\right) - \left(\dot{E}_6 + \dot{E}_{21}\right) \tag{3.94}$$

$$\dot{I}_{e_{5}j,4} = \left(\dot{E}_{6} + \dot{E}_{18}\right) - \left(\dot{E}_{7} + \dot{E}_{19}\right)$$
(3.95)

$$\dot{I}_{e_{\$}j,6} = \left(\dot{E}_7 + \dot{E}_{16}\right) - \left(\dot{E}_8 + \dot{E}_{17}\right) \tag{3.96}$$

eşitlikleri kullanılarak belirlenir. Oksijen tarafı ısı eşanjör grubunu oluşturan eşanjörlerin ekserji verimi ise aşağıda verilen bağıntılar yardımıyla hesaplanır.

$$\eta_{ex,e_{\$}j,2} = \frac{\left(\dot{E}_6 - \dot{E}_5\right)}{\left(\dot{E}_{20} - \dot{E}_{21}\right)} \tag{3.97}$$

$$\eta_{ex,e\$j,4} = \frac{\left(\dot{E}_7 - \dot{E}_6\right)}{\left(\dot{E}_{18} - \dot{E}_{19}\right)} \tag{3.98}$$

$$\eta_{ex,e_{\$}j,6} = \frac{\left(\dot{E}_8 - \dot{E}_7\right)}{\left(\dot{E}_{16} - \dot{E}_{17}\right)} \tag{3.99}$$

Elektroliz ünitesindeki ekserji yıkımı,

$$\dot{I}_{elektroliz} = \dot{W}_{elektroliz} + \dot{E}_9 - (\dot{E}_{10_{H_2}} + \dot{E}_{10_{H_2O}} + \dot{E}_{16})$$
(3.100)

denklemi kullanılarak hesaplanır. Eşitlik (3.100)'den yararlanılarak elektroliz ünitesinin ekserji verimi aşağıdaki şekilde elde edilir.

$$\eta_{ex,elektroliz_{\ddot{u}nitesi}} = \frac{\left(\dot{E}_{10_{H_2}} + \dot{E}_{10_{H_20}} + \dot{E}_{16} - \dot{E}_9\right)}{\dot{W}_{elektroliz}}$$
(3.101)

Yüksek sıcaklıklı elektroliz sisteminin girişinde bulunan pompadaki ekserji yıkımı ve ekserji yıkımına bağlı olarak hesaplanan ekserji verimi aşağıda verilen denklemler yardımıyla belirlenir.

$$\dot{I}_{P_{giris}} = (\dot{W}_{P_{giris}} + \dot{E}_{22}) - \dot{E}_{23}$$
(3.102)

$$\eta_{ex,P_{giris}} = \frac{\left(\dot{E}_{23} - \dot{E}_{22}\right)}{\dot{W}_{P_{giris}}}$$
(3.103)

Pompa çıkışında bulunan karışım odasındaki ekserji yıkımı ve ekserji yıkımına bağlı olarak hesaplanan karışım odasının ekserji verimi aşağıda verilen eşitlikler kullanılarak hesaplanır. Yüksek sıcaklıklı elektroliz sistemi içerisinde kullanılan diğer karışım odaları için ekserji bağıntıları Eşitlik (3.104) ve (3.105)'e benzer şekilde yazılabilir.

$$\dot{I}_{ko} = \dot{E}_{23} + \dot{E}_{27} - \dot{E}_{24} \tag{3.104}$$

$$\eta_{ex,ko} = \frac{\dot{E}_{24}}{\left(\dot{E}_{23} + \dot{E}_{27}\right)} \tag{3.105}$$

Yüksek sıcaklıklı elektroliz sisteminin girişinde bulunan ve jeotermal akışkan ile elektroliz suyu arasında ısı transferinin gerçekleştiği giriş eşanjöründeki ekserji yıkımı,

$$\dot{I}_{e_{\sharp}j,giri_{\sharp}} = \left(\dot{E}_{24} + \dot{E}_{jeo_{giri_{\sharp}}}\right) - \left(\dot{E}_{25} + \dot{E}_{jeo_{\varsigma \iota k \iota_{\sharp}}}\right)$$
(3.106)

bağıntısı kullanılarak hesaplanır. Giriş eşanjöründeki ekserji yıkımına bağlı olarak giriş eşanjörünün ekserji verimi ise aşağıdaki şekilde ifade edilir.

$$\eta_{ex,e_{ij},giri_{ij}} = \frac{\left(\dot{E}_{25} - \dot{E}_{24}\right)}{\left(\dot{E}_{jeo_{giri_{ij}}} - \dot{E}_{jeo_{c_{i}ki_{ij}}}\right)}$$
(3.107)

Yüksek sıcaklıklı elektroliz sistemi çıkışında elde edilen hidrojen ve su buharı karışımını ayrıştırmak için kullanılan seperatördeki ekserji yıkımı,

$$\dot{I}_{sep} = \left(\dot{E}_{15_{H_2}} + \dot{E}_{15_{H_2O}}\right) - \left(\dot{E}_{26} + \dot{E}_{28}\right)$$
(3.108)

bağıntısı yardımıyla elde edilir. Eşitlik (3.108)'den yararlanılarak seperatörün ekserji verimi ise aşağıdaki eşitlik kullanılarak hesaplanır.

$$\eta_{ex,sep} = \frac{\left(\dot{E}_{15_{H_2}} + \dot{E}_{15_{H_2O}}\right)}{\left(\dot{E}_{26} + \dot{E}_{28}\right)} \tag{3.109}$$

Sistem içerisinde basınç düşümünü sağlamak amacıyla farklı komponentler arasında kısılma vanaları kullanılmıştır. Sistemde 19-20 noktaları arasında kullanılan (1) numaralı kısılma vanası için ekserji eşitlikleri aşağıda verilmiştir.

$$\dot{I}_{kv} = \dot{E}_{19} - \dot{E}_{20} \tag{3.110}$$

$$\eta_{ex,kv} = \frac{\dot{E}_{20}}{\dot{E}_{19}} \tag{3.111}$$

Yüksek sıcaklıklı elektroliz sistemi içerisinde kullanılan diğer kısılma vanaları için ekserji bağıntıları Eşitlik (3.110) ve (3.111)'den yararlanılarak benzer şekilde hesaplanır.

Yüksek sıcaklıklı elektroliz sisteminin ekserji verimi,

$$\eta_{ex,elektroliz} = \frac{\dot{E}_{15_{H_2}}}{\dot{W}_{elektroliz} + (\dot{E}_1 + \dot{E}_5)}$$
(3.112)

bağıntısı kullanılarak belirlenir.

## 3.5.3 Yüksek Sıcaklıklı Elektroliz Sisteminin Eksergoekonomik Analizi

Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin satın alma maliyetlerinin belirlenmesi amacıyla kullanılan maliyet denklemleri Çizelge 3.5'de verilmiştir.

**Çizelge 3.5.** Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin satın alma maliyet denklemleri (El-Emam ve Dincer 2013, Keshtkar ve Khani 2018, Turton ve ark. 2018, Noroozian ve ark. 2019)

| Komponent          | Satın Alma Maliyet Denklemi [USD]                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Elektroliz Ünitesi | $\dot{C}_{elekroliz} = 1000 \dot{W}_{elektroliz}$                                                                                |
| Isı Eşanjörü       | $\log_{10} \dot{C}_{e_{\$}j} = 4,6656 - 0,1557 \log_{10} (A_{e_{\$}j}) + 0,1547 [\log_{10} (A_{e_{\$}j})]^2$                     |
| Seperatör          | $\log_{10}\left(\frac{\dot{C}_{sep}}{5.93}\right) = 3,4974 + 0,4485\log_{10}(V_{sep}) + 0,1074\left[\log_{10}(V_{sep})\right]^2$ |
| Karışım Odası      | $\log_{10}\left(\frac{\dot{C}_{ko}}{5.93}\right) = 3,4974 + 0,4485\log_{10}(V_{ko}) + 0,1074[\log_{10}(V_{ko})]^2$               |
| Pompa              | $\dot{C}_P = 1120 \big(\dot{W}_{pompa}\big)^{0.8}$                                                                               |
| Kısılma Vanası     | $\dot{C}_{kv} = 2500$                                                                                                            |

Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler Çizelge 3.6'da verilmiştir.

| Komponent          | Ekserjiye Bağlı Maliyet Denge Denklemleri                                                                                                                                                          | Yardımcı<br>Eşitlikler                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Elektroliz Ünitesi | $c_{9}\dot{E}_{9} + c_{e_{E}}\dot{W}_{elektroliz} + \dot{Z}_{elektroliz}$ $= c_{16}\dot{E}_{16} + c_{10}\left(\dot{E}_{10_{H_{2}}} + \dot{E}_{10_{H_{2}0}}\right)$                                 | $c_{10} = c_{16}$<br>$c_{e_E} = $ biliniyor      |
| Isı Eşanjörü (1)   | $c_{1}\dot{E}_{1} + c_{14}\left(\dot{E}_{14_{H_{2}}} + \dot{E}_{14_{H_{2}0}}\right) + \dot{Z}_{e,j,1}$ $= c_{2}\dot{E}_{2} + c_{15}\left(\dot{E}_{15_{H_{2}}} + \dot{E}_{15_{H_{2}0}}\right)$      | $c_{14} = c_{15}$                                |
| Isı Eşanjörü (2)   | $c_5 \dot{E}_5 + c_{20} \dot{E}_{20} + \dot{Z}_{e_5 j,2} = c_6 \dot{E}_6 + c_{21} \dot{E}_{21}$                                                                                                    | $c_{20} = c_{21}$                                |
| Isı Eşanjörü (3)   | $c_{2}\dot{E}_{2} + c_{12}\left(\dot{E}_{12_{H_{2}}} + \dot{E}_{12_{H_{2}0}}\right) + \dot{Z}_{e \neq j,3}$ $= c_{3}\dot{E}_{3} + c_{13}\left(\dot{E}_{13_{H_{2}}} + \dot{E}_{13_{H_{2}0}}\right)$ | $c_{12} = c_{13}$                                |
| Isı Eşanjörü (4)   | $c_6 \dot{E}_6 + c_{18} \dot{E}_{18} + \dot{Z}_{e_5 j,4} = c_7 \dot{E}_7 + c_{19} \dot{E}_{19}$                                                                                                    | $c_{18} = c_{19}$                                |
| Isı Eşanjörü (5)   | $c_{3}\dot{E}_{3} + c_{10}\left(\dot{E}_{10_{H_{2}}} + \dot{E}_{10_{H_{2}0}}\right) + \dot{Z}_{e,j,5}$ $= c_{4}\dot{E}_{4} + c_{11}\left(\dot{E}_{11_{H_{2}}} + \dot{E}_{11_{H_{2}0}}\right)$      | $c_{10} = c_{11}$                                |
| Isı Eşanjörü (6)   | $c_7 \dot{E}_7 + c_{16} \dot{E}_{16} + \dot{Z}_{e_{\$}j,6} = c_8 \dot{E}_8 + c_{17} \dot{E}_{17}$                                                                                                  | $c_{16} = c_{17}$                                |
| Giriş Eşanjörü     | $c_{24}\dot{E}_{24} + c_{jeo}{}_{giri\$}\dot{E}_{jeo}{}_{giri\$} + \dot{Z}_{e\$j,giri\$}$ $= c_{25}\dot{E}_{25} + c_{jeo}{}_{\varsigmaiki\$}\dot{E}_{jeo}{}_{\varsigmaiki\$}$                      | C <sub>jeogiriş</sub><br>= c <sub>jeoçıkış</sub> |
| Seperatör          | $c_{15}\left(\dot{E}_{15_{H_2}} + \dot{E}_{15_{H_2O}}\right) + \dot{Z}_{sep} = c_{26}\dot{E}_{26} + c_{28}\dot{E}_{28}$                                                                            | $c_{26} = c_{28}$                                |
| Karışım Odası (1)  | $c_{23}\dot{E}_{23} + c_{27}\dot{E}_{27} + \dot{Z}_{ko,1} = c_{24}\dot{E}_{24}$                                                                                                                    |                                                  |
| Karışım Odası (2)  | $c_{25}\dot{E}_{25} + \dot{Z}_{ko,2} = c_1\dot{E}_1 + c_5\dot{E}_5$                                                                                                                                | $c_{1} = c_{5}$                                  |
| Karışım Odası (3)  | $c_4 \dot{E}_4 + c_8 \dot{E}_8 + \dot{Z}_{ko,3} = c_9 \dot{E}_9$                                                                                                                                   |                                                  |
| Karışım Odası (4)  | $c_{11a} \left( \dot{E}_{11a_{H_2}} + \dot{E}_{11a_{H_2O}} \right) + \dot{Z}_{ko,4}$ $= c_{12} \left( \dot{E}_{12_{H_2}} + \dot{E}_{12_{H_2O}} \right)$                                            |                                                  |
| Karışım Odası (5)  | $c_{13a} \left( \dot{E}_{13a_{H_2}} + \dot{E}_{13a_{H_2o}} \right) + \dot{Z}_{ko,5}$ $= c_{14} \left( \dot{E}_{14_{H_2}} + \dot{E}_{14_{H_2o}} \right)$                                            |                                                  |
| Pompa              | $c_{22}\dot{E}_{22} + c_{e_P}\dot{W}_P + \dot{Z}_P = c_{23}\dot{E}_{23}$                                                                                                                           | $c_{22} = 0$<br>$c_{e_P} = \text{biliniyor}$     |
| Kısılma Vanası (1) | $c_{19}\dot{E}_{19} + \dot{Z}_{k\nu,1} = c_{20}\dot{E}_{20}$                                                                                                                                       |                                                  |

Çizelge 3.6. Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler

| Komponent          | Ekserjiye Bağlı Maliyet Denge Denklemleri                                                                                                               | Yardımcı<br>Eşitlikler |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Kısılma Vanası (2) | $c_{17}\dot{E}_{17} + \dot{Z}_{k\nu,2} = c_{18}\dot{E}_{18}$                                                                                            |                        |
| Kısılma Vanası (3) | $c_{11} \left( \dot{E}_{11_{H_2}} + \dot{E}_{11_{H_2}o} \right) + \dot{Z}_{kv,3}$ $= c_{11a} \left( \dot{E}_{11a_{H_2}} + \dot{E}_{11a_{H_2}o} \right)$ |                        |
| Kısılma Vanası (4) | $c_{13} \left( \dot{E}_{13_{H_2}} + \dot{E}_{13_{H_2}o} \right) + \dot{Z}_{kv,4}$ $= c_{13a} \left( \dot{E}_{13a_{H_2}} + \dot{E}_{13a_{H_2}o} \right)$ |                        |
| Kısılma Vanası (5) | $c_{26}\dot{E}_{26} + \dot{Z}_{k\nu,5} = c_{27}\dot{E}_{27}$                                                                                            |                        |
| Kısılma Vanası (6) | $c_{28}\dot{E}_{28} + \dot{Z}_{k\nu,6} = c_{29}\dot{E}_{29}$                                                                                            |                        |

**Çizelge 3.6.** Yüksek sıcaklıklı elektroliz sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler (devam)

### 3.6 Absorbsiyonlu Soğutma Sistemi

Enerji maliyetlerinin artmasıyla önem kazanan absorbsiyonlu soğutma sistemleri, sıcaklığı yaklaşık 100°C ile 200°C arasında değişen, ucuz bir ısıl enerji kaynağından yararlanılması halinde ekonomik açıdan kazançlı olabilecek bir soğutma yöntemi olarak değerlendirilmektedir.

Bu çalışmada, absorbsiyonlu soğutma sisteminde kullanılmak üzere iki farklı eriyik çifti (LiBr–H<sub>2</sub>O ve NH<sub>3</sub>–H<sub>2</sub>O eriyikleri) belirlenmiştir. Çalışma kapsamında oluşturulan absorbsiyonlu soğutma sisteminin tesisat şeması Şekil 3.4'de verilmiştir. Kaynatıcıda jeotermal kaynaktan sağlanan ısıyla, soğutucu akışkan buharının tamamı (LiBr–H<sub>2</sub>O eriyiği için H<sub>2</sub>O, NH<sub>3</sub>–H<sub>2</sub>O eriyiği için NH<sub>3</sub>) buharlaşarak eriyikten ayrılır. Kaynatıcıdan ayrılan soğutucu akışkan buharı ile absorberden ayrılan eriyik arasında eriyik-soğutucu akışkan eşanjöründe ısı transferi gerçekleşmektedir. Böylece absorberden ayrılan eriyiğin sıcaklığı artarken, kaynatıcıdan ayrılan soğutucu akışkanın sıcaklığı azalmaktadır. Soğutucu akışkan sıcaklığının azalmasıyla yoğuşturucu kapasitesi düşmekte, eriyik sıcaklığının artmasıyla ise sistemin STK değeri yükselmektedir. Eriyik-soğutucu akışkan eşanjöründen ayrılan soğutucu akışkan yoğuşturucuya girer. Yoğuşturucudan doymuş sıvı veya sıkıştırılmış sıvı fazında ayrılan soğutucu akışkanın sıcaklığı soğutucu akışkan eşanjöründe azaltılarak buharlaştırıcıya daha düşük entalpi değerinde girmesi sağlanır. Eşanjörden ayrılan soğutucu akışkan kısılma vanası yardımıyla buharlaştırıcı basıncına genişletilir. Buharlaştırıcıda, soğutucu akışkanın buharlaşması için gerekli olan ısı hidrojenden çekilerek hidrojenin soğutulması sağlanır. Buharlaştırıcıdan doymuş buhar veya kızgın buhar fazında ayrılan soğutucu akışkanın sıcaklığı soğutucu akışkan eşanjöründe artarak absorbere gönderilir.



Şekil 3.4. Absorbsiyonlu soğutma sisteminin tesisat şeması (Canbolat ve ark. 2019)

## 3.6.1 Absorbsiyonlu Soğutma Sisteminin Enerji Analizi

Bu çalışma kapsamında Lityum Bromür–Su (LiBr–H<sub>2</sub>O) ve Amonyak–Su (NH<sub>3</sub>–H<sub>2</sub>O) eriyiklerinin kullanıldığı absorbsiyonlu soğutma sistemleri incelenecektir. Absorbsiyonlu soğutma sistemlerinin enerji analizi için öncelikle kullanılan eriyik çiftine bağlı olarak kütle dengesinin yazılması gerekir.
LiBr-H2O eriyiğinin kullanıldığı absorbsiyonlu soğutma sistemleri için kütle dengesi,

$$\dot{m}_{fakir} = \dot{m}_{zengin} + \dot{m}_{H_20}$$
 (toplam kütle dengesi) (3.113)

$$\dot{m}_{fakir} X_{fakir} = \dot{m}_{zengin} X_{zengin}$$
 (LiBr dengesi) (3.114)

bağıntıları kullanılarak yazılabilir. Bu denklemlerde  $\dot{m}_{fakir}$  fakir eriyiğin kütlesel debisini,  $\dot{m}_{zengin}$  zengin eriyiğin kütlesel debisini,  $X_{fakir}$  fakir eriyiğin konsantrasyonunu ve  $X_{zengin}$  ise zengin eriyiğin konsantrasyonunu ifade eder. Eşitlik (3.113) ve (3.114)'den yararlanılarak zengin ve fakir eriyik debileri aşağıda verilen bağıntılarla hesaplanır (Kaynakli ve Kilic 2007).

$$\dot{m}_{zengin} = \frac{X_{fakir}}{X_{zengin} - X_{fakir}} \dot{m}_{H_2O}$$
(3.115)

$$\dot{m}_{fakir} = \frac{X_{zengin}}{X_{zengin} - X_{fakir}} \dot{m}_{H_2O}$$
(3.116)

NH<sub>3</sub>-H<sub>2</sub>O eriyiğinin kullanıldığı absorbsiyonlu soğutma sistemleri için kütle dengesi,

$$\dot{m}_{zengin} = \dot{m}_{fakir} + \dot{m}_{NH_3}$$
 (toplam kütle dengesi) (3.117)

$$\dot{m}_{zengin}X_{zengin} = \dot{m}_{fakir}X_{fakir} + \dot{m}_{NH_3}$$
 (NH<sub>3</sub> dengesi) (3.118)

bağıntıları yardımıyla yazılabilir. Eşitlik (3.117) ve (3.118)'den yararlanılarak zengin ve fakir eriyik debileri ise aşağıdaki şekilde ifade edilir (Karamangil ve ark. 2010).

$$\dot{m}_{zengin} = \frac{1 - X_{fakir}}{X_{zengin} - X_{fakir}} \dot{m}_{NH_3}$$
(3.119)

$$\dot{m}_{fakir} = \frac{1 - X_{zengin}}{X_{zengin} - X_{fakir}} \dot{m}_{NH_3}$$
(3.120)

LiBr–H<sub>2</sub>O ve NH<sub>3</sub>–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma sistemler için dolaşım oranı aşağıdaki bağıntılar kullanılarak belirlenir (Karamangil ve ark. 2010).

$$DO = \frac{\dot{m}_{zengin}}{\dot{m}_{H_2O}} = \frac{X_{fakir}}{X_{zengin} - X_{fakir}}$$
(LiBr-H<sub>2</sub>O eriyiği için) (3.121)

$$DO = \frac{\dot{m}_{zengin}}{\dot{m}_{NH_3}} = \frac{1 - X_{fakir}}{X_{zengin} - X_{fakir}}$$
(NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.122)

Absorbsiyonlu soğutma sistemlerinde, kaynatıcıya dışarıdan verilen ısıyla soğutucu akışkan buharının tamamı buharlaşarak eriyikten ayrılır. Kullanılan eriyik çiftine bağlı olarak kaynatıcıya verilen ısı miktarı,

$$\dot{Q}_{kay} = (\dot{m}_{H_20}h_1 + \dot{m}_{zengin}h_{12}) - \dot{m}_{fakir}h_{11}$$
 (LiBr-H<sub>2</sub>O eriyiği için) (3.123)

$$\dot{Q}_{kay} = (\dot{m}_{NH_3}h_1 + \dot{m}_{fakir}h_{12}) - \dot{m}_{zengin}h_{11}$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.124)

bağıntıları yardımıyla hesaplanır. Eriyik-soğutucu akışkan eşanjöründe kaynatıcıdan ayrılan soğutucu akışkan buharının kızgınlığı alınmaktadır. Eriyik-soğutucu akışkan eşanjörünü terk eden soğutucu akışkan yoğuşturucuda yoğuşacaktır. Bu nedenle soğutucu akışkan, eriyik-soğutucu akışkan eşanjörünü en fazla doymuş buhar şartlarında terk edebilecektir. Ancak, yoğuşturucu ve absorber sıcaklıklarına göre iki farklı durum söz konusu olabilir.

Absorber sıcaklığının yoğuşturucu sıcaklığından büyük olması durumunda, soğutucu akışkanın sıcaklığı maksimum absorber sıcaklığına kadar düşebilir (Kaynaklı ve Yamankaradeniz 2003). Bu durumda eriyik-soğutucu akışkan eşanjöründeki enerji dengesinden yararlanılarak,

$$h_2 = h_1 - \varepsilon_{e_{s_j},e_{s_a}}(h_1 - h_{8^*})$$
 (Her iki eriyik için) (3.125)

$$h_9 = h_8 + \frac{\varepsilon_{esj,esa}(h_1 - h_{8^*})}{D0 + 1}$$
(LiBr-H<sub>2</sub>O eriyiği için) (3.126)

$$h_9 = h_8 + \frac{\varepsilon_{e_5 j, e_{sa}}(h_1 - h_{8^*})}{D0}$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.127)

bağıntıları elde edilir. Bu bağıntılardaki  $\varepsilon_{eşj,esa}$  eriyik-soğutucu akışkan eşanjörünün etkenliğini,  $h_{8^*}$  absorber sıcaklığındaki ( $T_8$ ) soğutucu akışkanın kızgın buhar sıcaklığını ifade etmektedir.

Absorber sıcaklığının yoğuşturucu sıcaklığından küçük olması durumunda ise, soğutucu akışkan sıcaklığı maksimum yoğuşturucu sıcaklığına kadar düşebilir. Bu durumda  $h_{8^*}$  yoğuşturucu sıcaklığındaki soğutucu akışkanın doymuş buhar entalpisi olacaktır. Eriyik-soğutucu akışkan eşanjörü çıkış şartları Eşitlik (3.125), (3.126) ve (3.127) kullanılarak benzer şekilde hesaplanabilir. Eriyik-soğutucu akışkan eşanjöründe eriyik ile soğutucu akışkan arasında gerçekleşen ısı transferi,

$$\dot{Q}_{e_{5}j,e_{5}a} = \dot{m}_{fakir}(h_9 - h_8) = \dot{m}_{H_20}(h_1 - h_2)$$
 (LiBr-H<sub>2</sub>O eriyiği için) (3.128)

$$\dot{Q}_{e,j,esa} = \dot{m}_{zengin}(h_9 - h_8) = \dot{m}_{NH_3}(h_1 - h_2)$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.129)

denklemleri kullanılarak hesaplanır. Eriyik-soğutucu akışkan eşanjöründen ayrılan soğutucu akışkan yoğuşturucuda yoğuşur. Bu esnada yoğuşturucudan atılan ısı miktarı,

$$\dot{Q}_{yo\check{g}} = \dot{m}_{H_2O}(h_2 - h_3)$$
 (LiBr-H<sub>2</sub>O eriyiği için) (3.130)

$$\dot{Q}_{yo\check{g}} = \dot{m}_{NH_3}(h_2 - h_3)$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.131)

bağıntıları yardımıyla belirlenir. Soğutucu akışkan eşanjöründe, yoğuşturucudan çıkan doymuş sıvı ve buharlaştırıcıdan çıkan doymuş buhar fazındaki soğutucu akışkan arasında ısı transferi gerçekleşir. Böylece buharlaştırıcıdan çıkan soğutucu akışkan bir miktar ısınıp kızgın buhar fazında absorbere girerken yoğuşturucudan ayrılan akışkan ise bir miktar daha soğuyarak buharlaştırıcıya girmektedir. Soğutucu akışkan eşanjörü için enerji dengesinden yararlanılarak,

$$h_7 = h_6 + \varepsilon_{e_{\$}j,sa}(h_{3^*} - h_6) \quad (\text{Her iki eriyik için})$$
(3.132)

$$h_4 = h_3 - \varepsilon_{e_{sj,sa}}(h_{3^*} - h_6) \quad (\text{Her iki eriyik için})$$
(3.133)

bağıntıları elde edilir. Bu bağıntılardaki  $\varepsilon_{eşj,sa}$  soğutucu akışkan eşanjörünün etkenliğini,  $h_{3^*}$  yoğuşturucu sıcaklığında ve buharlaştırıcı basıncındaki soğutucu akışkanın kızgın buhar entalpisini ifade etmektedir (Canbolat ve ark. 2019). Soğutucu akışkan eşanjöründe gerçekleşen ısı transferi aşağıda verilen denklemler kullanılarak hesaplanır.

$$\dot{Q}_{e_5j,sa} = \dot{m}_{H_20}(h_3 - h_4) = \dot{m}_{H_20}(h_7 - h_6)$$
 (LiBr-H<sub>2</sub>O eriyiği için) (3.134)

$$\dot{Q}_{e_{s}j,sa} = \dot{m}_{NH_3}(h_3 - h_4) = \dot{m}_{NH_3}(h_7 - h_6)$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.135)

Buharlaştırıcıya giren soğutucu akışkanı buharlaştırmak için gerekli olan ısı soğutulması amaçlanan hidrojenden sağlanır. Soğutulan hidrojenden çekilen ısı miktarı,

$$\dot{Q}_{buh} = \dot{m}_{H_20}(h_6 - h_5) \qquad \text{(LiBr-H_2O eriyiği için)} \tag{3.136}$$

$$\dot{Q}_{buh} = \dot{m}_{NH_3}(h_6 - h_5) \qquad (\text{NH}_3 - \text{H}_2\text{O eriyiği için}) \qquad (3.137)$$

denklemleri kullanılarak hesaplanır. Buharlaştırıcıdan doymuş buhar fazında ayrılan soğutucu akışkanın sıcaklığı soğutucu akışkan eşanjöründe arttırılarak absorbere gönderilir. Absorberdeki enerji dengesinden yararlanılarak aşağıda verilen bağıntılar elde edilir.

$$\dot{Q}_{abs} = (\dot{m}_{H_2O}h_7 + \dot{m}_{zengin}h_{14}) - \dot{m}_{fakir}h_8 \qquad \text{(LiBr-H_2O eriyiği için)} \qquad (3.138)$$

$$\dot{Q}_{abs} = (\dot{m}_{NH_3}h_7 + \dot{m}_{fakir}h_{14}) - \dot{m}_{zengin}h_8$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.139)

Absorberden ayrılan eriyiğin sıcaklığı eriyik-soğutucu akışkan eşanjöründe bir miktar arttırıldıktan sonra eriyik basınçlandırılmak üzere eriyik pompasına gönderilir. Eriyik pompasının işi,

$$\dot{W}_P = \dot{m}_{fakir}(h_{10} - h_9) \qquad \text{(LiBr-H_2O eriyiği için)} \tag{3.140}$$

$$\dot{W}_P = \dot{m}_{zengin}(h_{10} - h_9) \qquad (\text{NH}_3 - \text{H}_2\text{O eriyiği için}) \tag{3.141}$$

bağıntıları kullanılarak hesaplanır. Eriyik pompasından ayrılan eriyik ile kaynatıcıdan ayrılan eriyik arasında eriyik eşanjöründe ısı transferi gerçekleşir. Böylece kaynatıcıya giren eriyiğin sıcaklığı artarken, absorbere giren eriyiğin sıcaklığı azalmaktadır. Eriyik eşanjörü için enerji dengesinden yararlanılarak,

$$T_{13} = \varepsilon_{e \neq j,e} T_{10} + (1 - \varepsilon_{e \neq j,e}) T_{12}$$
 (Her iki eriyik için) (3.142)

$$h_{11} = h_{10} + \frac{DO}{DO + 1}(h_{12} - h_{13})$$
 (LiBr-H<sub>2</sub>O eriyiği için) (3.143)

$$h_{11} = h_{10} + \frac{DO - 1}{DO}(h_{12} - h_{13})$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.144)

bağıntıları elde edilir. Eşitlik (3.142)'de kullanılan  $\varepsilon_{eşj,e}$  eriyik eşanjörünün etkenliğini ifade etmektedir. Eriyik eşanjöründe gerçekleşen ısı transferi aşağıda verilen denklemler kullanılarak hesaplanır.

$$\dot{Q}_{e,j,e} = \dot{m}_{fakir}(h_{11} - h_{10}) = \dot{m}_{zengin}(h_{12} - h_{13})$$
 (LiBr-H<sub>2</sub>O eriyiği için) (3.145)

$$\dot{Q}_{e,j,e} = \dot{m}_{zengin}(h_{11} - h_{10}) = \dot{m}_{fakir}(h_{12} - h_{13})$$
 (NH<sub>3</sub>-H<sub>2</sub>O eriyiği için) (3.146)

Absorbsiyonlu soğutma sistemleri için soğutma tesir katsayısı (STK) değeri, birim iş başına yapılan soğutma olarak tanımlanır ve STK değeri aşağıda verilen bağıntı yardımıyla hesaplanır (Kumar ve ark. 2017).

$$STK = \frac{\dot{Q}_{buh}}{\dot{Q}_{kay} + \dot{W}_P} \tag{3.147}$$

### 3.6.2 Absorbsiyonlu Soğutma Sisteminin Ekserji Analizi

Termodinamiğin ikinci kanun denklemlerinden yararlanılarak, absorbsiyonlu soğutma sisteminin ekserji analizi için sistemi oluşturan komponentlerin ekserji denklemleri aşağıda verilmiştir (Tuğcu ve ark. 2016, Modi ve ark. 2017, Canbolat ve ark. 2019).

Absorbsiyonlu soğutma sistemlerinde kullanılan kaynatıcıdaki ekserji yıkımı,

$$\dot{I}_{kay} = \dot{E}_{11} - \left(\dot{E}_1 + \dot{E}_{12}\right) + \left(\dot{E}_{jeo_{giris}} - \dot{E}_{jeo_{\varsigmalkls}}\right)$$
(3.148)

bağıntısı kullanılarak hesaplanır. Burada  $\dot{E}_{jeo_{giris}}$  ve  $\dot{E}_{jeo_{cikis}}$  kaynatıcıya ısı kaynağı olarak giren jeotermal akışkanın giriş ve çıkış şartlarındaki ekserji akımını ifade etmektedir. Ekserji yıkımına bağlı olarak kaynatıcının ekserji verimi aşağıda verilen denklem kullanılarak elde edilir.

$$\eta_{ex,kay} = \frac{\left(\dot{E}_1 + \dot{E}_{12}\right) - \dot{E}_{11}}{\dot{E}_{jeo_{giris}} - \dot{E}_{jeo_{\varsigmalkls}}}$$
(3.149)

Soğutucu akışkan ile eriyik arasında ısı transferinin gerçekleştiği eriyik-soğutucu akışkan eşanjöründeki ekserji yıkımı,

$$\dot{I}_{e_{5}j,esa} = \left(\dot{E}_{1} - \dot{E}_{2}\right) + \left(\dot{E}_{8} - \dot{E}_{9}\right)$$
(3.150)

denklemi yardımıyla belirlenir. Eşitlik (3.150)'den yararlanılarak eriyik-soğutucu akışkan eşanjörünün ekserji verimi ise aşağıda verilen bağıntı ile hesaplanır.

$$\eta_{ex,esj,esa} = \frac{\dot{E}_9 - \dot{E}_8}{\dot{E}_1 - \dot{E}_2} \tag{3.151}$$

Yoğuşturucudaki ekserji yıkımı,

$$\dot{I}_{yo\check{g}} = \left(\dot{E}_2 - \dot{E}_3\right) + \left(\dot{E}_{yo\check{g},ss_{giris}} - \dot{E}_{yo\check{g},ss_{\varsigma\iota k\iota\bar{s}}}\right)$$
(3.152)

bağıntısı kullanılarak elde edilir. Burada  $\dot{E}_{yo\breve{g},ss_{giri\$}}$  ve  $\dot{E}_{yo\breve{g},ss_{ciki\$}}$  yoğuşturucuya giren soğutma suyunun giriş ve çıkış şartlarındaki ekserji akımını ifade etmektedir. Yoğuşturucuya giren soğutma suyu çevre şartlarındadır. Yoğuşturucudaki ekserji yıkımına bağlı olarak yoğuşturucunun ekserji verimi aşağıda verilen eşitlik yardımıyla belirlenir.

$$\eta_{ex,yo\check{g}} = \frac{\dot{E}_{yo\check{g},ss_{\varsigma lkl\varsigma}} - \dot{E}_{yo\check{g},ss_{g lrl\varsigma}}}{\dot{E}_2 - \dot{E}_3}$$
(3.153)

Soğutucu akışkan eşanjöründe yoğuşturucudan ayrılan soğutucu akışkan ile buharlaştırıcıdan ayrılan soğutucu akışkan arasında ısı transferi gerçekleşir. Soğutucu akışkan eşanjöründeki ekserji yıkımı,

$$\dot{I}_{sa} = (\dot{E}_3 - \dot{E}_4) + (\dot{E}_6 - \dot{E}_7) \tag{3.154}$$

eşitliği kullanılarak hesaplanır. Eşitlik (3.154)'den yararlanılarak soğutucu akışkan eşanjörünün ekserji verimi ise aşağıda verilen bağıntı ile elde edilir.

$$\eta_{ex,e\$j,sa} = \frac{\dot{E}_7 - \dot{E}_6}{\dot{E}_3 - \dot{E}_4} \tag{3.155}$$

Soğutucu akışkan buharlaştırıcıda soğutulması planlanan hidrojenden ısı çekerek buharlaşır. Buharlaştırıcıdaki ekserji yıkımı,

$$\dot{I}_{buh} = \left(\dot{E}_5 - \dot{E}_6\right) + \left(\dot{E}_{H_{2giris}} - \dot{E}_{H_{2gikis}}\right)$$
(3.156)

denklemi yardımıyla belirlenir. Burada  $\dot{E}_{H_{2}giris}$  ve  $\dot{E}_{H_{2}cikis}$  buharlaştırıcıda soğutulması planlanan hidrojenin buharlaştırıcıya giriş ve çıkış şartlarındaki ekserji akımını ifade etmektedir. Buharlaştırıcıdaki ekserji yıkımına bağlı olarak buharlaştırıcının ekserji verimi ise aşağıda verilen eşitlik kullanılarak hesaplanır.

$$\eta_{ex,buh} = \frac{\dot{E}_5 - \dot{E}_6}{\dot{E}_{H_{2giris}} - \dot{E}_{H_{2gikis}}}$$
(3.157)

Absorberdeki ekserji yıkımı,

$$\dot{I}_{abs} = \left(\dot{E}_7 + \dot{E}_{14} - \dot{E}_8\right) + \left(\dot{E}_{abs,ss_{giris}} - \dot{E}_{abs,ss_{gikis}}\right)$$
(3.158)

bağıntısından yararlanılarak elde edilir. Burada  $\dot{E}_{abs,ss_{giris}}$  ve  $\dot{E}_{abs,ss_{cikis}}$  absorbere giren soğutma suyunun giriş ve çıkış şartlarındaki ekserji akımını ifade etmektedir. Absorbere giren soğutma suyu çevre şartlarındadır. Absorberdeki ekserji yıkımına bağlı olarak absorberin ekserji verimi aşağıda verilen eşitlik kullanılarak hesaplanır.

$$\eta_{ex,abs} = \frac{\dot{E}_{abs,ss_{\varsigma lkls}} - \dot{E}_{abs,ss_{g lr ls}}}{\dot{E}_7 + \dot{E}_{14} - \dot{E}_8}$$
(3.159)

Eriyik pompasındaki ekserji yıkımı,

$$\dot{I}_P = \dot{W}_P + \left(\dot{E}_9 - \dot{E}_{10}\right) \tag{3.160}$$

denklemi yardımıyla belirlenir. Eşitlik (3.160)'dan yararlanılarak eriyik pompasının ekserji verimi ise aşağıdaki bağıntı ile elde edilir.

$$\eta_{ex,P} = \frac{\dot{E}_{10} - \dot{E}_9}{\dot{W}_P} \tag{3.161}$$

Eriyik eşanjöründe pompadan çıkan basınçlandırılmış eriyik ile kaynatıcıdan çıkan eriyik arasında ısı transferi gerçekleşir. Eriyik eşanjöründeki ekserji yıkımı,

$$\dot{I}_{e_{\rm S}j,e} = (\dot{E}_{10} - \dot{E}_{11}) + (\dot{E}_{12} - \dot{E}_{13}) \tag{3.162}$$

eşitliği kullanılarak hesaplanır. Eriyik eşanjöründeki ekserji yıkımına bağlı olarak eriyik eşanjörünün ekserji verimi ise aşağıdaki eşitlik yardımıyla belirlenir.

$$\eta_{ex,e_{\$}j,e} = \frac{\dot{E}_{11} - \dot{E}_{10}}{\dot{E}_{12} - \dot{E}_{13}} \tag{3.163}$$

Absorbsiyonlu soğutma sistemi içerisinde basınç düşümünü sağlamak amacıyla farklı komponentler arasında kısılma vanaları kullanılmıştır. Soğutucu akışkan eşanjörü ile buharlaştırıcı arasında kullanılan kısılma vanası için ekserji bağıntıları aşağıda verilmiştir.

$$\dot{I}_{kv} = \dot{E}_4 - \dot{E}_5 \tag{3.164}$$

$$\eta_{ex,kv} = \frac{\dot{E}_5}{\dot{E}_4} \tag{3.165}$$

Absorbsiyonlu soğutma sistemleri için ekserji verimini ifade eden eSTK değeri aşağıda verilen bağıntı kullanılarak hesaplanır (Modi ve ark. 2017, Canbolat ve ark. 2019).

$$eSTK = -\frac{\dot{Q}_{buh} \left[1 - \left(\frac{T_0}{T_{buh}}\right)\right]}{\dot{Q}_{kay} \left[1 - \left(\frac{T_0}{T_{kay}}\right)\right] + \dot{W}_P}$$
(3.166)

## 3.6.3 Absorbsiyonlu Soğutma Sisteminin Eksergoekonomik Analizi

Absorbsiyonlu soğutma sisteminde kullanılan komponentlerin satın alma maliyetlerinin belirlenmesi amacıyla kullanılan maliyet denklemleri Çizelge 3.7'de verilmiştir.

**Çizelge 3.7.** Absorbsiyonlu soğutma sisteminde kullanılan komponentlerin satın alma maliyet denklemleri (El-Emam ve Dincer 2013, Akrami ve ark. 2017, Parikhani ve ark. 2018, Shokati ve Khanahmadzadeh 2018, Turton ve ark. 2018)

| Komponent      | Satın Alma Maliyet Denklemi [USD]                                                                            |  |
|----------------|--------------------------------------------------------------------------------------------------------------|--|
| Kaynatıcı      | $\dot{C}_{kay} = 130 \left(\frac{A_{kay}}{0.093}\right)^{0.78}$                                              |  |
| Yoğuşturucu    | $\dot{C}_{yo\breve{g}} = 8000 \left(\frac{A_{yo\breve{g}}}{100}\right)^{0,6}$                                |  |
| Absorber       | $\dot{C}_{abs} = 130 \left(\frac{A_{abs}}{0,093}\right)^{0,78}$                                              |  |
| Buharlaştırıcı | $\log_{10} \dot{C}_{buh} = 4,6561 - 0,2947 \log_{10}(A_{buh}) + 0,2207 [\log_{10}(A_{buh})]^2$               |  |
| Isı Eşanjörü   | $\log_{10} \dot{C}_{e_{\$}j} = 4,6656 - 0,1557 \log_{10} (A_{e_{\$}j}) + 0,1547 [\log_{10} (A_{e_{\$}j})]^2$ |  |
| Eriyik Pompası | $\dot{C}_P = 2100 \left(rac{\dot{W}_P}{10} ight)^{0,26} \left(rac{1-\eta_P}{\eta_P} ight)^{0,5}$           |  |
| Kısılma Vanası | $\dot{C}_{kv} = 2500$                                                                                        |  |

Absorbsiyonlu soğutma sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler Çizelge 3.8'de verilmiştir.

**Çizelge 3.8.** Absorbsiyonlu soğutma sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler

| Komponent   | Ekserjiye Bağlı Maliyet Denge Denklemleri                                                                                                                                     | Yardımcı<br>Eşitlikler                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Kaynatıcı   | $c_{11}\dot{E}_{11} + (c_{jeo}\dot{E}_{jeo})_{giris} + \dot{Z}_{kay}$<br>= $c_1\dot{E}_1 + c_{12}\dot{E}_{12} + (c_{jeo}\dot{E}_{jeo})_{cikis}$                               | (3.167)                                      |
| Yoğuşturucu | $c_{2}\dot{E}_{2} + (c_{yo\check{g},ss}\dot{E}_{yo\check{g},ss})_{giris} + \dot{Z}_{yo\check{g}}$ $= c_{3}\dot{E}_{3} + (c_{yo\check{g},ss}\dot{E}_{yo\check{g},ss})_{cikis}$ | $c_2 = c_3$ $c_{yo\check{g},ss}_{giris} = 0$ |

| Komponent                           | Ekserjiye Bağlı Maliyet Denge Denklemleri                                                                                                               | Yardımcı<br>Eşitlikler              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Absorber                            | $c_7 \dot{E}_7 + c_{14} \dot{E}_{14} + (c_{abs,ss} \dot{E}_{abs,ss})_{giris} + \dot{Z}_{abs}$ $= c_8 \dot{E}_8 + (c_{abs,ss} \dot{E}_{abs,ss})_{cikis}$ | (3.168)                             |
| Buharlaştırıcı                      | $c_{5}\dot{E}_{5} + (c_{H_{2}}\dot{E}_{H_{2}})_{giris} + \dot{Z}_{buh}$<br>= $c_{6}\dot{E}_{6} + (c_{H_{2}}\dot{E}_{H_{2}})_{cikis}$                    | $c_{H_2_{giris}} = c_{H_2_{cikis}}$ |
| Eriyik Eşanjörü                     | $c_{10}\dot{E}_{10} + c_{12}\dot{E}_{12} + \dot{Z}_{e_{\rm S}j,e} = c_{11}\dot{E}_{11} + c_{13}\dot{E}_{13}$                                            | $c_{12} = c_{13}$                   |
| Soğutucu Akışkan<br>Eşanjörü        | $c_3 \dot{E}_3 + c_6 \dot{E}_6 + \dot{Z}_{e \notin j, sa} = c_4 \dot{E}_4 + c_7 \dot{E}_7$                                                              | $c_{3} = c_{4}$                     |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü | $c_1 \dot{E}_1 + c_8 \dot{E}_8 + \dot{Z}_{e \neq j, esa} = c_2 \dot{E}_2 + c_9 \dot{E}_9$                                                               | $c_{1} = c_{2}$                     |
| Eriyik Pompası                      | $c_9 \dot{E}_9 + c_{e_P} \dot{W}_P + \dot{Z}_P = c_{10} \dot{E}_{10}$                                                                                   | $c_{e_P}$ = biliniyor               |
| Kısılma Vanası (1)                  | $c_4 \dot{E}_4 + \dot{Z}_{k\nu,1} = c_5 \dot{E}_5$                                                                                                      |                                     |
| Kısılma Vanası (2)                  | $c_{13}\dot{E}_{13} + \dot{Z}_{k\nu,2} = c_{14}\dot{E}_{14}$                                                                                            |                                     |

Çizelge 3.8. Absorbsiyonlu soğutma sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler (devam)

Çizelge 3.8'de kaynatıcı ve absorber için oluşturulan yardımcı eşitlikler aşağıda verilmiştir.

$$\frac{c_1 \dot{E}_1 - c_{11} \dot{E}_{11}}{\dot{E}_1 - \dot{E}_{11}} = \frac{c_{12} \dot{E}_{12} - c_{11} \dot{E}_{11}}{\dot{E}_{12} - \dot{E}_{11}}$$
(3.167)

$$\frac{c_7 \dot{E}_7 + c_{14} \dot{E}_{14}}{\dot{E}_7 + \dot{E}_{14}} = \frac{c_8 \dot{E}_8}{\dot{E}_8} \tag{3.168}$$

#### 3.7 Gaz Sıvılaştırma Sistemleri

Sıvılaştırılarak kullanılabilen hidrojen, azot gibi gazların çevre şartlarındaki kaynama noktaları sırasıyla -252,78°C ve -195,79°C'dir ve bu sıcaklıklara konvansiyonel soğutma yöntemleriyle ulaşılması mümkün değildir. Bu nedenle, gazların kriyojenik sıcaklıklarda gerçekleşen sıvılaştırma işlemleri soğutma uygulamalarının önemli bir alanını oluşturmaktadır. Kriyojenik sıcaklıklara ulaşmak için Linde-Hampson, Claude ve Heylandt gibi ileri soğutma çevrimleri kullanılmaktadır.

Bu çalışma kapsamında azot gazının sıvılaştırılması için kullanılan Linde-Hampson çevrimi, hidrojen gazının sıvılaştırılması için ise kullanılan ön soğutmalı Linde-Hampson, ön soğutmalı Claude ve ön soğutmalı Heylandt çevrimleri incelenecektir.

#### 3.7.1 Linde-Hampson Sıvılaştırma Sistemi

Linde-Hampson sıvılaştırma çevrimi, sıvılaştırma uygulamaları içerisinde en basit düzene/yapıya sahip olan çevrimlerdir. Basit bir yapıya sahip olmalarına rağmen genel olarak hidrojen ve helyum dışında birçok gazı sıvılaştırabilirler. Ancak Linde-Hampson çevrimlerinin ikinci kanun performansının düşük olması bu yöntemin kullanımını sınırlayan önemli bir unsurdur.

Linde-Hampson sıvılaştırma çevriminin tesisat şeması ve T-s diyagramı sırasıyla Şekil 3.5 ve Şekil 3.6'da verilmiştir. Çevrimde, sıvılaştırılmamış gaz ve çevrime eklenen tamamlama gazı karışım odasında karıştıktan sonra kompresörde yüksek basınçlara izotermal olarak sıkıştırılır. Kompresörden ayrılan yüksek basınçlı gaz ısı eşanjöründe sıvılaşmamış gazın ısısından yararlanarak soğutulur ve kısılma vanasına gönderilir. Kısılma vanasında sıvılaştırma basıncına genişletilen gaz seperatörde doymuş sıvı ve doymuş buhar olarak ayrıştırılır. Doymuş buhar yüksek basınçlı gazı soğutmak için tekrar çevrime gönderilir ve döngü tekrarlanır.

Bu çalışma kapsamında, hidrojeni sıvılaştırmak amacıyla kullanılan diğer soğutma çevrimlerinde ön soğutma uygulaması için sıvı azottan yararlanılmış ve azotu sıvılaştırmak amacıyla Linde-Hampson çevrimi kullanılmıştır.



Şekil 3.5. Linde-Hampson sıvılaştırma sisteminin tesisat şeması



Şekil 3.6. Linde-Hampson sıvılaştırma sisteminin T-s diyagramı

## 3.7.2 Ön Soğutmalı Linde-Hampson Sıvılaştırma Sistemi

Linde-Hampson sıvılaştırma çevriminde, elde edilen birim sıvı başına sıvılaştırma işi yüksektir ve bu nedenle sistemin verimi diğer sıvılaştırma uygulamalarına göre düşük olmaktadır. Linde-Hampson çevriminin performansını artırmak amacıyla yaygın olarak kullanılan yöntem ön soğutma uygulamasıdır. Genel olarak ön soğutma uygulaması için yardımcı soğutma çevrimleri kullanılarak ana çevrimden elde edilen sıvı ürünün artması ve sistem performansının iyileşmesi amaçlanır.

Ön soğutmalı Linde-Hampson çevrimi ile ana ısı eşanjörüne giren gazın sıcaklığını azalmakta ve buna bağlı olarak Linde-Hampson çevriminin performansını artmaktadır. Bu çalışma kapsamında ön soğutma amacıyla kullanılan yardımcı soğutma çevrimleri, azotu sıvılaştırmak için kullanılan ve farklı basınç şartlarında çalışan Linde-Hampson çevrimidir. Ön soğutmalı Linde-Hampson sıvılaştırma çevriminin tesisat şeması ve T-s diyagramı sırasıyla Şekil 3.7 ve Şekil 3.8'de verilmiştir. Şekil 3.7'de incelendiği gibi ön soğutmalı Linde-Hampson çevrimine iki kere ön soğutma işlemi uygulanmıştır.



Şekil 3.7. Ön Soğutmalı Linde-Hampson sıvılaştırma sisteminin tesisat şeması



Şekil 3.8. Ön Soğutmalı Linde-Hampson sıvılaştırma sisteminin T-s diyagramı

# 3.7.3 Ön Soğutmalı Claude Sıvılaştırma Sistemi

Claude çevrimi, helyum ve hidrojen dahil olmak üzere birçok farklı gazı sıvılaştırmak için kullanılan yaygın bir sıvılaştırma çevrimidir. Claude çevrimi genel olarak eşentalpili ve eşentropili çevrimlerden oluşmaktadır. Çevrimde yer alan türbinde eşentropili genleşme gerçekleşirken, kısılma vanasında ise eşentalpili genleşme gerçekleşmektedir. Ön soğutmalı Claude sıvılaştırma çevriminin tesisat şeması ve T-s diyagramı sırasıyla Şekil 3.9 ve Şekil 3.10'da verilmiştir. Linde-Hampson yönteminden farklı olarak, Claude çevriminde dolaşan gazın bir kısmı türbinde genişler ve türbinden ayrılan akış, ısı eşanjörleri yardımıyla ana gaz akışını soğutmak amacıyla kullanılır.

Bu çalışma kapsamında Claude çevriminin termodinamik performansını arttırmak amacıyla ön soğutmalı Claude sistemi kullanılmıştır. Linde-Hampson çevrimine benzer olarak ön soğutma için sıvı azottan yararlanılmış ancak çevrimde ön soğutma işlemi bir kez uygulanmıştır.



Şekil 3.9. Ön Soğutmalı Claude sıvılaştırma sisteminin tesisat şeması



Şekil 3.10. Ön Soğutmalı Claude sıvılaştırma çevriminin T-s diyagramı

# 3.7.4 Ön Soğutmalı Heylandt Sıvılaştırma Sistemi

Claude çevriminde ön soğutma uygulamasından sonra yer alan ısı eşanjörünün sistemden kaldırılmasıyla Heylandt çevrimi elde edilir. Heylandt çevrimlerinde gaz yaklaşık 20 MPa basınca kadar sıkıştırılabilir. Bu nedenle yüksek basınç gereken sıvılaştırma uygulamalarında sıklıkla uygulanan bir yöntemdir.

Ön soğutmalı Linde-Hampson ve Claude çevrimlerine benzer olarak Heylandt sisteminin termodinamik performansını iyileştirmek ve elde edilen sıvı miktarını arttırmak için bu çalışma kapsamında Heylandt sistemine ön soğutma uygulanmıştır. Ön soğutmalı Heylandt sıvılaştırma çevriminin tesisat şeması ve T-s diyagramı sırasıyla Şekil 3.11 ve Şekil 3.12'de verilmiştir.



Şekil 3.11. Ön Soğutmalı Heylandt sıvılaştırma sisteminin tesisat şeması



Şekil 3.12. Ön Soğutmalı Heylandt sıvılaştırma sisteminin T-s diyagramı

#### 3.7.5 Gaz Sıvılaştırma Sistemlerinin Enerji Analizi

Çalışma kapsamında incelenen Linde-Hampson, ön soğutmalı Linde-Hampson, ön soğutmalı Claude ve ön soğutmalı Heylandt sıvılaştırma sistemlerinin enerji bağıntıları bu bölümde sırasıyla sunulmuştur.

#### Linde-Hampson Sıvılaştırma Sisteminin Enerji Analizi

Termodinamiğin birinci kanun denklemlerinden yararlanılarak, Linde-Hampson sıvılaştırma sisteminin enerji analizi için çevrimi oluşturan komponentlerin enerji denklemleri aşağıda verilmiştir (Timmerhaus ve Flynn 1989, Yilmaz ve ark. 2019).

Linde-Hampson sıvılaştırma sisteminde sıvılaşabilen gaz oranı,

$$y_{sivi} = \frac{h_1 - h_2}{h_1 - h_f} \tag{3.169}$$

bağıntısı kullanılarak hesaplanır. Bu bağıntıda görüldüğü gibi sıvılaşma oranı, ortam şartlarındaki basınca ve sıcaklığa bağlıdır. Ayrıca kompresör çıkış basıncı sıvılaşma oranını etkileyen önemli bir parametredir.

Kompresörde gerçekleşen izotermal sıkıştırma için gerekli olan kompresör işi,

$$\dot{W}_{komp_s} = \dot{m}[(h_{2s} - h_1) - T_1(s_{2s} - s_1)]$$
(3.170)

eşitliği yardımıyla belirlenir. Burada  $\dot{m}$  kompresörde sıkıştırılan gazın kütlesel debisini ifade etmektedir. Kompresörün izotermal verimine bağlı olarak kompresör gerçek işi,

$$\eta_{komp_s} = \frac{W_{komp_s}}{W_{komp}} = \frac{h_{2s} - h_1}{h_2 - h_1}$$
(3.171)

bağıntısından yararlanılarak elde edilir. Burada  $\dot{W}_{komp_s}$  izotermal kompresör işini,  $\dot{W}_{komp}$  gerçek kompresör işini ve  $\eta_{komp_s}$  kompresör izotermal verimini ifade etmektedir. Linde-Hampson sisteminde gerçek kompresör işi aynı zamanda sistemin toplam sıvılaştırma işini de tanımlamaktadır.

$$\dot{W}_{total_{sivi}} = \dot{W}_{komp} \tag{3.172}$$

Linde-Hampson sıvılaştırma sisteminde birim kütle gazı sıvılaştırmak için gerekli olan iş aşağıda verilen eşitlik kullanılarak hesaplanır.

$$\dot{W}_{sivi} = \frac{\dot{W}_{komp}}{y_{sivi}} \tag{3.173}$$

Kompresörden ayrılan yüksek basınçlı gaz sıvılaşmamış gazın ısısından yararlanılarak ısı eşanjöründe soğutulur. Isı eşanjöründe gerçekleşen ısı transferi,

$$\dot{Q}_{e_{5}j} = \dot{m}(h_2 - h_3) = \dot{m}_{gaz}(h_5 - h_g)$$
 (3.174)

$$\dot{Q}_{eşj} = \varepsilon_{eşj} (\dot{m}C_P)_{min} (T_2 - T_g)$$
(3.175)

bağıntıları kullanılarak hesaplanır. Bu bağıntılarda kullanılan  $\dot{m}_{gaz}$  sıvılaşmayan gazın kütlesel debisini ve  $\varepsilon_{eşj}$  eşanjörün etkenliğini ifade etmektedir. Ayrıca Eşitlik (3.175)'de kullanılan  $(\dot{m}C_P)_{min}$  değeri ısı eşanjörü giriş şartları (2 ve g noktaları) için yapılan hesaplamalar sonucu elde edilen değerlerden daha düşük olan  $(\dot{m}C_P)$  değeridir.

Isı eşanjöründe soğutulan gaz kısılma vanasında sıvılaştırma basıncına genişletilir. Kısılma vanasındaki enerji dengesinden yararlanılarak aşağıda verilen eşitlik elde edilir.

$$h_3 \cong h_4 \tag{3.176}$$

Kısılma vanası çıkışındaki gazın kuruluk derecesi,

$$x_4 = 1 - y_{sivi} \tag{3.177}$$

bağıntısından yararlanılarak belirlenir. Kısılma vanasından ayrılan gaz seperatörde doymuş sıvı ve doymuş buhar olarak ayrıştırılır. Seperatördeki kütle ve enerji dengesinden yararlanılarak Eşitlik (3.178) ve (3.179) elde edilir.

$$\dot{m} = \dot{m}_f + \dot{m}_g \tag{3.178}$$

$$\dot{m}h_4 = \dot{m}_f h_f + \dot{m}_g h_g \tag{3.179}$$

Linde-Hampson sıvılaştırma sisteminin enerji verimi aşağıda verilen bağıntı kullanılarak hesaplanır.

$$\eta_{Linde-Hampson} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{komp}} \tag{3.180}$$

Bu çalışma kapsamında Linde-Hampson çevrimi azotun sıvılaştırılması için kullanılacak ve hidrojen sıvılaştırma çevrimlerinin ön soğutmasını oluşturacaktır.

## Ön Soğutmalı Linde-Hampson Sıvılaştırma Sisteminin Enerji Analizi

Ön soğutmalı Linde-Hampson sıvılaştırma sisteminin enerji analizi Linde-Hampson sıvılaştırma sistemine benzer şekilde yapılır. Linde-Hampson sıvılaştırma sisteminden farklı olarak ön soğutmalı sistem için yapılan kabuller ve enerji denklemleri bu bölümde verilmiştir (Nandi ve Sarangi 1993, Kanoglu ve ark. 2012).

Önceki bölümlerde belirtildiği gibi ön soğutmalı Linde-Hampson sıvılaştırma sisteminde iki defa ön soğutma uygulaması yapılmakta ve bu kapsamda, Linde-Hampson sistemi yardımıyla sıvılaştırılan azotun düşük sıcaklığından yararlanılarak hidrojen gazının soğutulması amaçlanmaktadır. Literatürde yapılan benzer çalışmalarda ön soğutma işleminden maksimum fayda sağlamak ve sıvılaştırılacak hidrojeni minimum sıcaklığa soğutabilmek amacıyla ön soğutma eşanjörlerinin etkenliği genellikle %90 ile %100 arasında kabul edilmektedir (Barron 1972, Nandi ve Sarangi 1993, Windmeier ve Barron 2013). Bu çalışma kapsamında ise literatürdeki çalışmalar göz önünde bulundurularak çevrimdeki ön soğutma eşanjörlerinin etkenliği %100 olarak alınmıştır. Yapılan bu kabul her üç sıvılaştırma sistemi için dikkate alınarak analizler gerçekleştirilmiştir.

Ön soğutmalı Linde-Hampson sıvılaştırma sisteminde sıvılaşabilen hidrojen oranını belirlemek amacıyla (5) numaralı eşanjör ve seperatörün dahil olduğu bir kontrol hacmi belirlenir (Şekil 3.13).



Şekil 3.13. Sıvılaşabilen hidrojen oranının belirlenmesi için seçilen kontrol hacmi

Seçilen kontrol hacmi için kütle dengesi yazıldığında, sıvılaşabilen hidrojen oranı aşağıdaki bağıntılar kullanılarak elde edilir.

$$\dot{m}h_6 = (\dot{m} - \dot{m}_f)h_9 + \dot{m}_f h_f \tag{3.181}$$

$$\dot{m}_f (h_9 - h_f) = \dot{m} (h_9 - h_6) \tag{3.182}$$

$$y_{sivi} = \frac{\dot{m}_f}{\dot{m}} = \frac{h_9 - h_6}{h_9 - h_f}$$
(3.183)

Ön soğutmalı Claude ve ön soğutmalı Heylandt sıvılaştırma çevrimlerindeki sıvılaşabilen hidrojen oranının belirlenmesi için benzer kontrol hacmi seçilmiş ve kütle dengesinden yararlanılarak sıvılaşma oranı bağıntıları elde edilmiştir. İlgili bağıntılar ilerleyen bölümlerde Eşitlik (3.190) ve Eşitlik (3.198)'de verilmiştir.

Ön soğutma esnasında ısı eşanjöründe azot ile hidrojen arasında gerçekleşen ısı transferi,

$$\dot{Q}_{e,j,2} = \dot{m}(h_3 - h_4) = \left(\dot{m}_{N_2} \left(h_{N_2 gaz} - h_{N_2 sivi}\right)\right)_{e,j,2}$$
(3.184)

$$\dot{Q}_{e \neq j,4} = \dot{m}(h_5 - h_6) = \left(\dot{m}_{N_2} \left(h_{N_2 gaz} - h_{N_2 sivi}\right)\right)_{e \neq j,4}$$
(3.185)

eşitliklerinden yararlanılarak belirlenir. Burada  $\dot{m}_{N_2}$  eşanjöre giren azotun kütlesel debisini,  $h_{N_{2_{SUV1}}}$  ve  $h_{N_{2_{gaz}}}$  ise azotun eşanjör giriş-çıkış şartlarındaki özgül entalpi değerini ifade etmektedir. Eşitlik (3.184)'de 101,325 kPa basınçta bulunan sıvı ve gaz azotun termofiziksel özellikleri kullanılırken, Eşitlik (3.185)'de ise 13 kPa basınçta bulunan sıvı ve gaz azotun termofiziksel özellikleri kullanılırken.

İzotermal kompresör girişinde bulunan karışım odasının kütle ve enerji dengesinden yararlanılarak aşağıda verilen bağıntılar elde edilir.

$$\dot{m} = \dot{m}_{giris} + \dot{m}_{11} \tag{3.186}$$

$$\dot{m}h_1 = \dot{m}_{giris}h_{giris} + \dot{m}_{11}h_{11} \tag{3.187}$$

Eşitlik (3.186) ve (3.187)'de verilen bağıntılarda kullanılan  $\dot{m}_{giriş}$  tamamlama gazının debisini,  $h_{giriş}$  ise tamamlama gazının giriş şartlarındaki özgül entalpisini ifade etmektedir. Ön soğutmalı Linde-Hampson sıvılaştırma sistemindeki toplam sıvılaştırma işi,

$$\dot{W}_{total_{sivi}} = \dot{W}_{komp} + \dot{W}_{N_{22}} + \dot{W}_{N_{24}}$$
(3.188)

bağıntısı kullanılarak hesaplanır. Burada  $\dot{W}_{N_{2}}$  ve  $\dot{W}_{N_{2}}$  ön soğutma amacıyla kullanılan sıvı azotu elde edebilmek için gerekli olan ve sırasıyla 101,325 kPa ve 13 kPa basınçlarda gerçekleşen azot sıvılaştırma işidir.

Ön soğutmalı Linde-Hampson sıvılaştırma sisteminin enerji verimi aşağıda verilen eşitlik kullanılarak belirlenir.

$$\eta_{Linde-Hampson_{\breve{o}n\,so\breve{g}}} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{total_{sivi}}} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{komp} + \dot{W}_{N_{22}} + \dot{W}_{N_{24}}}$$
(3.189)

# Ön Soğutmalı Claude Sıvılaştırma Sisteminin Enerji Analizi

Önceki bölümlerde sıvılaştırma sistemleriyle ilgili verilen enerji bağıntılarından farklı olarak ön soğutmalı Claude sıvılaştırma sisteminin enerji analizi için kullanılan enerji denklemleri bu bölümde verilmiştir (Timmerhaus ve Flynn 1989, Nandi ve Sarangi 1993, Walker 2014).

Ön soğutmalı Claude sıvılaştırma sisteminde sıvılaşabilen hidrojen oranı,

$$y_{sivi} = \frac{h_{13} - h_4}{h_{13} - h_f} + z \frac{h_5 - h_{10}}{h_{13} - h_f}$$
(3.190)

bağıntısı kullanılarak hesaplanır. Burada z türbine gönderilen gaz oranıdır ve aşağıda verilen denklem yardımıyla belirlenir.

$$z = \frac{\dot{m}_e}{\dot{m}} \tag{3.191}$$

Eşitlik (3.191)'de verilen denklemde  $\dot{m}_e$  türbine gönderilen gazın kütlesel debisini ifade etmektedir. Ön soğutmalı Claude sistemindeki kütle dengesi,

$$\dot{m} = \dot{m}_g + \dot{m}_f + \dot{m}_e \tag{3.192}$$

şeklinde yazılabilir. Claude çevriminin Linde-Hampson çevriminden yapısal olarak temel farkı Claude çevriminde kullanılan türbindir. Eşentropili genleşen türbinin izentropik işi,

$$\dot{W}_{T_{\rm s}} = \dot{m}_e (h_e - h_{10s}) \tag{3.193}$$

eşitliğinden yararlanılarak elde edilir. Türbinin izentropik verimine bağlı olarak türbin gerçek işi,

$$\eta_{T,s} = \frac{\dot{W}_T}{\dot{W}_{T_s}} = \frac{h_e - h_{10}}{h_e - h_{10s}}$$
(3.194)

bağıntısı kullanılarak hesaplanır. Burada  $\dot{W}_{T_s}$  izentropik türbin işini,  $\dot{W}_T$  gerçek türbin işini ve  $\eta_{T,s}$  türbin izentropik verimini ifade etmektedir.

Ön soğutmalı Claude sıvılaştırma sistemindeki toplam sıvılaştırma işi,

$$\dot{W}_{total_{SIVI}} = \dot{W}_{komp} + \dot{W}_{N_2} - \dot{W}_T$$
 (3.195)

denklemi yardımıyla belirlenir. Burada  $\dot{W}_{N_2}$  ön soğutma amacıyla kullanılan sıvı azotu elde edebilmek için gerekli olan azot sıvılaştırma işidir. Ön soğutmalı Claude sıvılaştırma sisteminde birim kütle gazı sıvılaştırmak için gerekli olan iş aşağıda verilen bağıntı kullanılarak elde edilir.

$$\dot{W}_{slvl} = \frac{\dot{W}_{total_{slvl}}}{y_{slvl}} \tag{3.196}$$

Ön soğutmalı Claude sıvılaştırma sisteminin enerji verimi aşağıda verilen eşitlik kullanılarak hesaplanır.

$$\eta_{Claude} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{total_{sivi}}} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{komp} + W_{N_2} - \dot{W}_T}$$
(3.197)

#### Ön Soğutmalı Heylandt Sıvılaştırma Sisteminin Enerji Analizi

Ön soğutmalı Heylandt sıvılaştırma sisteminin enerji analizi ön soğutmalı Claude sıvılaştırma sistemine benzer şekilde yapılır. Ön soğutmalı Claude sıvılaştırma sisteminden farklı olarak ön soğutmalı Heylandt sistemi için yapılan kabuller ve enerji denklemleri bu bölümde verilmiştir (Timmerhaus ve Flynn 1989).

Ön soğutmalı Heylandt sıvılaştırma sisteminde sıvılaşabilen hidrojen oranı,

$$y_{sivi} = \frac{h_{10} - h_4}{h_{10} - h_f} + z \frac{h_4 - h_{12}}{h_{10} - h_f}$$
(3.198)

bağıntısı kullanılarak hesaplanır. Burada z türbine gönderilen gaz oranıdır ve Eşitlik (3.191) yardımıyla elde edilir. Claude sıvılaştırma sistemine benzer olarak Heylandt sıvılaştırma sistemi için kütle dengesi aşağıdaki şekilde yazılabilir.

$$\dot{m} = \dot{m}_g + \dot{m}_f + \dot{m}_e \tag{3.199}$$

Ön soğutmalı Heylandt sıvılaştırma sistemindeki toplam sıvılaştırma işi,

$$\dot{W}_{total_{SIVI}} = \dot{W}_{komp} + \dot{W}_{N_2} - \dot{W}_T$$
 (3.200)

denklemi yardımıyla belirlenir. Burada  $\dot{W}_{N_2}$  ön soğutma amacıyla kullanılan sıvı azotu elde edebilmek için gerekli olan azot sıvılaştırma işidir.

Ön soğutmalı Heylandt sıvılaştırma sisteminin enerji verimi aşağıda verilen eşitlik kullanılarak hesaplanır.

$$\eta_{Heylandt} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{total_{SIVI}}} = \frac{\dot{m}h_1 - \dot{m}_f h_f}{\dot{W}_{komp} + W_{N_2} - \dot{W}_T}$$
(3.201)

#### 3.7.6 Gaz Sıvılaştırma Sistemlerinin Ekserji Analizi

Bu bölümde ön soğutmalı Claude sıvılaştırma sisteminin ekserji analizi için sistemi oluşturan komponentlerin ekserji denklemleri verilmiştir (Kanoglu ve ark. 2016, Yilmaz ve ark. 2018). Linde-Hampson, ön soğutmalı Linde-Hampson ve ön soğutmalı Heylandt sıvılaştırma sistemlerinin ekserji analizi ön soğutmalı Claude sıvılaştırma sistemine benzer şekilde yapılmaktadır. Bu nedenle, Claude çevrimi dışındaki diğer sıvılaştırma çevrimlerinin ekserji analizi için de bu bölümde verilen ekserji bağıntıları kullanılmıştır.

Ön soğutmalı Claude sıvılaştırma sisteminde kullanılan kompresördeki ekserji yıkımı,

$$\dot{I}_{komp} = \dot{W}_{komp} + \left(\dot{E}_1 - \dot{E}_2\right)$$
(3.202)

bağıntısı kullanılarak hesaplanır. Kompresördeki ekserji yıkımına bağlı olarak kompresörün ekserji verimi ise aşağıda verilen eşitlikten yararlanılarak belirlenir.

$$\eta_{ex,komp} = \frac{\left(\dot{E}_2 - \dot{E}_1\right)}{\dot{W}_{komp}} \tag{3.203}$$

Kompresörde yüksek basınca sıkıştırılan gaz (1) numaralı eşanjörde soğutulur. (1) numaralı eşanjördeki ekserji yıkımı,

$$\dot{I}_{e_{\rm S}j,1} = \left(\dot{E}_2 - \dot{E}_3\right) + \left(\dot{E}_{13} - \dot{E}_{14}\right) \tag{3.204}$$

denklemi yardımıyla belirlenir. Eşitlik (3.204)'den yararlanılarak (1) numaralı eşanjörün ekserji verimi aşağıda verilen eşitlik kullanılarak elde edilir.

$$\eta_{ex,e_{\$}j,1} = \frac{\left(\dot{E}_2 - \dot{E}_3\right)}{\left(\dot{E}_{14} - \dot{E}_{13}\right)} \tag{3.205}$$

Ön soğutma amacıyla kullanılan azot ile hidrojen arasında ısı transferinin gerçekleştiği (2) numaralı ısı eşanjöründeki ekserji yıkımı,

$$\dot{I}_{eşj,2} = \left(\dot{E}_3 - \dot{E}_4\right) + \left(\dot{E}_{N_{2_{SiVI}}} - \dot{E}_{N_{2_{gaz}}}\right)$$
(3.206)

bağıntısı kullanılarak hesaplanır. Burada  $\dot{E}_{N_{2stvt}}$  ve  $\dot{E}_{N_{2gaz}}$  azotun eşanjöre giriş-çıkış şartlarındaki ekserji akımını ifade etmektedir. (2) numaralı eşanjörün ekserji verimi ise aşağıdaki verilen denklemden yararlanılarak belirlenir.

$$\eta_{ex,e\S{j},2} = \frac{\left(\dot{E}_3 - \dot{E}_4\right)}{\left(\dot{E}_{N_{2}gaz} - \dot{E}_{N_{2}sivi}\right)}$$
(3.207)

(3) numaralı ısı eşanjöründeki ekserji yıkımı ve ekserji dengesine bağlı olarak eşanjörün ekserji verimi aşağıdaki şekilde yazılabilir.

$$\dot{I}_{e,j,3} = \left(\dot{E}_4 - \dot{E}_5\right) + \left(\dot{E}_{12} - \dot{E}_{13}\right) \tag{3.208}$$

$$\eta_{ex,e_{\$}j,3} = \frac{\left(\dot{E}_4 - \dot{E}_5\right)}{\left(\dot{E}_{13} - \dot{E}_{12}\right)} \tag{3.209}$$

(3) numaralı eşanjörden ayrılan gazın bir kısmı türbine gönderilir. Türbinde genişleyen gaz ısı eşanjörleri yardımıyla ana gaz akışını soğutmak amacıyla kullanılır. Ön soğutmalı Claude sisteminde bu amaçla kullanılan türbindeki ekserji yıkımı,

$$\dot{I}_T = \dot{E}_e - \left(\dot{E}_{10} + \dot{W}_T\right) \tag{3.210}$$

bağıntısı kullanılarak hesaplanır. Eşitlik (3.210)'dan yararlanılarak türbinin ekserji verimi aşağıdaki eşitlik kullanılarak elde edilir.

$$\eta_{ex,T} = \frac{\dot{W}_T}{\left(\dot{E}_e - \dot{E}_{10}\right)} \tag{3.211}$$

(3) numaralı eşanjörden ayrılan gazın türbine gönderilmeyen kısmı sırasıyla (4) ve (5) numaralı eşanjörlerde daha da soğutulur. Bu eşanjörlerdeki ekserji yıkımı ve ekserji

dengesine bağlı olarak eşanjörlerin ekserji verimi aşağıda verilen bağıntılar kullanılarak hesaplanır.

$$\dot{I}_{e \neq j, 4} = \left(\dot{E}_{5a} - \dot{E}_{6}\right) + \left(\dot{E}_{11} - \dot{E}_{12}\right) \tag{3.212}$$

$$\eta_{ex,e\$j,4} = \frac{\left(\dot{E}_{5a} - \dot{E}_{6}\right)}{\left(\dot{E}_{12} - \dot{E}_{11}\right)} \tag{3.213}$$

$$\dot{I}_{e_{5}j,5} = \left(\dot{E}_{6} - \dot{E}_{7}\right) + \left(\dot{E}_{g} - \dot{E}_{9}\right)$$
(3.214)

$$\eta_{ex,e_{\$}j,5} = \frac{\left(\dot{E}_6 - \dot{E}_7\right)}{\left(\dot{E}_9 - \dot{E}_g\right)} \tag{3.215}$$

(5) numaralı eşanjör ile seperatör arasında kullanılan kısılma vanası için ekserji bağıntıları aşağıda verilmiştir.

$$\dot{I}_{kv} = \dot{E}_7 - \dot{E}_8 \tag{3.216}$$

$$\eta_{ex,kv} = \frac{\dot{E}_8}{\dot{E}_7} \tag{3.217}$$

Kısılma vanasında sıvılaştırma basıncına genişletilen gaz seperatörde doymuş sıvı ve doymuş buhar olarak ayrıştırılır. Seperatördeki ekserji yıkımı,

$$\dot{I}_{sep} = \dot{E}_8 - \left(\dot{E}_f + \dot{E}_g\right)$$
 (3.218)

eşitliği kullanılarak hesaplanır. Seperatördeki ekserji yıkımına bağlı olarak seperatörün ekserji verimi aşağıda verilen denklem yardımıyla elde edilir.

$$\eta_{ex,sep} = \frac{\dot{E}_8}{\left(\dot{E}_f + \dot{E}_g\right)} \tag{3.219}$$

(5) numaralı eşanjörden çıkan sıvılaşmayan gaz ile türbinde genişleyen gaz (4) numaralı eşanjöre girmeden önce karışım odasında karışır. Karışım odasındaki ekserji yıkımı,

$$\dot{I}_{ko} = \left(\dot{E}_9 + \dot{E}_{10}\right) - \dot{E}_{11} \tag{3.220}$$

eşitliği kullanılarak belirlenir. Karışım odasındaki ekserji dengesinden yararlanılarak karışım odasının ekserji verimi aşağıda verilen denklem yardımıyla elde edilir.

$$\eta_{ex,ko} = \frac{\dot{E}_{11}}{\left(\dot{E}_9 + \dot{E}_{10}\right)} \tag{3.221}$$

Ön soğutmalı Claude sıvılaştırma sistemi içerisinde kullanılan diğer karışım odaları için ekserji bağıntıları Eşitlik (3.220) ve (3.221)'e benzer şekilde yazılabilir.

Ön soğutmalı Claude sıvılaştırma sisteminin ekserji verimi,

$$\eta_{ex,Claude} = \frac{\left(\frac{\dot{E}_f}{\dot{m}_f} - \frac{\dot{E}_1}{\dot{m}}\right)}{\left(\frac{\dot{W}_{komp}}{\dot{m}} + \frac{\dot{W}_{N_2}}{\dot{m}_{N_2}} - \frac{\dot{W}_T}{\dot{m}_e}\right)/y_{sivi}}$$
(3.222)

eşitliği kullanılarak hesaplanır.

## 3.7.7 Gaz Sıvılaştırma Sistemlerinin Eksergoekonomik Analizi

Çalışma kapsamında incelenen gaz sıvılaştırma sistemlerinden ön soğutmalı Claude sıvılaştırma sisteminin eksergoekonomik bağıntıları bu bölümde sunulmuştur. Ön soğutmalı Claude sisteminde kullanılan komponentlerin satın alma maliyetlerinin belirlenmesi amacıyla kullanılan denklemler Çizelge 3.9'da verilmiştir.

**Çizelge 3.9.** Ön soğutmalı Claude sıvılaştırma sisteminde kullanılan komponentlerin satın alma maliyet denklemleri (El-Emam ve Dincer 2013, Akrami ve ark. 2017, Sadaghiani ve ark. 2017, Turton ve ark. 2018, Ansarinasab ve ark. 2019)

| Komponent      | Satın Alma Maliyet Denklemi [USD]                                                                                                |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Kompresör      | $\dot{C}_{komp} = 7900 (1,341 \dot{W}_{komp})^{0,62}$                                                                            |  |
| Türbin         | $\dot{C}_T = 4750 \left( \dot{W}_T \right)^{0,75}$                                                                               |  |
| Isı Eşanjörü   | $\log_{10} \dot{C}_{e_{\$}j} = 4,6656 - 0,1557 \log_{10} (A_{e_{\$}j}) + 0,1547 [\log_{10} (A_{e_{\$}j})]^2$                     |  |
| Seperatör      | $\log_{10}\left(\frac{\dot{C}_{sep}}{5.93}\right) = 3,4974 + 0,4485\log_{10}(V_{sep}) + 0,1074\left[\log_{10}(V_{sep})\right]^2$ |  |
| Karışım Odası  | $\log_{10}\left(\frac{\dot{C}_{ko}}{5.93}\right) = 3,4974 + 0,4485\log_{10}(V_{ko}) + 0,1074[\log_{10}(V_{ko})]^2$               |  |
| Kısılma Vanası | $\dot{C}_{kv} = 7500$                                                                                                            |  |

Ön soğutmalı Claude sıvılaştırma sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler Çizelge 3.10'da verilmiştir. Ayrıca bu tez kapsamında incelenen diğer sıvılaştırma sistemlerinin ekserjiye bağlı maliyet denge denklemleri için de Çizelge 3.10'da verilen denklemlerden yararlanılmıştır.

**Çizelge 3.10.** Ön soğutmalı Claude sıvılaştırma sisteminde kullanılan komponentlerin ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler

| Komponent        | Ekserjiye Bağlı Maliyet Denge Denklemleri                                                                            | Yardımcı<br>Eşitlikler               |
|------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Kompresör        | $c_1 \dot{E}_1 + c_{e_{komp}} \dot{W}_{komp} + \dot{Z}_{komp} = c_2 \dot{E}_2$                                       | $c_{e_{komp}} = $ biliniyor          |
| Türbin           | $c_e \dot{E}_e + \dot{Z}_T = c_{e_T} \dot{W}_T + c_{10} \dot{E}_{10}$                                                | $c_{e} = c_{10}$                     |
| Isı Eşanjörü (1) | $c_2 \dot{E}_2 + c_{13} \dot{E}_{13} + \dot{Z}_{e_{3}j,1} = c_3 \dot{E}_3 + c_{14} \dot{E}_{14}$                     | $c_{13} = c_{14}$                    |
| Isı Eşanjörü (2) | $ (c_{N_2} \dot{E}_{N_2})_{sivi} + c_3 \dot{E}_3 + \dot{Z}_{eşj,2} = (c_{N_2} \dot{E}_{N_2})_{gaz} + c_4 \dot{E}_4 $ | $c_{N_{2_{SlVl}}} = c_{N_{2_{gaz}}}$ |
| Isı Eşanjörü (3) | $c_4 \dot{E}_4 + c_{12} \dot{E}_{12} + \dot{Z}_{e \neq j,3} = c_5 \dot{E}_5 + c_{13} \dot{E}_{13}$                   | $c_{12} = c_{13}$                    |
| Isı Eşanjörü (4) | $c_{5a}\dot{E}_{5a} + c_{11}\dot{E}_{11} + \dot{Z}_{e;j,4} = c_6\dot{E}_6 + c_{12}\dot{E}_{12}$                      | $c_{11} = c_{12}$                    |

| Çizelge 3.10. Ön soğutmalı Claude sıvılaştırma sisteminde kullanılan komponer | tlerin |
|-------------------------------------------------------------------------------|--------|
| ekserjiye bağlı maliyet denge denklemleri ve yardımcı eşitlikler (devam)      |        |

| Komponent         | Ekserjiye Bağlı Maliyet Denge Denklemleri                                              | Yardımcı<br>Eşitlikler  |
|-------------------|----------------------------------------------------------------------------------------|-------------------------|
| Isı Eşanjörü (5)  | $c_6 \dot{E}_6 + c_g \dot{E}_g + \dot{Z}_{e \neq j,5} = c_9 \dot{E}_9 + c_7 \dot{E}_7$ | $c_g = c_9$             |
| Seperatör         | $c_8 \dot{E}_8 + \dot{Z}_{sep} = c_f \dot{E}_f + c_g \dot{E}_g$                        | $c_f = c_g$             |
| Karışım Odası (1) | $c_{giri\$} \dot{E}_{giri\$} + c_{14} \dot{E}_{14} + \dot{Z}_{ko,1} = c_1 \dot{E}_1$   | $c_{giris} = biliniyor$ |
| Karışım Odası (2) | $c_5 \dot{E}_5 + \dot{Z}_{ko,2} = c_{5a} \dot{E}_{5a} + c_e \dot{E}_e$                 |                         |
| Karışım Odası (3) | $c_{10}\dot{E}_{10} + c_9\dot{E}_9 + \dot{Z}_{ko,3} = c_{11}\dot{E}_{11}$              |                         |
| Kısılma Vanası    | $c_7 \dot{E}_7 + \dot{Z}_{kv} = c_8 \dot{E}_8$                                         |                         |

## 3.8 Sıvı Hidrojen Üretim Sisteminin Enerji ve Ekserji Verimi

Bu çalışma kapsamında oluşturulan sıvı hidrojen üretim sisteminin enerji verimi,

$$\eta_{sistem} = \frac{\dot{m}_f H H V_{H_2}}{\dot{Q}_{buh}} \tag{3.223}$$

bağıntısı kullanılarak elde edilir. Burada  $\dot{Q}_{buh}$ , ORC sistemindeki buharlaştırıcıda jeotermal akışkandan soğutucu akışkana aktarılan ısıyı ifade etmekte ve Eşitlik (3.41) yardımıyla hesaplanmaktadır.

Sıvı hidrojen üretim sisteminin ekserji verimi ise,

$$\eta_{ex,sistem} = \frac{\dot{m}_f H H V_{H_2}}{(\dot{E}_5 - \dot{E}_6)}$$
(3.224)

eşitliği yardımıyla hesaplanır. Burada  $\dot{E}_5$  ve  $\dot{E}_6$  sırasıyla jeotermal akışkanın ORC sistemindeki buharlaştırıcıya giriş ve çıkışındaki ekserji akımını ifade etmektedir.

#### 3.9 Sistem Modellemesi

Bu çalışmanın amacı, sıvı hidrojen üretimi için geliştirilen jeotermal enerji kaynaklı ve sırasıyla ORC sistemi, yüksek sıcaklıklı elektroliz sistemi, absorbsiyonlu soğutma sistemi ve faklı sıvılaştırma sistemlerinden oluşan kapsamlı bir sistemin modellenmesi, modellenen sistemin termodinamik optimizasyonu ve eksergoekonomik analizlerinin gerçekleştirilmesidir. Ayrıca modellenen sistem için yararlanılan jeotermal akışkandan maksimum fayda sağlanması bu çalışmanın önemli bir diğer amacıdır.

Modellenen sistemin temel alt modülü olan ORC sisteminde jeotermal akışkanın enerjisinden yararlanılarak elektrik enerjisi üretilmekte ve bu modülde elde edilen elektrik enerjisi yüksek sıcaklıklı elektroliz ve gaz sıvılaştırma modüllerinde kullanılmaktadır. Elektroliz sistemi öncesinde ısıtılan elektroliz suyu yüksek sıcaklıklı elektroliz sisteminde hidrojen ve oksijene ayrışmakta, ayrışamayan su ise tekrar elektroliz girişindeki elektroliz suyuna verilmektedir.

Yüksek basınç ve sıcaklıkta elde edilen hidrojen absorbsiyonlu soğutma sistemi yardımıyla düşük sıcaklıklara soğutulmaktadır. Yüksek sıcaklıktaki hidrojen gazının sıvılaştırma öncesi soğutulmasıyla sıvılaştırma prosesi için gerekli olan elektrik enerjisi ihtiyacı azalacaktır. Absorbsiyonlu soğutma sisteminde de jeotermal akışkanın yüksek sıcaklığından yararlanılmakta ve böylece sistemi oluşturan üç alt modülde jeotermal akışkanın enerjisi kullanılarak jeotermal akışkanın enerjisinden maksimum fayda sağlanmaktadır. Düşük sıcaklığa soğutulan hidrojen sıvılaştırma sistemlerinde sıvılaştırılarak sıvı hidrojen tanklarında depolanmaktadır.

Bu çalışma kapsamında hidrojen sıvılaştırma sistemi olarak ön soğutmalı Linde-Hampson sıvılaştırma sistemi, ön soğutmalı Claude sıvılaştırma sistemi ve ön soğutmalı Heylandt sıvılaştırma sistemleri incelenmiştir. Ön soğutmalı Linde-Hampson çevrimi kullanılan sıvı hidrojen üretim sisteminin tesisat şeması Şekil 3.14'de, ön soğutmalı Claude sıvılaştırma çevrimi için sistemin tesisat şeması Şekil 3.15'de ve ön soğutmalı Heylandt soğutma çevrimi için sistemin tesisat şeması Şekil 3.16'da verilmiştir. Sıvı hidrojen üretimi için modellenen sistemin termodinamik performansı ORC sistemlerinde kullanılan farklı soğutucu akışkanlar için farklı buharlaştırıcı sıcaklıklarında incelenmiştir. Ayrıca sistemin alt modüllerinden absorbsiyonlu soğutma sistemlerinde kullanılan eriyik çiftinin sistemin performansına ve üretilen hidrojen miktarına olan etkisi araştırılmıştır. Farklı sıvılaştırma çevrimleri dikkate alınarak yapılan enerji ve ekserji analizleri sonucunda sistemin optimum çalışma şartları belirlenmiştir. Bu kapsamda incelenen sıvılaştırma çevrimleri ve absorbsiyonlu soğutma sisteminde kullanılan eriyik çiftleri dikkate alınarak sıvı hidrojen üretim sistemi için altı farklı model oluşturulmuştur. Oluşturulan bu modeller Çizelge 3.11'de verilmiştir.

| Model   | Hidrojen Sıvılaştırma Çevrimi      | Kullanılan Eriyik Çifti           |
|---------|------------------------------------|-----------------------------------|
| Model 1 | Ön Soğutmalı Linde-Hampson Çevrimi | NH <sub>3</sub> -H <sub>2</sub> O |
| Model 2 | Ön Soğutmalı Claude Çevrimi        | NH <sub>3</sub> -H <sub>2</sub> O |
| Model 3 | Ön Soğutmalı Heylandt Çevrimi      | NH <sub>3</sub> -H <sub>2</sub> O |
| Model 4 | Ön Soğutmalı Linde-Hampson Çevrimi | LiBr-H <sub>2</sub> O             |
| Model 5 | Ön Soğutmalı Claude Çevrimi        | LiBr-H <sub>2</sub> O             |
| Model 6 | Ön Soğutmalı Heylandt Çevrimi      | LiBr-H <sub>2</sub> O             |

Çizelge 3.11. Çalışma kapsamında oluşturulan modeller

Son olarak, belirlenen optimum çalışma şartları için sıvı hidrojen üretim sisteminin eksergoekonomik analizleri gerçekleştirilmiş ve sistemi oluşturan komponentlerin eksergoekonomik performansı değerlendirilmiştir.



Şekil 3.14. Model 1 ve Model 4 için sıvı hidrojen üretim sisteminin tesisat şeması



Şekil 3.15. Model 2 ve Model 5 için sıvı hidrojen üretim sisteminin tesisat şeması



Şekil 3.16. Model 3 ve Model 6 için sıvı hidrojen üretim sisteminin tesisat şeması
## 4. BULGULAR VE TARTIŞMA

Bu bölümde sıvı hidrojen üretim sistemi için oluşturulan altı farklı modelin termodinamik performansı, ORC sisteminde kullanılan farklı soğutucu akışkanlar ve farklı buharlaştırıcı sıcaklıkları için incelenmiş, enerji, ekserji ve eksergoekonomik analizleri sırasıyla gerçekleştirilmiştir. Öncelikle altı model için yapılan enerji ve ekserji analiz sonuçları model bazında verilmiş, daha sonra modellerin termodinamik performansları karşılaştırılmıştır. Elde edilen enerji ve ekserji analizleri sonucunda optimum çalışma şartları ve modeli belirlenmiştir. Son olarak belirlenen optimum çalışma şartları için eksergoekonomik analizler gerçekleştirilmiş ve bu çalışma kapsamında modellenen sistemi oluşturan komponentlerin eksergoekonomik performansları değerlendirilmiştir.

Bu çalışma kapsamında ORC sisteminde kullanılan farklı soğutucu akışkanlar ve termofiziksel özellikleri Çizelge 4.1'de verilmiştir.

| Soğutucu Akışkan                                       | Akışkan<br>Tipi | Moleküler<br>Kütlesi (g/mol) | Kritik<br>Sıcaklık (K) | Kritik Basınç<br>(MPa) |
|--------------------------------------------------------|-----------------|------------------------------|------------------------|------------------------|
| R123 (CHCI <sub>2</sub> CF <sub>3</sub> )              | Kuru Tip        | 152,93                       | 456,9                  | 3,67                   |
| R245fa (C <sub>3</sub> H <sub>3</sub> F <sub>5</sub> ) | Kuru Tip        | 134,05                       | 427,2                  | 3,65                   |
| R601 (C <sub>5</sub> H <sub>12</sub> )                 | Kuru Tip        | 72,15                        | 469,7                  | 3,36                   |
| n-Hexane $(C_6H_{14})$                                 | Kuru Tip        | 86,18                        | 507,8                  | 3,03                   |

**Çizelge 4.1.** Kullanılan soğutucu akışkanların termofiziksel özellikleri (Tchanche ve ark. 2009, Aljundi 2011, Li ve ark. 2018)

Sıvı hidrojen üretimi için modellenen sistemin alt modüllerini oluşturan ORC sistemi için belirlenen dizayn parametreleri ve çalışma şartları Çizelge 4.2'de, yüksek sıcaklıklı elektroliz sistemi için belirlenen dizayn parametreleri ve çalışma şartları Çizelge 4.3'de, NH<sub>3</sub>-H<sub>2</sub>O eriyiği ve LiBr-H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma sistemleri için belirlenen dizayn parametreleri ve çalışma şartları Çizelge 4.4'de ve farklı hidrojen sıvılaştırma çevrimleri için belirlenen dizayn parametreleri ve çalışma şartları çizelge 4.5'de verilmiştir.

| Parametreler                                                 | Değerler    |
|--------------------------------------------------------------|-------------|
| Jeotermal Akışkan Kaynak Sıcaklığı ( $T_{jeo_1}$ )           | 240°C       |
| Jeotermal Akışkan Basıncı ( $P_{jeo_1}$ )                    | 600 kPa     |
| Jeotermal Akışkan Debisi ( $\dot{m}_{jeo_1}$ )               | 180 kg/s    |
| Buharlaştırıcı Sıcaklığı ( $T_{buh}$ )                       | 100-150⁰C   |
| Ara Kızdırma Sıcaklığı (T <sub>kızd</sub> )                  | 10°C        |
| Eşanjör Etkenliği ( $\varepsilon$ )                          | %70         |
| Türbin İzentropik Verimi $(\eta_{T,s})$                      | %85         |
| Pompa İzentropik Verimi ( $\eta_{P,s}$ )                     | %80         |
| Soğutma Suyu Giriş Sıcaklığı ( <i>T<sub>ss giriş</sub></i> ) | 20°C        |
| Soğutma Suyu Basıncı (P <sub>ss</sub> )                      | 101,325 kPa |

Çizelge 4.2. ORC sistemi için dizayn parametreleri ve çalışma şartları

Çizelge 4.3. Yüksek sıcaklıklı elektroliz sistemi için dizayn parametreleri ve çalışma şartları

| Parametreler                                                      | Değerler |
|-------------------------------------------------------------------|----------|
| Elektroliz Suyu Toplam Debisi ( $\dot{m}_{25}$ )                  | 3 kg/s   |
| Hidrojen Tarafına Giren Elektroliz Suyunun Debisi ( $\dot{m}_1$ ) | 2,2 kg/s |
| Oksijen Tarafına Giren Elektroliz Suyunun Debisi ( $\dot{m}_5$ )  | 0,8 kg/s |
| Suyun Elektroliz Sistemine Giriş Sıcaklığı ( $T_{25}$ )           | 200°C    |
| Suyun Elektroliz Sistemine Giriş Basıncı ( $P_{25}$ )             | 1200 kPa |
| (1) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e_{s}j,1}$ )     | %80      |
| (2) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e_{s}j,2}$ )     | %76      |
| (3) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e_{s}j,3}$ )     | %85      |
| (4) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e_{s}j,4}$ )     | %77      |
| (5) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e_{s}j,5}$ )     | %85      |
| (6) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e_{s}j,6}$ )     | %76      |
| Pompa İzentropik Verimi ( $\eta_{P,s}$ )                          | %75      |

|                                                                           | Değerler                                          |                                       |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|--|--|
| Parametreler                                                              | NH <sub>3</sub> -H <sub>2</sub> O<br>eriyiği için | LiBr-H <sub>2</sub> O<br>eriyiği için |  |  |
| Kaynatıcı Sıcaklığı ( $T_{kay}$ )                                         | 100°C                                             | 90⁰C                                  |  |  |
| Yoğuşturucu Sıcaklığı (T <sub>yoğ</sub> )                                 | 32°C                                              | 40°C                                  |  |  |
| Buharlaştırıcı Sıcaklığı (T <sub>buh</sub> )                              | -15⁰C                                             | 10°C                                  |  |  |
| Absorber Sıcaklığı (T <sub>abs</sub> )                                    | 32°C                                              | 40°C                                  |  |  |
| Eriyik Eşanjörünün Etkenliği ( $\varepsilon_{e_{s}j,e}$ )                 | %70                                               | %70                                   |  |  |
| Soğutucu Akışkan Eşanjörünün Etkenliği ( $\varepsilon_{eşj,sa}$ )         | %70                                               | %70                                   |  |  |
| Eriyik-Soğutucu Akışkan Eşanjörünün Etkenliği ( $\varepsilon_{eşj,esa}$ ) | %70                                               | %70                                   |  |  |
| Eriyik Pompası İzentropik Verimi ( $\eta_{P,S}$ )                         | %80                                               | %80                                   |  |  |
| Soğutma Suyu Giriş Sıcaklığı (T <sub>ss giriş</sub> )                     | 20°C                                              | 20°C                                  |  |  |

**Çizelge 4.4.** NH<sub>3</sub>-H<sub>2</sub>O eriyiği ve LiBr-H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma sistemleri için dizayn parametreleri ve çalışma şartları

Çizelge 4.5. Hidrojen sıvılaştırma sistemleri için dizayn parametreleri ve çalışma şartları

|                                                                | Değerler                                 |                                   |                                     |  |  |  |
|----------------------------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------|--|--|--|
| Parametreler                                                   | Ön Soğutmalı<br>Linde-Hampson<br>Çevrimi | Ön Soğutmalı<br>Claude<br>Çevrimi | Ön Soğutmalı<br>Heylandt<br>Çevrimi |  |  |  |
| Kompresör Çalışma Basıncı (P <sub>2</sub> )                    | 12000 kPa                                | 6000 kPa                          | 18000 kPa                           |  |  |  |
| (1) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e \in j,1}$ ) | %80                                      | %80                               | %80                                 |  |  |  |
| (2) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e \in j,2}$ ) | %100                                     | %100                              | %100                                |  |  |  |
| (3) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e \in j,3}$ ) | %70                                      | %70                               | %70                                 |  |  |  |
| (4) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e \$ j, 4}$ ) | %100                                     | %80                               | %80                                 |  |  |  |
| (5) Numaralı Eşanjörün Etkenliği ( $\varepsilon_{e \$ j, 5}$ ) | %80                                      | %80                               |                                     |  |  |  |
| Türbine Gönderilen Gaz Oranı (z)                               |                                          | %50                               | %50                                 |  |  |  |
| Türbin İzentropik Verimi ( $\eta_{T,s}$ )                      |                                          | %75                               | %75                                 |  |  |  |
| Kompresör İzotermal Verimi ( $\eta_{komp_s}$ )                 | %75                                      | %75                               | %75                                 |  |  |  |

## 4.1. ORC Sisteminin Termodinamik Performansı

Oluşturulan çalışma modellerinden bağımsız olarak değerlendirilen ve sistemin temel alt modülünü oluşturan ORC sisteminin termodinamik performansı bu bölümde değerlendirilmiş, enerji ve ekserji analiz sonuçları sunulmuştur.

Farklı soğutucu akışkanlar için, soğutucu akışkan debisinin buharlaştırıcı sıcaklığı ile değişimi Şekil 4.1'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla, soğutucu akışkan birim debisi için buharlaştırıcıdan akışkana verilen ısı artmaktadır. Bununla birlikte, jeotermal kaynaktan transfer olan ısı miktarının sabit olması nedeniyle buharlaştırıcı sıcaklığının artmasıyla kullanılan soğutucu akışkan debisi azalmaktadır.

Şekil 4.1 incelendiğinde, ORC sisteminde kullanılan soğutucu akışkanlar arasında en yüksek debiye sahip akışkanın R123 olduğu ve buharlaştırıcı sıcaklığına bağlı olarak R123 debisinin %8,1 azaldığı görülmektedir. Bununla birlikte, en düşük debiye sahip olan akışkanın ise n-Hexane olduğu ve buharlaştırıcı sıcaklığının artmasıyla n-Hexane debisinin yaklaşık %10 azaldığı belirlenmiştir.



Şekil 4.1. ORC sisteminde kullanılan farklı soğutucu akışkan debilerinin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak elde edilen türbin işinin değişimi Şekil 4.2(a)'da gerekli pompa işinin değişimi ise Şekil 4.2(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla türbin giriş sıcaklığı ve basıncı yükselmektedir. Bu durum türbin işinin buharlaştırıcı sıcaklığına bağlı olarak artmasına neden olmaktadır (Şekil 4.2(a)). Benzer şekilde buharlaştırıcı sıcaklığının artmasıyla pompa çıkış basıncı yükselmekte ve gerekli pompa işi Şekil 4.2(b)'de görüldüğü gibi artmaktadır.

Çalışma kapsamında soğutucu akışkan olarak n-Hexane kullanılması durumunda buharlaştırıcı sıcaklığına bağlı olarak elde edilen türbin işi maksimum iken, R245fa kullanılması durumunda ise minimumdur (Şekil 4.2(a)). Belirlenen çalışma şartlarında soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak türbin işi maksimum %44,48 oranında artmaktadır.

Soğutucu akışkan olarak R245fa kullanılması durumunda gerekli pompa işi diğer akışkanlara kıyasla daha yüksektir. R245fa için, buharlaştırıcı sıcaklığına bağlı olarak gerekli pompa işindeki artış maksimum olmakta ve pompa işi 995,26 kW'tan 2715,4 kW'a yükselmektedir. Bununla birlikte soğutucu akışkan olarak n-Hexane tercih edilmesi durumunda ise gerekli pompa işi diğer akışkanlara göre daha düşük olmakta ve buharlaştırıcı sıcaklığının etkisiyle pompa işi yaklaşık 400 kW artmaktadır (Şekil 4.2(b)).



**Şekil 4.2.** ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) türbin işinin ve (b) pompa işinin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığındaki artışa bağlı olarak yoğuşturucudan atılan ısı miktarının değişimi Şekil 4.3(a)'da, eşanjörde transfer olan ısı miktarının değişim ise Şekil 4.3(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla yoğuşturucu giriş sıcaklığı yükselmekte ve bu durumda yoğuşturucunun ısı kapasitesi artmaktadır. Ancak buharlaştırıcı sıcaklığının etkisiyle soğutucu akışkan debisinin azalması yoğuşturucudan atılan ısı miktarını düşürmektedir (Şekil 4.3(a)).

Şekil 4.3(a) incelendiğinde, soğutucu akışkan olarak R245fa kullanılması durumunda yoğuşturucudan atılan ısı miktarının daha fazladır. Bununla birlikte n-Hexane tercih edilmesi durumunda yoğuşturucudan atılan ısı miktarı diğer soğutucu akışkanlara göre daha düşüktür. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı ve soğutucu akışkana bağlı olarak yoğuşturucudan atılan ısı miktarı maksimum %7,36 oranında azalmaktadır.

Buharlaştırıcı sıcaklığının artmasıyla, ısı eşanjöründe birim soğutucu akışkan debisi için transfer olan ısı miktarı artarken, soğutucu akışkan debisi azalmaktadır. Ancak ısı eşanjöründe birim debi için transfer olan ısı miktarındaki artış, soğutucu akışkan debisindeki azalış miktarına göre çok daha fazladır. Bu nedenle buharlaştırıcı sıcaklığının artmasıyla ısı eşanjöründe transfer olan ısı miktarı artmaktadır (Şekil 4.3(b)). Bununla birlikte buharlaştırıcı sıcaklığının artmasıyla soğutucu akışkan debisinin azalması eşanjörün ısı kapasitesini etkilemekte ve sıcaklık arttıkça ısı eşanjöründe transfer olan ısı miktarındaki artış azalmaktadır.

Çalışma kapsamında soğutucu akışkan olarak n-Hexane kullanılması durumunda eşanjörde transfer olan ısı miktarı diğer akışkanlara göre daha yüksek iken, R123 tercih edilmesi durumunda ise daha düşüktür. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı ve soğutucu akışkana bağlı olarak eşanjörde transfer olan ısı miktarı maksimum %56,57 oranında artmaktadır.



**Şekil 4.3.** ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) yoğuşturucudan atılan ve (b) eşanjörde transfer olan ısı miktarının buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak buharlaştırıcıdaki ekserji yıkımının değişimi Şekil 4.4(a)'da buharlaştırıcı ekserji veriminin değişimi ise Şekil 4.4(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla buharlaştırıcı giriş ve çıkış noktasındaki ekserji akımları (değerleri) artmaktadır. Ancak buharlaştırıcı çıkış noktasındaki ekserji değişimi giriş noktasına göre daha fazla olmakta ve bu nedenle buharlaştırıcı sıcaklığına bağlı olarak buharlaştırıcıdaki ekserji yıkımı azalmaktadır.

Şekil 4.4(a) incelendiğinde, soğutucu akışkan olarak R245fa kullanılması durumunda buharlaştırıcıdaki ekserji yıkımının diğer akışkanlara kıyasla daha yüksek olduğu görülmektedir. Ayrıca buharlaştırıcı sıcaklığının 100°C'den 150°C'ye artmasıyla R245fa için buharlaştırıcıdaki ekserji yıkımının değişimi minimumdur ve ekserji yıkımı yaklaşık %41,26 oranında azalmaktadır. Bununla birlikte n-Hexane kullanılması durumunda ise buharlaştırıcı sıcaklığına bağlı olarak buharlaştırıcıdaki ekserji yıkımının değişimi minimumdur ve ekserji yıkımının daha düşük olduğu belirlenmiştir. Buharlaştırıcı sıcaklığının artışına bağlı olarak n-Hexane için buharlaştırıcıdaki ekserji yıkımının değişimi maksimum olmakta ve ekserji yıkımı

Buharlaştırıcı sıcaklığına bağlı olarak, buharlaştırıcıdaki ekserji yıkımının azalması buharlaştırıcı ekserji veriminin artmasına neden olmaktadır (Şekil 4.4(b)). Çalışma kapsamında soğutucu akışkan olarak n-Hexane kullanılması durumunda buharlaştırıcı ekserji verimindeki değişim maksimum olmakta ve ekserji verimi %61,08'den %84,24'e yükselmektedir. Bununla birlikte R245fa tercih edilmesi durumunda buharlaştırıcı sıcaklığının etkisiyle buharlaştırıcı ekserji verimindeki değişim minimum olmakta ve ekserji verimi %58,60'dan %75,68'e yükselmektedir.



**Şekil 4.4.** ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) buharlaştırıcıdaki ekserji yıkımının ve (b) buharlaştırıcı ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi

Buharlaştırıcı sıcaklığındaki artışa bağlı olarak, farklı soğutucu akışkanlar için türbindeki ekserji yıkımının değişimi Şekil 4.5(a)'da türbin ekserji veriminin değişimi ise Şekil 4.5(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla, türbin giriş sıcaklığı ve basıncı yükselmektedir. Bu durumda türbin giriş ve çıkış noktaları arasındaki ekserji farkı büyümekte ve türbindeki ekserji yıkımı artmaktadır.

Şekil 4.5(a) incelendiğinde, soğutucu akışkan olarak R123 kullanılması durumunda türbindeki ekserji yıkımının diğer akışkanlara göre daha yüksek olduğu anlaşılmaktadır. Bununla birlikte buharlaştırıcı sıcaklığının artmasıyla türbindeki ekserji yıkımının değişimi R123 için maksimum olmakta ve ekserji yıkımı %36,74 oranında artmaktadır. Ancak n-Hexane kullanılması durumunda türbindeki ekserji yıkımı diğer akışkanlara göre daha düşüktür ve buharlaştırıcı sıcaklığının etkisiyle türbindeki ekserji yıkımının değişimi minimum olup ekserji yıkımı %34,51 oranında artmaktadır.

Buharlaştırıcı sıcaklığının etkisiyle elde edilen türbin işindeki artış ekserji yıkımındaki artışa oranla daha fazla olmaktadır. Bu nedenle, buharlaştırıcı sıcaklığının artmasıyla türbin ekserji verimi de artmaktadır (Şekil 4.5(b)). Çalışma kapsamında soğutucu akışkan olarak n-Hexane kullanılması durumunda türbin ekserji verimindeki artış maksimum olmakta ve türbin ekserji verimi %86,86'dan %87,66'ya yükselmektedir. Ancak R245fa kullanılması durumunda buharlaştırıcı sıcaklığının etkisiyle türbin ekserji verimindeki artış maksimum olmakta ve ekserji verimi %86,43'den %86,74'e yükselmektedir.



**Şekil 4.5.** ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) türbindeki ekserji yıkımının ve (b) türbin ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığındaki artışa bağlı olarak yoğuşturucudaki ekserji yıkımının değişimi Şekil 4.6(a)'da yoğuşturucu ekserji veriminin değişimi ise Şekil 4.6(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla hem soğutucu akışkanın hem de soğutma suyunun yoğuşturucu giriş ve çıkış noktaları arasındaki ekserji farkı azalmaktadır. Ancak soğutucu akışkan için yoğuşturucu giriş ve çıkış noktaları arasındaki ekserji farkının değişimi soğutma suyuna göre daha fazladır. Bu durumda, buharlaştırıcı sıcaklığının artmasıyla yoğuşturucudaki ekserji yıkımı azalmaktadır. Buharlaştırıcı sıcaklığının etkisiyle, hem yoğuşturucu giriş ve çıkış noktaları arasındaki ekserji farkının hem de yoğuşturucudaki ekserji yıkımı azalmaktadır. Buharlaştırıcı sıcaklığının etkisiyle, hem yoğuşturucu giriş ve çıkış noktaları arasındaki ekserji farkının hem de yoğuşturucudaki ekserji yıkımı azalmaktadır. Buharlaştırıcı sıcaklığının etkisiyle, hem yoğuşturucu giriş ve çıkış noktaları arasındaki ekserji farkının hem de yoğuşturucudaki ekserji yıkımın azalması yoğuşturucu ekserji veriminin düşmesine neden olmaktadır. Bununla birlikte, kullanılan bazı akışkanların termofiziksel özelliklerine bağlı olarak farklı buharlaştırıcı sıcaklıklarından itibaren soğutucu akışkan için giriş ve çıkış noktaları arasındaki ekserji

farkının değişimi soğutma suyuna göre daha düşük olmaktadır. Bu durumda ise, yoğuşturucudaki ekserji yıkımı artma eğilimi göstermekte ve yoğuşturucu ekserji verimindeki düşüş keskinleşmektedir (Şekil 4.6(b)).

Soğutucu akışkan olarak R601 kullanılması durumunda yoğuşturucudaki ekserji yıkımı diğer akışkanlara göre daha yüksek iken, yoğuşturucu ekserji verimi ise diğer akışkanlara göre daha düşüktür. Ancak R245fa tercih edilmesi durumunda ise buharlaştırıcı sıcaklığına bağlı olarak yoğuşturucudaki ekserji yıkımı daha düşük iken, yoğuşturucu ekserji verimi ise diğer akışkanlara göre daha yüksek olmaktadır. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı ve soğutucu akışkana bağlı olarak yoğuşturucudaki ekserji yıkımı daha düşük iken, yoğuşturucudaki ekserji yıkımı maksimum %2,99 oranında azalırken, yoğuşturucu ekserji verimi ise %46,96 ile %50,04 arasında değişmektedir.



Şekil 4.6. ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) yoğuşturucudaki ekserji yıkımının ve (b) yoğuşturucu ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığındaki artışa bağlı olarak pompadaki ekserji yıkımının değişimi Şekil 4.7(a)'da pompa ekserji veriminin değişimi ise Şekil 4.7(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla pompa çıkış basıncı ve sıcaklığı yükselmektedir. Bu durumda hem gerekli pompa işi (Şekil 4.2 b) hem de pompa giriş ve çıkış noktaları arasındaki ekserji farkı artmaktadır. Ancak buharlaştırıcı sıcaklığına bağlı olarak pompa işindeki artış miktarı, giriş ve çıkış noktaları arasındaki

ekserji farkındaki artışa göre daha fazladır. Bu nedenle buharlaştırıcı sıcaklığının artmasıyla pompadaki ekserji yıkımı artarken pompanın ekserji verimi azalmaktadır.

Soğutucu akışkan olarak R245fa kullanılması durumunda pompadaki ekserji yıkımı diğer akışkanlara göre daha yüksek iken, pompa ekserji verimi ise diğer akışkanlara göre daha düşük olmakta ve buharlaştırıcı sıcaklığının etkisiyle %80,61'den %80,53'e azalmaktadır. Bununla birlikte n-Hexane kullanılması durumunda pompadaki ekserji yıkımı diğer akışkanlara göre daha düşük olurken, R123 kullanılması durumunda ise pompadaki ekserji verimi maksimum olmaktadır.



**Şekil 4.7.** ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) pompadaki ekserji yıkımının ve (b) pompa ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığındaki artışa bağlı olarak ısı eşanjöründeki ekserji yıkımının değişimi Şekil 4.8(a)'da eşanjör ekserji veriminin değişimi ise Şekil 4.8(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla ısı eşanjöründeki ısınan ve soğuyan her iki tarafta da giriş ve çıkış noktaları arasındaki ekserji farkı büyümektedir. Bununla birlikte eşanjörün soğuyan tarafındaki ekserji değişiminin ısınan taraftaki ekserji değişimine göre daha fazla olması ısı eşanjöründeki ekserji yıkımının artmasına ve genel olarak eşanjör ekserji veriminin azalmasına neden olmaktadır.

Soğutucu akışkan olarak n-Hexane kullanılması durumunda ısı eşanjöründeki ekserji yıkımı diğer akışkanlara göre daha yüksek iken, eşanjör ekserji verimi ise genel olarak diğer akışkanlara göre daha düşüktür. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı ve soğutucu akışkana bağlı olarak ısı eşanjöründeki ekserji yıkımı maksimum %122,65 oranında artarken, eşanjör ekserji verimi ise %60,39 ile %63,41 arasında değişmektedir.



Şekil 4.8. ORC sisteminde kullanılan farklı soğutucu akışkanlar için (a) ısı eşanjöründeki ekserji yıkımının ve (b) ısı eşanjörü ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi



Şekil 4.9. ORC sisteminde kullanılan farklı soğutucu akışkanlar için ORC sistemi ısıl veriminin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak ORC sistemi ekserji veriminin değişimi Şekil 4.10'da verilmiştir. Isıl verime benzer şekilde, buharlaştırıcı sıcaklığının yükselmesine bağlı olarak ORC sisteminden elde edilen net iş miktarındaki artış sistemin ekserji verimini yükseltmektedir. Çalışma kapsamında incelenen her dört soğutucu akışkan için buharlaştırıcı sıcaklığının artmasıyla sistemin ekserji verimi de artmaktadır.

Soğutucu akışkan olarak n-Hexane kullanılması durumunda sistemin ekserji verimi diğer soğutucu akışkanlara göre daha yüksek olmaktadır. Ayrıca n-Hexane için buharlaştırıcı sıcaklığına bağlı olarak sistemin ekserji verimindeki artış maksimum olmakta ve sistemin ekserji verimi %43,93'den %63,04'e yükselmektedir. Bununla birlikte, soğutucu akışkan olarak R245fa tercih edilmesi halinde ise sistemin ekserji verimi diğer akışkanlara göre daha düşük olmaktadır. R245fa için buharlaştırıcı sıcaklığının etkisiyle sistemin ekserji verimindeki artış minimum olmakta ve ekserji verimi %41,96'dan %56,05'e yükselmektedir.



**Şekil 4.10.** ORC sisteminde kullanılan farklı soğutucu akışkanlar için ORC sistemi ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi

## 4.2. Model 1 için Analiz Sonuçları

Bu çalışma kapsamında incelenen sıvılaştırma çevrimleri ve absorbsiyonlu soğutma sisteminde kullanılan eriyik çiftleri dikkate alınarak altı farklı model oluşturulmuştur. Model 1'de sıvılaştırma çevrimi olarak ön soğutmalı Linde-Hampson sıvılaştırma sistemi kullanılmış ve eriyik çifti olarak ise NH<sub>3</sub>–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma çevrimi tercih edilmiştir. ORC sisteminde kullanılan farklı soğutucu akışkanlar için farklı buharlaştırıcı sıcaklıklarında termodinamik analizler gerçekleştirilmiştir.

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak Model 1'de üretilen sıvı hidrojen miktarının değişimi Şekil 4.11'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla ORC sisteminden elde edilen kullanılabilir iş miktarı artmakta ve daha fazla miktarda hidrojen sıvılaştırılmaktadır. Buharlaştırıcı sıcaklığının etkisiyle incelenen her dört soğutucu akışkan için üretilen sıvı hidrojen miktarı artmaktadır. Soğutucu akışkan olarak n-Hexane kullanılması durumunda diğer akışkanlara göre daha fazla sıvı hidrojen üretilirken, R245fa tercih edilmesi halinde ise daha düşük miktarda hidrojen sıvılaştırılmaktadır. Buharlaştırıcı hidrojen miktarı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, üretilen sıvı hidrojen miktarı %28,89 artmaktadır. Bununla birlikte R245fa için, buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve üretilen sıvı hidrojen miktarı %21,62 artmaktadır.



Şekil 4.11. Model 1 için ön soğutmalı Linde-Hampson sisteminde üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak elektroliz işinin değişimi Şekil 4.12(a)'da, elektroliz ünitesi geri dönüşüm oranının (r) değişimi ise Şekil 4.12(b)'de verilmiştir. Genel olarak, buharlaştırıcı sıcaklığının etkisiyle, ORC sisteminden elde edilen türbin işi ve buna bağlı olarak elektroliz ünitesinde kullanılan elektroliz işi artmaktadır. Artan elektroliz işi elektroliz suyundan daha fazla miktarda hidrojen ve oksijen elde edilmesini sağlamakta ve bu durumda elektroliz edilemeyen su miktarı ve bağlı olarak geri dönüşüm oranı azalmaktadır.

Şekil 4.12(a) ve Şekil 4.12(b) incelendiğinde, her dört soğutucu akışkan için buharlaştırıcı sıcaklığının artmasıyla elektroliz işinin artarken geri dönüşüm oranının azaldığı görülmektedir. Soğutucu akışkan olarak n-Hexane kullanılması durumunda, buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisi en fazla olmakta ve elektroliz işi %26,27 artarken, geri dönüşüm oranı ise %17,69 azalmaktadır. Bununla birlikte soğutucu akışkan olarak R245fa kullanılması durumunda harcanan elektroliz işi diğer akışkanlara göre daha düşükken, geri dönüşüm oranı ise daha yüksek

olmaktadır. R245fa tercih edilmesi durumunda buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve elektroliz işi %19,59 artarken, geri dönüşüm oranı ise %12,64 azalmaktadır.



**Şekil 4.12.** Model 1 için (a) elektroliz işinin ve (b) geri dönüşüm oranının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, elektroliz sisteminde ayrıştırılan hidrojenin seperatörden çıkış sıcaklığının buharlaştırıcı sıcaklığı ile değişimi Şekil 4.13'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla kullanılan elektroliz işi artmakta ve bu durumda elektroliz suyundan ayrışan hidrojen ve oksijen miktarı artarken ayrışmayan su miktarı azalmaktadır. Ancak ayrışmayan suyun miktarındaki düşüş elde edilen hidrojen miktarındaki artıştan daha fazladır. Bu durumda seperatöre giden hattaki toplam akışkan miktarı azalmakta, hidrojen ve ayrışmayan su daha fazla soğumaktadır.

Çalışma kapsamında, soğutucu akışkan olarak R245fa kullanılması durumunda diğer akışkanlara göre daha yüksek sıcaklıklarda hidrojen seperatörde ayrışırken, n-Hexane kullanılması durumunda ise seperatörden ayrılan hidrojen sıcaklığı diğer akışkanlara göre daha düşük olmaktadır. Sabit çalışma şartlarında ORC sisteminde kullanılan soğutucu akışkan, buharlaştırıcı sıcaklığı ve elde edilen hidrojen miktarı dikkate alınarak seperatörden ayrılan hidrojen sıcaklığı 343,21°C ile 364,89°C arasında değişmektedir.



Şekil 4.13. Model 1 için seperatör çıkışındaki hidrojen sıcaklığının buharlaştırıcı sıcaklığı ile değişimi

Elektroliz sisteminde ayrıştırılan hidrojen daha sonra absorbsiyonlu soğutma sistemi (ASS) yardımıyla soğutulmaktadır. ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığındaki artışa bağlı olarak ASS'de soğuyan hidrojenin çıkış sıcaklığının değişimi Şekil 4.14'de verilmiştir. ORC sistemindeki buharlaştırıcı sıcaklığının artmasıyla elektroliz sisteminde elde edilen hidrojen miktarı artmakta ve buna bağlı olarak, sabit soğutma kapasitesine sahip absorbsiyonlu soğutma sisteminde hidrojenin soğutulabildiği sıcaklık yükselmektedir.

Elektroliz ünitesinden çıkan yüksek sıcaklıklı hidrojen kullanılan soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak ASS yardımıyla ortalama 325°C soğutulmaktadır. Soğutucu akışkan olarak R245fa kullanılması durumunda hidrojen diğer akışkanlara göre daha düşük sıcaklıklara soğutulurken, n-Hexane tercih edilmesi halinde ise daha yüksek sıcaklıklara soğutulmaktadır. Sabit çalışma şartlarında buharlaştırıcı sıcaklığı, hidrojen miktarı ve soğutucu akışkana bağlı olarak hidrojen ASS'de minimum -10,22°C'ye kadar soğutulmaktadır.



Şekil 4.14. Model 1 için absorbsiyonlu soğutma sisteminde soğutulan hidrojenin çıkış sıcaklığının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak ön soğutmalı Linde-Hampson sıvılaştırma sistemindeki kompresör işinin değişimi Şekil 4.15(a)'da, toplam sıvılaştırma işinin değişimi ise Şekil 4.15(b)'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla sırasıyla türbin ve elektroliz işi artmakta bu durumda ayrıştırılan hidrojen miktarı yükselmektedir. Artan hidrojen miktarı nedeniyle hidrojenin sıvılaştırma sisteminde yüksek basınçlara sıkıştırılması için gereken kompresör işi de artmaktadır. Benzer olarak hidrojen miktarının artması sıvılaştırma işin artmaktadır.

Çalışma kapsamında n-Hexane kullanılması durumunda gerekli olan kompresör ve toplam sıvılaştırma işi diğer akışkanlara göre daha yüksek olmaktadır. Buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, buharlaştırıcı sıcaklığının etkisiyle kompresör işi %50,48, toplam sıvılaştırma işi ise %62,01 artmaktadır. Bununla birlikte R245fa kullanılması durumunda ise gerekli olan kompresör ve toplam sıvılaştırma işi diğer akışkanlara göre daha düşüktür. R245fa için buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisi diğer akışkanlara göre daha düşüktür. R245fa için buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve buharlaştırıcı sıcaklığının etkisiyle kompresör işi %39,64, toplam sıvılaştırma işi ise %49,44 artmaktadır.



**Şekil 4.15.** Model 1 için ön soğutmalı Linde-Hampson sıvılaştırma sisteminde (a) kompresör işinin ve (b) toplam sıvılaştırma işinin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için, Model 1'i oluşturan alt sistemlerin ve sıvı hidrojen üretim sisteminin enerji ve ekserji verimlerinin buharlaştırıcı sıcaklığı ile değişimi Çizelge 4.6'da verilmiştir. Şekil 4.9 ve Şekil 4.10'da incelendiği gibi, buharlaştırıcı sıcaklığının artmasıyla türbin işi artmakta ve bu durumda ORC sisteminin enerji ve ekserji verimleri yükselmektedir. ORC sisteminde soğutucu akışkan olarak n-Hexane kullanılması durumunda daha yüksek ısıl ve ekserji verimleri elde edilirken, R245fa tercih edilmesi halinde ORC sisteminin ısıl ve ekserji verimi daha düşük olmaktadır. Bu çalışma kapsamında incelenen modellerden bağımsız olarak, sabit çalışma şartlarında buharlaştırıcı sıcaklığı ve soğutucu akışkan dikkate alınarak ORC sisteminin ısıl verimi maksimum %43,51 iyileşirken, ekserji verimi ise maksimum %43,49 artmaktadır.

ORC sisteminde kullanılan buharlaştırıcı sıcaklığının artması, türbin işindeki artışa bağlı olarak elektroliz işini arttırmaktadır. Bu durumda ise elektroliz sisteminde ayrışan hidrojen miktarı yükselmekte ve elektroliz sisteminin enerji ve ekserji verimleri artmaktadır. Soğutucu akışkan olarak n-Hexane kullanılması durumunda elektroliz sisteminin termodinamik performansı diğer akışkanlara göre yüksekken, R245fa kullanılması durumunda sistemin termodinamik performansı daha düşük olmaktadır. n-Hexane için, buharlaştırıcı sıcaklığının elektroliz sisteminin termodinamik performansı üzerindeki etkisi diğer akışkanlara göre daha fazladır ve buharlaştırıcı sıcaklığının etkisiyle Model 1 için elektroliz sisteminin enerji verimi maksimum %9,80 iyileşirken, ekserji verimi ise maksimum %6,47 artmaktadır. Bununla birlikte, soğutucu akışkan olarak R245fa kullanılması durumunda buharlaştırıcı sıcaklığının elektroliz sisteminin performansı üzerindeki etkisi diğer akışkanlara göre daha düşüktür ve buna bağlı olarak sistemin enerji verimi maksimum %7,78 iyileşirken, ekserji verimi ise maksimum %5,20 artmaktadır.

Bu çalışma kapsamında Model 1, Model 2 ve Model 3 için, sabit soğutma kapasitesine sahip  $NH_3$ – $H_2O$  eriyikli absorbsiyonlu soğutma sistemi kullanılmıştır. Bu nedenle absorbsiyonlu soğutma sisteminin termodinamik performansı çalışma kapsamında incelenen modellerden, ORC sisteminde kullanılan buharlaştırıcı sıcaklığından ve soğutucu akışkan seçiminden bağımsızdır. Oluşturulan sıvı hidrojen üretim sisteminin soğutma ihtiyacını karşılayan  $NH_3$ – $H_2O$  eriyikli absorbsiyonlu soğutma sisteminin STK değeri %40,50 iken, eSTK değeri ise %25,05 olarak elde edilmiştir.

Buharlaştırıcı sıcaklığının artmasıyla, elektroliz sisteminde ayrıştırılan hidrojen miktarı artmaktadır. Bu durumda Model 1 için, ön soğutmalı Linde-Hampson sıvılaştırma sisteminde hidrojenin sıvılaştırılması için gereken toplam sıvılaştırma işi yükselmektedir. Buharlaştırıcı sıcaklığındaki artışa bağlı olarak, toplam sıvılaştırma işinin etkisiyle sıvılaştırma sisteminin termodinamik performansı düşmekte, enerji ve ekserji verimleri azalmaktadır. Soğutucu akışkan olarak n-Hexane kullanılması durumunda sıvılaştırma sisteminin termodinamik performansı diğer akışkanlara göre daha düşükken, R245fa kullanılması durumunda sistemin performansı daha yüksek olmaktadır. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı ve soğutucu akışkan etkisiyle ön soğutmalı Linde-Hampson sıvılaştırma sistemin enerji verimi maksimum %6,71 iyileşirken, ekserji verimi

Buharlaştırıcı sıcaklığındaki artışa bağlı olarak sıvı hidrojen üretim sisteminden elde edilen sıvı hidrojen miktarı artmaktadır. Sabit ısı kapasitesine sahip jeotermal akışkandan yararlanılarak elde edilen sıvı hidrojen miktarının artması tüm sistemin termodinamik performansını iyileştirmekte ve sistemin enerji ve ekserji verimlerini yükseltmektedir. Model 1 için, soğutucu akışkan olarak n-Hexane kullanılması durumunda sıvı hidrojen üretim sistemin termodinamik performansı diğer akışkanlara göre yüksekken, R245fa kullanılması durumunda sistemin termodinamik performansı daha düşük olmaktadır.

n-Hexane için, buharlaştırıcı sıcaklığının sıvı hidrojen üretim sisteminin termodinamik performansı üzerindeki etkisi diğer akışkanlara göre daha fazladır ve buharlaştırıcı sıcaklığının etkisiyle sıvı hidrojen üretim sisteminin termodinamik performansındaki iyileşme maksimum olmakta, enerji verimi %8,17'den %10,53'e artarken, ekserji verimi ise %24,78'den %31,94'e yükselmektedir. Bununla birlikte, soğutucu akışkan olarak R245fa kullanılması durumunda ise buharlaştırıcı sıcaklığının sıvı hidrojen üretim sistemi üzerindeki etkisi diğer akışkanlara göre daha düşüktür ve buharlaştırıcı sıcaklığındaki artışa bağlı olarak tüm sistemin termodinamik performansındaki iyileşme minimum olmakta, sistemin enerji verimi %7,93'den %9,65'e artarken, sistemin ekserji verimi ise %24,07'den %29,28'e yükselmektedir.

150°C buharlaştırıcı sıcaklığı için, soğutucu akışkan olarak n-Hexane kullanılması durumunda Model 1'i oluşturan tüm noktaların termofiziksel özellikleri Çizelge 4.7'de, Model 1'i oluşturan tüm komponentlerin enerji ve ekserji performansları ise Çizelge 4.8'de verilmiştir.

| Akışkan  | Akışkan Buharlaştırıcı OR<br>Sıcaklığı (°C) |              | Sistemi         | Yüksek Sıcaklıklı<br>Elektroliz Sistemi |                        | Absorbsiyonlu<br>Soğutma Sistemi |       | Ön Soğutmalı<br>Linde-Hampson<br>Sıvılaştırma Sistemi |                           | Sıvı Hidrojen<br>Üretim Sistemi |                    |
|----------|---------------------------------------------|--------------|-----------------|-----------------------------------------|------------------------|----------------------------------|-------|-------------------------------------------------------|---------------------------|---------------------------------|--------------------|
|          |                                             | $\eta_{ORC}$ | $\eta_{ex,ORC}$ | $\eta_{elektroliz}$                     | $\eta_{ex,elektroliz}$ | STK                              | eSTK  | $\eta_{Linde-Hampson}$                                | $\eta_{ex,Linde-Hampson}$ | $\eta_{sistem}$                 | $\eta_{ex,sistem}$ |
| R245fa   | 100                                         | 13,83        | 41,96           | 71,19                                   | 75,00                  | 40,50                            | 25,05 | 8,28                                                  | 13,80                     | 7,93                            | 24,07              |
| R245fa   | 120                                         | 16,12        | 48,91           | 74,05                                   | 77,04                  | 40,50                            | 25,05 | 7,99                                                  | 13,73                     | 8,77                            | 26,60              |
| R245fa   | 130                                         | 17,06        | 51,75           | 75,14                                   | 77,80                  | 40,50                            | 25,05 | 7,90                                                  | 13,70                     | 9,11                            | 27,65              |
| R245fa   | 150                                         | 18,49        | 56,09           | 76,73                                   | 78,90                  | 40,50                            | 25,05 | 7,80                                                  | 13,66                     | 9,65                            | 29,28              |
| R123     | 100                                         | 14,22        | 43,14           | 71,69                                   | 75,37                  | 40,50                            | 25,05 | 8,22                                                  | 13,78                     | 8,07                            | 24,50              |
| R123     | 120                                         | 16,79        | 50,94           | 74,83                                   | 77,59                  | 40,50                            | 25,05 | 7,93                                                  | 13,71                     | 9,01                            | 27,35              |
| R123     | 130                                         | 17,90        | 54,30           | 76,08                                   | 78,46                  | 40,50                            | 25,05 | 7,84                                                  | 13,67                     | 9,43                            | 28,60              |
| R123     | 150                                         | 19,79        | 60,03           | 78,10                                   | 79,83                  | 40,50                            | 25,05 | 7,72                                                  | 13,62                     | 10,14                           | 30,78              |
| R601     | 100                                         | 14,24        | 43,22           | 71,73                                   | 75,39                  | 40,50                            | 25,05 | 8,21                                                  | 13,77                     | 8,08                            | 24,52              |
| R601     | 120                                         | 16,91        | 51,31           | 74,97                                   | 77,69                  | 40,50                            | 25,05 | 7,91                                                  | 13,70                     | 9,06                            | 27,48              |
| R601     | 130                                         | 18,08        | 54,85           | 76,28                                   | 78,60                  | 40,50                            | 25,05 | 7,82                                                  | 13,66                     | 9,50                            | 28,81              |
| R601     | 150                                         | 20,12        | 61,04           | 78,44                                   | 80,06                  | 40,50                            | 25,05 | 7,70                                                  | 13,61                     | 10,27                           | 31,17              |
| n-Hexane | 100                                         | 14,48        | 43,93           | 72,03                                   | 75,61                  | 40,50                            | 25,05 | 8,18                                                  | 13,77                     | 8,17                            | 24,78              |
| n-Hexane | 120                                         | 17,28        | 52,41           | 75,39                                   | 77,98                  | 40,50                            | 25,05 | 7,88                                                  | 13,69                     | 9,19                            | 27,90              |
| n-Hexane | 130                                         | 18,53        | 56,21           | 76,77                                   | 78,93                  | 40,50                            | 25,05 | 7,79                                                  | 13,65                     | 9,66                            | 29,32              |
| n-Hexane | 150                                         | 20,78        | 63,04           | 79,09                                   | 80,50                  | 40,50                            | 25,05 | 7,67                                                  | 13,59                     | 10,53                           | 31,94              |

Çizelge 4.6. Farklı soğutucu akışkanlar için, Model 1'i oluşturan alt sistemlerin ve tüm sistemin enerji ve ekserji verimleri

| Nokta                              | Т<br>(°С)   | <b>P</b><br>(kPa) | ḿ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |
|------------------------------------|-------------|-------------------|-------------|---------------------|----------------|------------------------------------|--------------------|
| ORC                                | Sistemi     |                   | l           |                     | L              |                                    |                    |
| 1                                  | 160,00      | 735,693           | 447,941     | 599,41              | 1,5450         | 146,59                             | 65662,86           |
| 2                                  | 98,82       | 24,998            | 447,941     | 496,04              | 1,5947         | 28,66                              | 12839,40           |
| 2a                                 | 48,07       | 24,998            | 447,941     | 400,65              | 1,3193         | 13,98                              | 6264,02            |
| 3                                  | 30,00       | 24,998            | 447,941     | 11,71               | 0,0393         | 0,28                               | 124,49             |
| 4                                  | 30,34       | 735,693           | 447,941     | 13,07               | 0,0402         | 1,37                               | 615,45             |
| 4a                                 | 70,75       | 735,693           | 447,941     | 108,46              | 0,3352         | 10,28                              | 4605,33            |
| ss <sub>1</sub>                    | 20,00       | 101,325           | 4164,972    | 83,93               | 0,2962         | 0,00                               | 0,00               |
| <b>ss</b> <sub>2</sub>             | 30,00       | 101,325           | 4164,972    | 125,76              | 0,4365         | 0,70                               | 2905,70            |
| Yüks                               | ek Sıcaklıl | dı Elektrol       | iz Sistemi  |                     |                |                                    |                    |
| 1                                  | 200,00      | 1200              | 2,200       | 2815,36             | 6,5890         | 886,69                             | 3103,10            |
| 2                                  | 730,10      | 1200              | 2,200       | 3991,59             | 8,2586         | 1573,49                            | 4614,06            |
| 3                                  | 882,61      | 1200              | 2,200       | 4351,45             | 8,5923         | 1835,51                            | 5190,51            |
| 4                                  | 981,09      | 1200              | 2,200       | 4591,87             | 8,7919         | 2017,42                            | 5590,71            |
| 5                                  | 200,00      | 1200              | 0,800       | 2815,36             | 6,5890         | 886,69                             | 1128,40            |
| 6                                  | 266,61      | 1200              | 0,800       | 2971,65             | 6,8985         | 952,26                             | 1180,86            |
| 7                                  | 456,82      | 1200              | 0,800       | 3382,81             | 7,5514         | 1172,00                            | 1356,65            |
| 8                                  | 791,56      | 1200              | 0,800       | 4134,77             | 8,3971         | 1676,07                            | 1759,90            |
| 9                                  | 931,48      | 1200              | 3,000       | 4469,98             | 8,6927         | 1924,60                            | 7345,22            |
| 10 <sub><i>H</i><sub>2</sub></sub> | 1000,00     | 15000             | 0,16431     | 18491,38            | 54,0887        | 14350,69                           | 21600,33           |
| $10_{H_2O}$                        | 1000,00     | 15000             | 1,53162     | 4597,68             | 7,6350         | 2362,38                            | 4420,56            |
| $11_{H_2}$                         | 917,87      | 15000             | 0,16431     | 17223,42            | 53,0593        | 13384,51                           | 21441,57           |
| $11_{H_2O}$                        | 917,87      | 15000             | 1,53162     | 4387,63             | 7,4644         | 2202,32                            | 4175,40            |
| $11a_{H_2}$                        | 921,90      | 8000              | 0,16431     | 17223,42            | 55,6978        | 12611,03                           | 21314,48           |
| $11a_{H_20}$                       | 907,79      | 8000              | 1,53162     | 4387,63             | 7,7513         | 2118,23                            | 4046,60            |
| 12 <sub><i>H</i><sub>2</sub></sub> | 913,42      | 8000              | 0,16431     | 17093,20            | 55,5884        | 12512,87                           | 21298,35           |
| $12_{H_2O}$                        | 913,42      | 8000              | 1,53162     | 4401,60             | 7,7631         | 2128,74                            | 4062,70            |
| 13 <sub><i>H</i><sub>2</sub></sub> | 786,54      | 8000              | 0,16431     | 15162,28            | 53,8676        | 11086,40                           | 21063,97           |
| $13_{H_20}$                        | 786,54      | 8000              | 1,53162     | 4090,22             | 7,4856         | 1898,70                            | 3710,37            |
| $13a_{H_2}$                        | 789,47      | 3000              | 0,16431     | 15162,28            | 57,9504        | 9889,54                            | 20867,31           |
| $13a_{H_2O}$                       | 776,31      | 3000              | 1,53162     | 4090,22             | 7,9337         | 1767,36                            | 3509,20            |
| 14 <sub><i>H</i><sub>2</sub></sub> | 781,66      | 3000              | 0,16431     | 15044,45            | 57,8391        | 9804,34                            | 20853,31           |
| $14_{H_20}$                        | 781,66      | 3000              | 1,53162     | 4102,86             | 7,9457         | 1776,47                            | 3523,17            |

Çizelge 4.7. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 1'in termofiziksel özellikleri

| Nokta           | Т<br>(°С) | <b>P</b><br>(kPa) | <b>ṁ</b><br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |
|-----------------|-----------|-------------------|--------------------|---------------------|----------------|------------------------------------|--------------------|
| $15_{H_2}$      | 343,21    | 3000              | 0,16431            | 8564,11             | 49,9102        | 5648,33                            | 20170,42           |
| $15_{H_2O}$     | 343,21    | 3000              | 1,53162            | 3098,66             | 6,7160         | 1132,77                            | 2537,25            |
| 16              | 1000,00   | 15000             | 1,30403            | 1014,78             | 0,1632         | 967,02                             | 1422,81            |
| 17              | 571,74    | 15000             | 1,30403            | 543,70              | -0,2882        | 628,28                             | 981,08             |
| 18              | 572,98    | 8000              | 1,30403            | 543,70              | -0,1198        | 578,91                             | 916,70             |
| 19              | 326,52    | 8000              | 1,30403            | 285,56              | -0,4803        | 426,47                             | 717,91             |
| 20              | 325,02    | 3000              | 1,30403            | 285,56              | -0,2221        | 350,76                             | 619,18             |
| 21              | 227,58    | 3000              | 1,30403            | 189,46              | -0,3993        | 305,62                             | 560,32             |
| 22              | 20,00     | 101,325           | 1,46838            | 83,93               | 0,2962         | 0,00                               | 73,35              |
| 23              | 20,10     | 1200              | 1,46838            | 85,40               | 0,2974         | 1,10                               | 74,97              |
| 24              | 188,00    | 1200              | 3,000              | 1623,79             | 4,0059         | 452,35                             | 2217,69            |
| 25              | 200,00    | 1200              | 3,000              | 2815,36             | 6,5890         | 886,69                             | 4231,50            |
| 26              | 343,21    | 3000              | 1,53162            | 3098,66             | 6,7160         | 1132,77                            | 2537,25            |
| 27              | 324,65    | 1200              | 1,53162            | 3098,66             | 7,1220         | 1013,73                            | 2354,94            |
| $H_1$           | 343,21    | 3000              | 0,16431            | 8564,11             | 49,9102        | 5648,33                            | 20170,42           |
| H <sub>2</sub>  | 344,81    | 101,325           | 0,16431            | 8564,11             | 63,9220        | 1540,74                            | 19495,77           |
| H <sub>3</sub>  | 61,57     | 101,325           | 0,16431            | 4456,75             | 55,0347        | 38,73                              | 19248,98           |
| Abso            | rbsiyonlu | Soğutma S         | istemi (NH         | 3-H2O Eriyi         | ği için)       |                                    |                    |
| 1               | 100,00    | 1238,322          | 0,577              | 1675,78             | 5,8017         | 363,78                             | 11771,18           |
| 2               | 50,42     | 1238,322          | 0,577              | 1543,65             | 5,4212         | 343,19                             | 11759,30           |
| 3               | 32,00     | 1238,322          | 0,577              | 351,34              | 1,5192         | 294,75                             | 11550,78           |
| 4               | 15,81     | 1238,322          | 0,577              | 274,18              | 1,2594         | 293,75                             | 11550,20           |
| 5               | -15,00    | 236,206           | 0,577              | 274,18              | 1,2959         | 283,04                             | 11547,41           |
| 6               | -15,00    | 236,206           | 0,577              | 1443,87             | 5,8269         | 124,47                             | 11633,11           |
| 7               | 17,43     | 236,206           | 0,577              | 1521,03             | 6,1088         | 118,99                             | 11629,95           |
| 8               | 32,00     | 236,206           | 7,020              | -89,53              | 0,3379         | 103,98                             | 60521,04           |
| 9               | 34,05     | 236,206           | 7,020              | -78,67              | 0,3723         | 104,75                             | 60526,40           |
| 10              | 34,24     | 1238,322          | 7,020              | -77,20              | 0,3743         | 105,64                             | 60532,66           |
| 11              | 76,43     | 1238,322          | 7,020              | 110,43              | 0,9461         | 125,65                             | 60673,13           |
| 12              | 100,00    | 1238,322          | 6,443              | 227,27              | 1,2529         | 152,55                             | 49212,68           |
| 13              | 53,97     | 1238,322          | 6,443              | 22,83               | 0,6682         | 119,51                             | 48999,81           |
| 14              | 53,97     | 236,206           | 6,443              | 22,83               | 0,6682         | 119,51                             | 48999,81           |
| SS <sub>3</sub> | 20,00     | 101,325           | 6,326              | 83,93               | 0,2962         | 0,00                               | 316,02             |
| SS4             | 46,00     | 101,325           | 6,326              | 192,68              | 0,6516         | 4,56                               | 344,83             |

Çizelge 4.7. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 1'in termofiziksel özellikleri (devam)

| Nokta               | Т<br>(°С)                                       | P<br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |  |  |
|---------------------|-------------------------------------------------|------------|-------------|---------------------|----------------|------------------------------------|--------------------|--|--|--|--|
| <b>SS</b> 5         | 20,00                                           | 101,325    | 39,521      | 83,93               | 0,2962         | 0,00                               | 1974,36            |  |  |  |  |
| SS <sub>6</sub>     | 30,00                                           | 101,325    | 39,521      | 125,76              | 0,4365         | 0,70                               | 2001,93            |  |  |  |  |
| Ön S                | Ön Soğutmalı Linde-Hampson Sıvılaştırma Sistemi |            |             |                     |                |                                    |                    |  |  |  |  |
| 1                   | -60,86                                          | 101,325    | 0,70014     | 2724,46             | 48,6040        | 191,59                             | 82129,09           |  |  |  |  |
| 2                   | -60,32                                          | 12000      | 0,70014     | 2755,10             | 28,7112        | 6053,82                            | 86233,48           |  |  |  |  |
| 3                   | -125,67                                         | 12000      | 0,70014     | 1839,99             | 23,5811        | 6642,60                            | 86645,72           |  |  |  |  |
| 4                   | -195,79                                         | 12000      | 0,70014     | 871,58              | 14,6379        | 8295,89                            | 87803,25           |  |  |  |  |
| 5                   | -202,72                                         | 12000      | 0,70014     | 768,30              | 13,2390        | 8602,69                            | 88018,06           |  |  |  |  |
| 6                   | -209,79                                         | 12000      | 0,70014     | 660,17              | 11,6208        | 8968,96                            | 88274,50           |  |  |  |  |
| 7                   | -231,38                                         | 12000      | 0,70014     | 343,38              | 5,5425         | 10434,01                           | 89300,25           |  |  |  |  |
| 8                   | -252,78                                         | 101,325    | 0,70014     | 343,38              | 16,8581        | 7116,83                            | 86977,75           |  |  |  |  |
| 9                   | -214,19                                         | 101,325    | 0,53583     | 862,60              | 33,5333        | 2747,73                            | 64224,66           |  |  |  |  |
| 10                  | -201,37                                         | 101,325    | 0,53583     | 997,54              | 35,6037        | 2275,73                            | 63971,74           |  |  |  |  |
| 11                  | -100,45                                         | 101,325    | 0,53583     | 2193,26             | 45,8369        | 471,58                             | 63005,02           |  |  |  |  |
| f                   | -252,78                                         | 101,325    | 0,16431     | 0,001913            | 0,00009282     | 11715,39                           | 21167,57           |  |  |  |  |
| g                   | -252,78                                         | 101,325    | 0,53583     | 448,68              | 22,0276        | 5706,71                            | 65810,18           |  |  |  |  |
| $N_{1,s_1v_1}$      | -195,79                                         | 101,325    | 2,995       | -122,02             | 2,8342         | 741,87                             | 2297,97            |  |  |  |  |
| N <sub>1,gaz</sub>  | -170,79                                         | 101,325    | 2,995       | 104,41              | 5,7146         | 123,73                             | 447,47             |  |  |  |  |
| N <sub>2,s1V1</sub> | -209,79                                         | 13         | 0,3134      | -150,33             | 2,4321         | 831,24                             | 268,60             |  |  |  |  |
| N <sub>2,gaz</sub>  | -184,79                                         | 13         | 0,3134      | 91,22               | 6,1797         | -25,81                             | -0,04              |  |  |  |  |
| Jeote               | ermal Akış                                      | kan        |             |                     |                |                                    |                    |  |  |  |  |
| jeo <sub>1</sub>    | 240,00                                          | 600        | 180,000     | 2935,46             | 7,1399         | 845,30                             | 152154,79**        |  |  |  |  |
| jeo <sub>2</sub>    | 158,86                                          | 600        | 180,000     | 1713,70             | 4,3458         | 442,62                             | 131313,41***       |  |  |  |  |
| jeo <sub>3</sub>    | 158,86                                          | 600        | 180,000     | 1704,50             | 4,3245         | 439,67                             | 130404,98          |  |  |  |  |
| jeo4                | 240,00                                          | 1300       | 1,703       | 2907,16             | 6,7406         | 934,04                             | 2482,17            |  |  |  |  |
| jeo5                | 190,00                                          | 1300       | 1,703       | 807,62              | 2,2358         | 155,10                             | 349,14             |  |  |  |  |

Çizelge 4.7. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 1'in termofiziksel özellikleri (devam)

\*ORC sisteminde toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiş, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve sıvılaştırma sistemlerinde ise kimyasal ekserji dikkate alınmıştır.

\*\*jeo1 noktası için toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiştir.

\*\*\* jeo2 noktası için verilen ekserji akımı toplam ekserji akımıdır. Ancak ORC sistemindeki ekserji hesaplamalarında kimyasal ekserji ihmal edilmiştir. jeo2 noktasının fiziksel ekserjisi 79672,22 kW olarak hesaplanmıştır.

| <b>Komponent</b> $\dot{\boldsymbol{Q}}$ (kW) $\dot{\boldsymbol{W}}$ (kW) |                 | <b>W</b> (kW) | İ (kW)     | İ (%)  | $\eta_{ex,k}$ |  |  |
|--------------------------------------------------------------------------|-----------------|---------------|------------|--------|---------------|--|--|
| ORC Sistemi                                                              |                 |               |            |        |               |  |  |
| Buharlaştırıcı                                                           | 219917,31       |               | 11425,05   | 34,811 | 84,24         |  |  |
| Türbin                                                                   |                 | 46302,56      | 6520,89    | 19,869 | 87,66         |  |  |
| Yoğuşturucu                                                              | 174223,46       |               | 3233,83    | 9,853  | 47,33         |  |  |
| Pompa                                                                    |                 | 608,72        | 117,76     | 0,359  | 80,65         |  |  |
| Isı Eşanjörü                                                             | 42728,85        |               | 2585,50    | 7,878  | 60,68         |  |  |
| Yüksek Sıcaklıklı Ele                                                    | ektroliz Sisten | ni            |            |        |               |  |  |
| Elektroliz Ünitesi                                                       |                 | 20825,40      | 726,93     | 2,215  | 96,51         |  |  |
| Isı Eşanjörü (1)                                                         | 2587,70         |               | 157,84     | 0,481  | 90,54         |  |  |
| Isı Eşanjörü (2)                                                         | 125,03          |               | 6,41       | 0,020  | 89,11         |  |  |
| Isı Eşanjörü (3)                                                         | 791,69          |               | 10,26      | 0,031  | 98,25         |  |  |
| Isı Eşanjörü (4)                                                         | 328,93          |               | 23,01      | 0,070  | 88,43         |  |  |
| Isı Eşanjörü (5)                                                         | 528,92          |               | 3,71       | 0,011  | 99,08         |  |  |
| Isı Eşanjörü (6)                                                         | 601,57          |               | 38,47      | 0,117  | 91,29         |  |  |
| Giriş Eşanjörü                                                           | 3574,72         |               | 119,23     | 0,363  | 94,41         |  |  |
| Pompa                                                                    |                 | 2,16          | 0,54       | 0,002  | 74,99         |  |  |
| Seperatör                                                                |                 |               | 0,00       | 0,000  | 100           |  |  |
| Karışım Odası (1)                                                        |                 |               | 212,21     | 0,647  | 91,27         |  |  |
| Karışım Odası (2)                                                        |                 |               | 0,00       | 0,000  | 100           |  |  |
| Karışım Odası (3)                                                        |                 |               | 5,40       | 0,016  | 99,93         |  |  |
| Karışım Odası (4)                                                        |                 |               | 0,03       | 0,001  | 99,99         |  |  |
| Karışım Odası (5)                                                        |                 |               | 0,04       | 0,001  | 99,99         |  |  |
| Kısılma Vanası (1)                                                       |                 |               | 98,73      | 0,301  | 86,25         |  |  |
| Kısılma Vanası (2)                                                       |                 |               | 64,38      | 0,196  | 93,44         |  |  |
| Kısılma Vanası (3)                                                       |                 |               | 255,89     | 0,780  | 99,00         |  |  |
| Kısılma Vanası (4)                                                       |                 |               | 397,83     | 1,212  | 98,39         |  |  |
| Kısılma Vanası (5)                                                       |                 |               | 182,31     | 0,555  | 92,81         |  |  |
| Kısılma Vanası (6)                                                       |                 |               | 674,91     | 2,056  | 96,65         |  |  |
| Absorbsiyonlu Soğut                                                      | ma Sistemi (N   | NH3-H2O Eri   | yiği için) |        |               |  |  |
| Kaynatıcı                                                                | 1655,91         |               | 597,70     | 1,821  | 34,21         |  |  |
| Yoğuşturucu                                                              | 687,92          |               | 179,71     | 0,548  | 13,82         |  |  |
| Buharlaştırıcı                                                           | 674,87          |               | 161,09     | 0,491  | 34,73         |  |  |
| Absorber                                                                 | 1653,17         |               | 81,15      | 0,247  | 25,36         |  |  |

**Çizelge 4.8.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 1'i oluşturan komponentlerin enerji ve ekserji performansları

| Komponent                           | <b>Q</b> (kW) | <b>W</b> (kW) | <b>İ</b> (kW) | <b>İ</b> (%) | $\eta_{ex,k}$ |
|-------------------------------------|---------------|---------------|---------------|--------------|---------------|
| Eriyik Eşanjörü                     | 1317,22       |               | 72,41         | 0,221        | 65,99         |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü | 76,24         |               | 6,51          | 0,020        | 45,19         |
| Soğutucu Akışkan<br>Eşanjörü        | 44,52         |               | 3,74          | 0,011        | 18,31         |
| Eriyik Pompası                      |               | 10,32         | 4,05          | 0,012        | 60,70         |
| Kısılma Vanası (1)                  |               |               | 2,79          | 0,009        | 99,98         |
| Kısılma Vanası (2)                  |               |               | 0,000         | 0,000        | 100           |
| Ön Soğutmalı Linde-                 | Hampson Siv   | ılaştırma Sis | stemi         |              |               |
| Kompresör                           | 2956,20       | 2978,26       | 544,77        | 1,660        | 86,73         |
| Isı Eşanjörü (1)                    | 640,70        |               | 554,49        | 1,689        | 42,64         |
| Isı Eşanjörü (2)                    | 678,03        |               | 692,97        | 2,111        | 62,55         |
| Isı Eşanjörü (3)                    | 72,31         |               | 38,11         | 0,116        | 84,93         |
| Isı Eşanjörü (4)                    | 75,71         |               | 12,20         | 0,037        | 95,46         |
| Isı Eşanjörü (5)                    | 221,80        |               | 559,77        | 1,706        | 64,69         |
| Kısılma Vanası                      |               |               | 2322,50       | 7,076        | 97,39         |
| Karışım Odası                       |               |               | 124,91        | 0,381        | 99,85         |
| Seperatör                           |               |               | 0,000         | 0,000        | 100           |

**Çizelge 4.8.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 1'i oluşturan komponentlerin enerji ve ekserji performansları (devam)

Bu çalışma kapsamında hidrojen sıvılaştırma sistemlerinde gerçekleşen ön soğutma işlemi için farklı basınç şartlarında çalışan Linde-Hampson azot sıvılaştırma sistemleri kullanılmıştır. Ön soğutmalı Linde-Hampson sisteminde 101,325 kPa ve 13 kPa basınçta iki defa gerçekleşen ön soğutma işlemi diğer sıvılaştırma sistemlerinde ise 101,325 kPa çevre basıncında bir defa gerçekleşmektedir. Çizelge 4.9'da 101,325 kPa basınç altında çalışan Linde-Hampson azot sıvılaştırma sistemini oluşturan noktaların termofiziksel özellikleri verilmiştir.

| Nokta | Т<br>(°С) | P<br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | e <sub>fiz</sub><br>(kJ/kg) | Ė<br>(kW) |
|-------|-----------|------------|-------------|---------------------|----------------|-----------------------------|-----------|
| 1     | 26,85     | 101,325    | 13,4        | 311,19              | 6,8418         | 0,08                        | 345,51    |
| 2     | 26,85     | 20265      | 13,4        | 278,87              | 5,1581         | 461,32                      | 6526,15   |
| 3     | -108,64   | 20265      | 13,4        | 62,29               | 4,1750         | 532,90                      | 7485,76   |
| 4     | -195,79   | 101,325    | 13,4        | 62,29               | 5,2169         | 227,52                      | 3393,12   |
| 5     | 26,85     | 101,325    | 12,4        | 311,19              | 6,8418         | 0,08                        | 318,71    |
| f     | -195,79   | 101,325    | 1,0         | -122,02             | 2,8342         | 741,87                      | 767,39    |
| g     | -195,79   | 101,325    | 12,4        | 77,16               | 5,4090         | 186,05                      | 2625,73   |

**Çizelge 4.9.** 101,325 kPa basınç altında çalışan Linde-Hampson azot sıvılaştırma sisteminin termofiziksel özellikleri

Çizelge 4.9'daki termofiziksel verilerden yararlanılarak birim azot debisini sıvılaştırmak için gerekli olan sıvılaştırma işi Eşitlik (3.194) yardımıyla 6335 kW olarak hesaplanmıştır. Benzer şekilde 13 kPa basınç altında çalışan Linde-Hampson azot sıvılaştırma sistemini oluşturan noktaların termofiziksel özellikleri ise Çizelge 4.10'da sunulmuştur.

**Çizelge 4.10.** 13 kPa basınç altında çalışan Linde-Hampson azot sıvılaştırma sisteminin termofiziksel özellikleri

| Nokta | <b>Т</b><br>(°С) | P<br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e<sub>fiz</sub></i> (kJ/kg) | Ė<br>(kW) |
|-------|------------------|------------|-------------|---------------------|----------------|--------------------------------|-----------|
| 1     | 26,85            | 13         | 14,2        | 311,39              | 7,4518         | -178,56                        | -2169,99  |
| 2     | 26,85            | 20265      | 14,2        | 278,87              | 5,1581         | 461,32                         | 6913,81   |
| 3     | -114,91          | 20265      | 14,2        | 49,81               | 4,0976         | 543,14                         | 8075,22   |
| 4     | -209,79          | 13         | 14,2        | 49,81               | 5,5910         | 105,36                         | 1860,53   |
| 5     | 26,85            | 13         | 13,2        | 311,39              | 7,4518         | -178,56                        | -2017,13  |
| f     | -209,79          | 13         | 1,0         | -150,33             | 2,4321         | 831,24                         | 856,94    |
| g     | -209,79          | 13         | 13,2        | 64,97               | 5,8304         | 50,35                          | 1003,58   |

Çizelge 4.10'daki termofiziksel verilerden yararlanılarak birim azot debisini sıvılaştırmak için gerekli olan sıvılaştırma işi 9307 kW olarak elde edilmiştir. Hidrojen sıvılaştırma sistemlerindeki ön soğutma işi hesaplanırken bu değerlerden yararlanılmıştır.

## 4.3. Model 2 için Analiz Sonuçları

Model 2'de sıvılaştırma çevrimi olarak ön soğutmalı Claude sıvılaştırma sistemi kullanılmış ve eriyik çifti olarak ise NH<sub>3</sub>–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma çevrimi tercih edilmiştir.

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak Model 2'de üretilen sıvı hidrojen miktarının değişimi Şekil 4.16'da verilmiştir. Soğutucu akışkan olarak n-Hexane kullanılması durumunda diğer akışkanlara göre sistemden daha fazla sıvı hidrojen üretilmektedir. Buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığına bağlı olarak %30,38 artmaktadır.

Çalışma kapsamında R245fa tercih edilmesi durumunda sistemden üretilen sıvı hidrojen miktarı diğer akışkanlara göre daha azdır. Ayrıca R245fa için buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi daha düşük olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının etkisiyle %22,76 artmaktadır.



**Şekil 4.16.** Model 2 için ön soğutmalı Claude sisteminde üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak elektroliz işinin değişimi Şekil 4.17(a)'da, elektroliz ünitesi geri dönüşüm oranının (r) değişimi ise Şekil 4.17(b)'de verilmiştir. Model 1'e benzer şekilde Model 2'de de buharlaştırıcı sıcaklığının yükselmesiyle gerekli elektroliz işi artarken, elektroliz modülü geri dönüşüm oranı azalmaktadır.

Soğutucu akışkan olarak n-Hexane kullanılması durumunda gerekli elektroliz işi diğer akışkanlara göre daha yüksekken, geri dönüşüm oranı diğer akışkanlara oranla daha düşük olmaktadır. Ayrıca buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için elektroliz işi %27,87 artarken, geri dönüşüm oranı ise %21,32 azalmaktadır.

Model 2 için soğutucu akışkan olarak R245fa kullanılması durumunda harcanan elektroliz işi diğer akışkanlara göre daha düşükken, geri dönüşüm oranı ise daha yüksek olmaktadır. R245fa tercih edilmesi durumunda buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve elektroliz işi %20,79 artarken, geri dönüşüm oranı ise %15,17 azalmaktadır.



**Şekil 4.17.** Model 2 için (a) elektroliz işinin ve (b) elektroliz modülü geri dönüşüm oranının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak ön soğutmalı Claude sıvılaştırma sistemindeki kompresör işinin değişimi Şekil 4.18(a)'da, elde edilen türbin işinin değişimi Şekil 4.18(b)'de ve toplam sıvılaştırma işinin değişimi ise Şekil 4.18(c)'de verilmiştir. Model 1'e benzer olarak Model 2'de de buharlaştırıcı sıcaklığının etkisiyle sıvılaştırma sistemine gönderilen hidrojen miktarı artmakta ve bu durumda hidrojeni yüksek basınca sıkıştırmak için gerekli olan kompresör işi yükselmektedir. Benzer olarak hidrojen miktarının artması sıvılaştırma sistemindeki artmakta toplam sıvılaştırma işini yükseltmekte ve buna bağlı olarak toplam sıvılaştırma işi artmaktadır.

Claude sıvılaştırma çevriminde, Linde-Hampson çevriminden farklı olarak, çevrimde dolaşan gazın bir kısmı türbinde genişlemekte ve türbinden ayrılan akış, ısı eşanjörleri yardımıyla ana gaz akışını soğutmaktadır. Türbine gönderilen sabit gaz oranı (z) için buharlaştırıcı sıcaklığının etkisiyle sıvılaştırma sisteminde dolaşan ve bağlı olarak türbine gönderilen hidrojen miktarı artmaktadır. Bu durumda türbine gönderilen hidrojen miktarıa türbin işi de artmaktadır.

Çalışma kapsamında n-Hexane kullanılması durumunda gerekli olan kompresör işi, elde edilen türbin işi ve toplam sıvılaştırma işi diğer akışkanlara göre daha yüksek olmaktadır. Buharlaştırıcı sıcaklığının kompresör, türbin ve toplam sıvılaştırma işi üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, buharlaştırıcı sıcaklığının etkisiyle kompresör işi %48,58, türbin işi %30,38 ve toplam sıvılaştırma işi ise %63,26 artmaktadır. Bununla birlikte R245fa kullanılması durumunda gerekli olan kompresör işi, elde edilen türbin işi ve toplam sıvılaştırma işi diğer akışkanlara göre daha düşüktür. R245fa için buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi izerindeki etkisi diğer akışkanlara göre daha az olmakta ve kompresör işi %38,04, türbin işi %22,76 ve toplam sıvılaştırma işi ise %50,67 artmaktadır.



**Şekil 4.18.** Model 2 için ön soğutmalı Claude sıvılaştırma sisteminde (a) kompresör işinin, (b) türbin işinin ve (c) toplam sıvılaştırma işinin buharlaştırıcı sıcaklığı ile değişimi

150°C buharlaştırıcı sıcaklığı için, soğutucu akışkan olarak n-Hexane kullanılması durumunda Model 2'yi oluşturan tüm noktaların termofiziksel özellikleri Çizelge 4.11'de, Model 2'yi oluşturan tüm komponentlerin enerji ve ekserji performansları ise Çizelge 4.12'de verilmiştir.

| Nokta                              | Т<br>(°С)   | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e<sub>fiz</sub></i> (kJ/kg) | <b>Ė</b> *<br>(kW) |
|------------------------------------|-------------|-------------------|-------------|---------------------|----------------|--------------------------------|--------------------|
| ORC Sistemi                        |             |                   |             |                     |                |                                |                    |
| 1                                  | 160,00      | 735,693           | 447,941     | 599,41              | 1,5450         | 146,59                         | 65662,86           |
| 2                                  | 98,82       | 24,998            | 447,941     | 496,04              | 1,5947         | 28,66                          | 12839,40           |
| 2a                                 | 48,07       | 24,998            | 447,941     | 400,65              | 1,3193         | 13,98                          | 6264,02            |
| 3                                  | 30,00       | 24,998            | 447,941     | 11,71               | 0,0393         | 0,28                           | 124,49             |
| 4                                  | 30,34       | 735,693           | 447,941     | 13,07               | 0,0402         | 1,37                           | 615,45             |
| 4a                                 | 70,75       | 735,693           | 447,941     | 108,46              | 0,3352         | 10,28                          | 4605,33            |
| ss <sub>1</sub>                    | 20,00       | 101,325           | 4164,972    | 83,93               | 0,2962         | 0,00                           | 0,00               |
| ss <sub>2</sub>                    | 30,00       | 101,325           | 4164,972    | 125,76              | 0,4365         | 0,70                           | 2905,70            |
| Yüks                               | ek Sıcaklıl | klı Elektrol      | liz Sistemi |                     |                |                                |                    |
| 1                                  | 200,00      | 1200              | 2,200       | 2815,36             | 6,5890         | 886,69                         | 3103,10            |
| 2                                  | 723,32      | 1200              | 2,200       | 3975,94             | 8,2429         | 1562,43                        | 4589,73            |
| 3                                  | 877,84      | 1200              | 2,200       | 4339,95             | 8,5823         | 1826,94                        | 5171,65            |
| 4                                  | 980,26      | 1200              | 2,200       | 4589,83             | 8,7903         | 2015,86                        | 5587,27            |
| 5                                  | 200,00      | 1200              | 0,800       | 2815,36             | 6,5890         | 886,69                         | 1128,40            |
| 6                                  | 296,85      | 1200              | 0,800       | 3038,31             | 7,0187         | 983,69                         | 1206,01            |
| 7                                  | 526,97      | 1200              | 0,800       | 3535,25             | 7,7508         | 1265,99                        | 1431,84            |
| 8                                  | 842,19      | 1200              | 0,800       | 4254,59             | 8,5070         | 1763,66                        | 1829,97            |
| 9                                  | 943,94      | 1200              | 3,000       | 4500,43             | 8,7179         | 1947,68                        | 7414,46            |
| 10 <sub><i>H</i><sub>2</sub></sub> | 1000,00     | 15000             | 0,18049     | 18491,38            | 54,0887        | 14350,69                       | 23727,44           |
| $10_{H_2O}$                        | 1000,00     | 15000             | 1,38702     | 4597,68             | 7,6350         | 2362,38                        | 4003,21            |
| $11_{H_2}$                         | 912,96      | 15000             | 0,18049     | 17148,04            | 52,9958        | 13327,73                       | 23542,80           |
| $11_{H_2O}$                        | 912,96      | 15000             | 1,38702     | 4375,14             | 7,4539         | 2192,92                        | 3768,16            |
| $11a_{H_2}$                        | 916,99      | 8000              | 0,18049     | 17148,04            | 55,6346        | 12554,18                       | 23403,18           |
| $11a_{H_20}$                       | 902,75      | 8000              | 1,38702     | 4375,14             | 7,7407         | 2108,85                        | 3651,55            |
| $12_{H_2}$                         | 909,10      | 8000              | 0,18049     | 17027,02            | 55,5325        | 12463,07                       | 23386,74           |
| $12_{H_2O}$                        | 909,10      | 8000              | 1,38702     | 4390,89             | 7,7541         | 2120,68                        | 3667,96            |
| 13 <sub><i>H</i><sub>2</sub></sub> | 778,31      | 8000              | 0,18049     | 15038,08            | 53,7500        | 10996,69                       | 23122,07           |
| $13_{H_2O}$                        | 778,31      | 8000              | 1,38702     | 4070,26             | 7,4667         | 1884,28                        | 3340,08            |
| $13a_{H_2}$                        | 781,24      | 3000              | 0,18049     | 15038,08            | 57,8330        | 9799,74                        | 22906,02           |
| $13a_{H_20}$                       | 767,85      | 3000              | 1,38702     | 4070,26             | 7,9146         | 1752,99                        | 3157,97            |
| $14_{H_2}$                         | 773,93      | 3000              | 0,18049     | 14927,86            | 57,7282        | 9720,27                        | 22891,68           |
| $14_{H_20}$                        | 773,93      | 3000              | 1,38702     | 4084,60             | 7,9283         | 1763,31                        | 3172,28            |

Çizelge 4.11. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'nin termofiziksel özellikleri

| Nokta           | Т<br>(°С) | <b>P</b><br>(kPa) | <b>ṁ</b><br>(kg/s) | <b>h</b><br>(kJ/kg)      | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |
|-----------------|-----------|-------------------|--------------------|--------------------------|----------------|------------------------------------|--------------------|
| $15_{H_2}$      | 334,24    | 3000              | 0,18049            | 8433,34                  | 49,6965        | 5580,22                            | 22144,43           |
| $15_{H_2O}$     | 334,24    | 3000              | 1,38702            | 3077,17                  | 6,6809         | 1121,57                            | 2282,18            |
| 16              | 1000,00   | 15000             | 1,43244            | 1014,78                  | 0,1632         | 967,02                             | 1562,92            |
| 17              | 629,61    | 15000             | 1,43244            | 606,25                   | -0,2165        | 669,81                             | 1137,18            |
| 18              | 631,24    | 8000              | 1,43244            | 606,25                   | -0,0482        | 620,48                             | 1066,51            |
| 19              | 361,95    | 8000              | 1,43244            | 321,95                   | -0,4213        | 445,56                             | 815,95             |
| 20              | 360,92    | 3000              | 1,43244            | 321,95                   | -0,1630        | 369,81                             | 707,46             |
| 21              | 234,60    | 3000              | 1,43244            | 196,38                   | -0,3856        | 308,51                             | 619,64             |
| 22              | 20,00     | 101,325           | 1,61298            | 83,93                    | 0,2962         | 0,00                               | 80,58              |
| 23              | 20,10     | 1200              | 1,61298            | 85,40                    | 0,2974         | 1,10                               | 82,35              |
| 24              | 188,00    | 1200              | 3,000              | 1468,61                  | 3,6694         | 395,82                             | 2048,11            |
| 25              | 200,00    | 1200              | 3,000              | 2815,36                  | 6,5890         | 886,69                             | 4231,50            |
| 26              | 334,24    | 3000              | 1,38702            | 3077,17                  | 6,6809         | 1121,57                            | 2282,18            |
| 27              | 314,72    | 1200              | 1,38702            | 3077,17                  | 7,0858         | 1002,87                            | 2117,54            |
| $H_1$           | 334,24    | 3000              | 0,18049            | 8433,34                  | 49,6965        | 5580,22                            | 22144,43           |
| $H_2$           | 335,84    | 101,325           | 0,18049            | 8433,34                  | 63,7090        | 1472,51                            | 21403,25           |
| $H_3$           | 78,04     | 101,325           | 0,18049            | 4694,28                  | 55,7275        | 73,19                              | 21150,69           |
| Abso            | rbsiyonlu | Soğutma S         | istemi (NH         | 3-H <sub>2</sub> O Eriyi | ği için)       |                                    |                    |
| 1               | 100,00    | 1238,322          | 0,577              | 1675,78                  | 5,8017         | 363,78                             | 11771,18           |
| 2               | 50,42     | 1238,322          | 0,577              | 1543,65                  | 5,4212         | 343,19                             | 11759,30           |
| 3               | 32,00     | 1238,322          | 0,577              | 351,34                   | 1,5192         | 294,75                             | 11550,78           |
| 4               | 15,81     | 1238,322          | 0,577              | 274,18                   | 1,2594         | 293,75                             | 11550,20           |
| 5               | -15,00    | 236,206           | 0,577              | 274,18                   | 1,2959         | 283,04                             | 11547,41           |
| 6               | -15,00    | 236,206           | 0,577              | 1443,87                  | 5,8269         | 124,47                             | 11633,11           |
| 7               | 17,43     | 236,206           | 0,577              | 1521,03                  | 6,1088         | 118,99                             | 11629,95           |
| 8               | 32,00     | 236,206           | 7,020              | -89,53                   | 0,3379         | 103,98                             | 60521,04           |
| 9               | 34,05     | 236,206           | 7,020              | -78,67                   | 0,3723         | 104,75                             | 60526,40           |
| 10              | 34,24     | 1238,322          | 7,020              | -77,20                   | 0,3743         | 105,64                             | 60532,66           |
| 11              | 76,43     | 1238,322          | 7,020              | 110,43                   | 0,9461         | 125,65                             | 60673,13           |
| 12              | 100,00    | 1238,322          | 6,443              | 227,27                   | 1,2529         | 152,55                             | 49212,68           |
| 13              | 53,97     | 1238,322          | 6,443              | 22,83                    | 0,6682         | 119,51                             | 48999,81           |
| 14              | 53,97     | 236,206           | 6,443              | 22,83                    | 0,6682         | 119,51                             | 48999,81           |
| SS <sub>3</sub> | 20,00     | 101,325           | 6,326              | 83,93                    | 0,2962         | 0,00                               | 316,02             |
| SS4             | 46,00     | 101,325           | 6,326              | 192,68                   | 0,6516         | 4,56                               | 344,83             |

Çizelge 4.11. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'nin termofiziksel özellikleri (devam)

| Nokta                                    | <b>Т</b><br>(°С) | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |
|------------------------------------------|------------------|-------------------|-------------|---------------------|----------------|------------------------------------|--------------------|--|
| <b>SS</b> 5                              | 20,00            | 101,325           | 39,521      | 83,93               | 0,2962         | 0,00                               | 1974,36            |  |
| SS <sub>6</sub>                          | 30,00            | 101,325           | 39,521      | 125,76              | 0,4365         | 0,70                               | 2001,93            |  |
| Ön Soğutmalı Claude Sıvılaştırma Sistemi |                  |                   |             |                     |                |                                    |                    |  |
| 1                                        | -48,15           | 101,325           | 0,72003     | 2899,43             | 49,4045        | 131,92                             | 84418,59           |  |
| 2                                        | -47,88           | 6000              | 0,72003     | 2914,81             | 32,4762        | 5109,82                            | 88002,81           |  |
| 3                                        | -118,65          | 6000              | 0,72003     | 1940,15             | 27,2921        | 5654,89                            | 88395,28           |  |
| 4                                        | -195,79          | 6000              | 0,72003     | 930,74              | 18,2315        | 7301,60                            | 89580,96           |  |
| 5                                        | -202,80          | 6000              | 0,72003     | 830,93              | 16,8784        | 7598,45                            | 89794,70           |  |
| 5a                                       | -202,80          | 6000              | 0,36001     | 830,93              | 16,8784        | 7598,45                            | 44897,35           |  |
| 6                                        | -231,38          | 6000              | 0,36001     | 326,49              | 7,5649         | 9824,25                            | 45698,67           |  |
| 7                                        | -237,80          | 6000              | 0,36001     | 223,74              | 4,9022         | 10502,06                           | 45942,69           |  |
| 8                                        | -252,78          | 101,325           | 0,36001     | 223,74              | 10,9843        | 8719,11                            | 45300,80           |  |
| 9                                        | -233,98          | 101,325           | 0,17952     | 654,73              | 29,2366        | 3799,43                            | 21706,42           |  |
| 10                                       | -251,35          | 101,325           | 0,36001     | 465,58              | 22,8297        | 5488,48                            | 44137,73           |  |
| 11                                       | -245,74          | 101,325           | 0,53954     | 528,52              | 25,4015        | 4797,47                            | 65774,55           |  |
| 12                                       | -213,95          | 101,325           | 0,53954     | 865,12              | 33,5758        | 2737,78                            | 64663,26           |  |
| 13                                       | -201,30          | 101,325           | 0,53954     | 998,31              | 35,6144        | 2273,37                            | 64412,70           |  |
| 14                                       | -92,41           | 101,325           | 0,53954     | 2299,02             | 46,4355        | 401,88                             | 63402,96           |  |
| f                                        | -252,78          | 101,325           | 0,18049     | 0,001913            | 0,00009282     | 11715,39                           | 23251,99           |  |
| g                                        | -252,78          | 101,325           | 0,17952     | 448,68              | 22,0276        | 5706,71                            | 22048,82           |  |
| e                                        | -202,80          | 6000              | 0,36001     | 830,93              | 16,8784        | 7598,45                            | 44897,35           |  |
| $N_{s_{1}v_{1}}$                         | -195,79          | 101,325           | 3,2099      | -122,02             | 2,8342         | 741,87                             | 2463,26            |  |
| $\mathbf{N}_{\text{gaz}}$                | -170,79          | 101,325           | 3,2099      | 104,41              | 5,7146         | 123,73                             | 479,65             |  |
| Jeotermal Akışkan                        |                  |                   |             |                     |                |                                    |                    |  |
| jeo1                                     | 240,00           | 600               | 180,000     | 2935,46             | 7,1399         | 845,30                             | 152154,79**        |  |
| jeo <sub>2</sub>                         | 158,86           | 600               | 180,000     | 1713,70             | 4,3458         | 442,62                             | 131313,41***       |  |
| jeo <sub>3</sub>                         | 158,86           | 600               | 180,000     | 1704,50             | 4,3245         | 439,67                             | 130404,98          |  |
| jeo <sub>4</sub>                         | 240,00           | 1300              | 1,924       | 2907,16             | 6,7406         | 934,04                             | 2805,41            |  |
| je05                                     | 190,00           | 1300              | 1,924       | 807,62              | 2,2358         | 155,10                             | 394,60             |  |

**Çizelge 4.11.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'nin termofiziksel özellikleri (devam)

\*ORC sisteminde toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiş, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve sıvılaştırma sistemlerinde ise kimyasal ekserji dikkate alınmıştır.

\*\*jeo1 noktası için toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiştir.

\*\*\*jeo2 noktası için verilen ekserji akımı toplam ekserji akımıdır. Ancak ORC sistemindeki ekserji hesaplamalarında kimyasal ekserji ihmal edilmiştir. jeo2 noktasının fiziksel ekserjisi 79672,22 kW olarak hesaplanmıştır.

| Komponent                                            | <b>\dot Q</b> (kW)                   | <b>W</b> (kW) | <b>İ</b> (kW) | İ (%)  | $\eta_{ex,k}$ |  |  |  |  |
|------------------------------------------------------|--------------------------------------|---------------|---------------|--------|---------------|--|--|--|--|
| ORC Sistemi                                          |                                      |               |               |        |               |  |  |  |  |
| Buharlaştırıcı                                       | 219917,31                            |               | 11425,05      | 35,514 | 84,24         |  |  |  |  |
| Türbin                                               |                                      | 46302,56      | 6520,89       | 20,270 | 87,66         |  |  |  |  |
| Yoğuşturucu                                          | 174223,46                            |               | 3233,83       | 10,052 | 47,33         |  |  |  |  |
| Pompa                                                |                                      | 608,72        | 117,76        | 0,366  | 80,65         |  |  |  |  |
| Isı Eşanjörü                                         | 42728,85                             |               | 2585,50       | 8,037  | 60,68         |  |  |  |  |
| Yüksek Sıcaklıklı Ele                                | Yüksek Sıcaklıklı Elektroliz Sistemi |               |               |        |               |  |  |  |  |
| Elektroliz Ünitesi                                   |                                      | 22735,08      | 855,97        | 2,661  | 96,24         |  |  |  |  |
| Isı Eşanjörü (1)                                     | 2553,28                              |               | 150,72        | 0,469  | 90,79         |  |  |  |  |
| Isı Eşanjörü (2)                                     | 178,36                               |               | 10,21         | 0,032  | 88,37         |  |  |  |  |
| Isı Eşanjörü (3)                                     | 800,82                               |               | 10,64         | 0,033  | 98,20         |  |  |  |  |
| Isı Eşanjörü (4)                                     | 397,55                               |               | 24,72         | 0,077  | 90,13         |  |  |  |  |
| Isı Eşanjörü (5)                                     | 549,73                               |               | 4,07          | 0,013  | 99,03         |  |  |  |  |
| Isı Eşanjörü (6)                                     | 575,47                               |               | 27,61         | 0,086  | 93,51         |  |  |  |  |
| Giriş Eşanjörü                                       | 4040,24                              |               | 227,41        | 0,707  | 90,57         |  |  |  |  |
| Pompa                                                |                                      | 2,37          | 0,59          | 0,002  | 74,99         |  |  |  |  |
| Seperatör                                            |                                      |               | 0,00          | 0,000  | 100           |  |  |  |  |
| Karışım Odası (1)                                    |                                      |               | 151,79        | 0,472  | 93,10         |  |  |  |  |
| Karışım Odası (2)                                    |                                      |               | 0,00          | 0,000  | 100           |  |  |  |  |
| Karışım Odası (3)                                    |                                      |               | 2,78          | 0,009  | 99,96         |  |  |  |  |
| Karışım Odası (4)                                    |                                      |               | 0,03          | 0,001  | 99,99         |  |  |  |  |
| Karışım Odası (5)                                    |                                      |               | 0,04          | 0,001  | 99,99         |  |  |  |  |
| Kısılma Vanası (1)                                   |                                      |               | 108,50        | 0,337  | 86,70         |  |  |  |  |
| Kısılma Vanası (2)                                   |                                      |               | 70,67         | 0,220  | 93,79         |  |  |  |  |
| Kısılma Vanası (3)                                   |                                      |               | 256,22        | 0,796  | 99,06         |  |  |  |  |
| Kısılma Vanası (4)                                   |                                      |               | 398,15        | 1,238  | 98,50         |  |  |  |  |
| Kısılma Vanası (5)                                   |                                      |               | 164,64        | 0,512  | 92,79         |  |  |  |  |
| Kısılma Vanası (6)                                   |                                      |               | 741,18        | 2,304  | 96,65         |  |  |  |  |
| Absorbsiyonlu Soğutma Sistemi (NH3-H2O Eriyiği için) |                                      |               |               |        |               |  |  |  |  |
| Kaynatıcı                                            | 1655,91                              |               | 597,70        | 1,858  | 34,21         |  |  |  |  |
| Yoğuşturucu                                          | 687,92                               |               | 179,71        | 0,559  | 13,82         |  |  |  |  |
| Buharlaştırıcı                                       | 674,87                               |               | 166,86        | 0,519  | 33,93         |  |  |  |  |
| Absorber                                             | 1653,17                              |               | 81,15         | 0,252  | 25,36         |  |  |  |  |

**Çizelge 4.12.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'yi oluşturan komponentlerin enerji ve ekserji performansları
| Komponent                                | <b>\dot Q</b> (kW) | <b>W</b> (kW) | <b>İ</b> (kW) | <b>İ</b> (%) | $\eta_{ex,k}$ |  |  |  |  |
|------------------------------------------|--------------------|---------------|---------------|--------------|---------------|--|--|--|--|
| Eriyik Eşanjörü                          | 1317,22            |               | 72,41         | 0,225        | 65,99         |  |  |  |  |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü      | 76,24              |               | 6,51          | 0,020        | 45,19         |  |  |  |  |
| Soğutucu Akışkan<br>Eşanjörü             | 44,52              |               | 3,74          | 0,012        | 18,31         |  |  |  |  |
| Eriyik Pompası                           |                    | 10,32         | 4,05          | 0,013        | 60,70         |  |  |  |  |
| Kısılma Vanası (1)                       |                    |               | 2,79          | 0,009        | 99,98         |  |  |  |  |
| Kısılma Vanası (2)                       |                    |               | 0,00          | 0,000        | 100           |  |  |  |  |
| Ön Soğutmalı Claude Sıvılaştırma Sistemi |                    |               |               |              |               |  |  |  |  |
| Kompresör                                | 2742,38            | 2753,59       | 631,97        | 1,964        | 82,36         |  |  |  |  |
| Türbin                                   |                    | 131,53        | 628,09        | 1,952        | 17,32         |  |  |  |  |
| Isı Eşanjörü (1)                         | 701,78             |               | 617,27        | 1,919        | 38,87         |  |  |  |  |
| Isı Eşanjörü (2)                         | 726,80             |               | 797,94        | 2,480        | 59,77         |  |  |  |  |
| Isı Eşanjörü (3)                         | 71,86              |               | 36,83         | 0,114        | 85,30         |  |  |  |  |
| Isı Eşanjörü (4)                         | 181,61             |               | 309,97        | 0,963        | 72,11         |  |  |  |  |
| Isı Eşanjörü (5)                         | 36,99              |               | 98,38         | 0,306        | 71,27         |  |  |  |  |
| Kısılma Vanası                           |                    |               | 641,88        | 1,995        | 98,60         |  |  |  |  |
| Karışım Odası (1)                        |                    |               | 135,05        | 0,420        | 99,84         |  |  |  |  |
| Karışım Odası (2)                        |                    |               | 0,00          | 0,000        | 100           |  |  |  |  |
| Karışım Odası (3)                        |                    |               | 69,60         | 0,216        | 99,89         |  |  |  |  |
| Seperatör                                |                    |               | 0,00          | 0,000        | 100           |  |  |  |  |

**Çizelge 4.12.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 2'yi oluşturan komponentlerin enerji ve ekserji performansları (devam)

## 4.4. Model 3 için Analiz Sonuçları

Model 3'de sıvılaştırma çevrimi olarak ön soğutmalı Heylandt sıvılaştırma sistemi kullanılmış ve eriyik çifti olarak ise NH<sub>3</sub>–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma çevrimi tercih edilmiştir.

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak Model 3'de üretilen sıvı hidrojen miktarının değişimi Şekil 4.19'da verilmiştir. Soğutucu akışkan olarak n-Hexane kullanılması durumunda diğer akışkanlara göre sistemden daha fazla sıvı hidrojen üretilmektedir. n-Hexane için, buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi diğer akışkanlara göre daha fazla olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığına bağlı olarak %29,23 artmaktadır.

Bununla birlikte, R245fa tercih edilmesi durumunda ise sistemden üretilen sıvı hidrojen miktarı diğer akışkanlara göre daha azdır. Ayrıca R245fa için buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi daha düşük olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının etkisiyle %21,82 artmaktadır.



Şekil 4.19. Model 3 için ön soğutmalı Heylandt sıvılaştırma sisteminde üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak elektroliz işinin değişimi Şekil 4.20(a)'da, elektroliz ünitesi geri dönüşüm oranının (r) değişimi ise Şekil 4.20(b)'de verilmiştir. Diğer modellere benzer şekilde, Model 3'de buharlaştırıcı sıcaklığının yükselmesiyle gerekli elektroliz işi artarken, elektroliz modülü geri dönüşüm oranı azalmaktadır.

Model 3 için, buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane iken, etkisinin en az olduğu akışkan ise R245fa'dır. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı, soğutucu akışkan ve hidrojen miktarına bağlı olarak elektroliz işi maksimum %26,81 artarken, elektroliz ünitesi geri dönüşüm oranı ise maksimum %20,49 oranında azalmaktadır.



**Şekil 4.20.** Model 3 için (a) elektroliz işinin ve (b) elektroliz modülü geri dönüşüm oranının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak ön soğutmalı Heylandt sıvılaştırma sistemindeki kompresör işinin değişimi Şekil 4.21(a)'da, elde edilen türbin işinin değişimi Şekil 4.21(b)'de ve toplam sıvılaştırma işinin değişimi ise Şekil 4.21(c)'de verilmiştir. Önceki modellere benzer şekilde buharlaştırıcı sıcaklığının etkisiyle hidrojen miktarı yükselmekte ve buna bağlı olarak sırasıyla kompresör işi, türbin işi, ön soğutma ve toplam sıvılaştırma işleri artmaktadır.

Model 3 için, n-Hexane kullanılması durumunda gerekli olan kompresör işi, elde edilen türbin işi ve toplam sıvılaştırma işi diğer akışkanlara göre daha yüksek olmaktadır. Buharlaştırıcı sıcaklığının kompresör, türbin ve toplam sıvılaştırma işi üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır. Buharlaştırıcı sıcaklığının 100°C'den 150°C'ye yükselmesiyle, n-Hexane için kompresör işi %46,91, türbin işi %29,23 ve toplam sıvılaştırma işi ise %64,56 artmaktadır.

Bununla birlikte R245fa kullanılması durumunda gerekli olan kompresör işi, elde edilen türbin işi ve toplam sıvılaştırma işi diğer akışkanlara göre daha düşüktür. R245fa için buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve buharlaştırıcı sıcaklığının etkisiyle kompresör işi %36,58, türbin işi %21,82 ve toplam sıvılaştırma işi ise %51,84 artmaktadır.



**Şekil 4.21.** Model 3 için ön soğutmalı Heylandt sıvılaştırma sisteminde (a) kompresör işinin, (b) türbin işinin ve (c) toplam sıvılaştırma işinin buharlaştırıcı sıcaklığı ile değişimi

150°C buharlaştırıcı sıcaklığı için, soğutucu akışkan olarak n-Hexane kullanılması durumunda Model 3'ü oluşturan tüm noktaların termofiziksel özellikleri Çizelge 4.13'de, Model 3'ü oluşturan tüm komponentlerin enerji ve ekserji performansları ise Çizelge 4.14'de verilmiştir.

| Nokta                                | Т<br>(°С) | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e<sub>fiz</sub></i> (kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |
|--------------------------------------|-----------|-------------------|-------------|---------------------|----------------|--------------------------------|--------------------|--|--|
| ORC                                  | Sistemi   |                   |             |                     |                |                                |                    |  |  |
| 1                                    | 160,00    | 735,693           | 447,941     | 599,41              | 1,5450         | 146,59                         | 65662,86           |  |  |
| 2                                    | 98,82     | 24,998            | 447,941     | 496,04              | 1,5947         | 28,66                          | 12839,40           |  |  |
| 2a                                   | 48,07     | 24,998            | 447,941     | 400,65              | 1,3193         | 13,98                          | 6264,02            |  |  |
| 3                                    | 30,00     | 24,998            | 447,941     | 11,71               | 0,0393         | 0,28                           | 124,49             |  |  |
| 4                                    | 30,34     | 735,693           | 447,941     | 13,07               | 0,0402         | 1,37                           | 615,45             |  |  |
| 4a                                   | 70,75     | 735,693           | 447,941     | 108,46              | 0,3352         | 10,28                          | 4605,33            |  |  |
| ss <sub>1</sub>                      | 20,00     | 101,325           | 4164,972    | 83,93               | 0,2962         | 0,00                           | 0,00               |  |  |
| <b>SS</b> <sub>2</sub>               | 30,00     | 101,325           | 4164,972    | 125,76              | 0,4365         | 0,70                           | 2905,70            |  |  |
| Yüksek Sıcaklıklı Elektroliz Sistemi |           |                   |             |                     |                |                                |                    |  |  |
| 1                                    | 200,00    | 1200              | 2,200       | 2815,36             | 6,5890         | 886,69                         | 3103,10            |  |  |
| 2                                    | 724,14    | 1200              | 2,200       | 3977,84             | 8,2448         | 1563,77                        | 4592,68            |  |  |
| 3                                    | 878,41    | 1200              | 2,200       | 4341,31             | 8,5835         | 1827,95                        | 5173,88            |  |  |
| 4                                    | 980,36    | 1200              | 2,200       | 4590,07             | 8,7905         | 2016,04                        | 5587,68            |  |  |
| 5                                    | 200,00    | 1200              | 0,800       | 2815,36             | 6,5890         | 886,69                         | 1128,40            |  |  |
| 6                                    | 292,95    | 1200              | 0,800       | 3029,80             | 7,0037         | 979,57                         | 1202,71            |  |  |
| 7                                    | 518,85    | 1200              | 0,800       | 3517,49             | 7,7285         | 1254,77                        | 1422,87            |  |  |
| 8                                    | 837,01    | 1200              | 0,800       | 4242,23             | 8,4959         | 1754,56                        | 1822,70            |  |  |
| 9                                    | 942,66    | 1200              | 3,000       | 4497,31             | 8,7153         | 1945,31                        | 7407,37            |  |  |
| 10 <sub><i>H</i><sub>2</sub></sub>   | 1000,00   | 15000             | 0,17878     | 18491,38            | 54,0887        | 14350,69                       | 23502,37           |  |  |
| $10_{H_2O}$                          | 1000,00   | 15000             | 1,40232     | 4597,68             | 7,6350         | 2362,38                        | 4047,37            |  |  |
| $11_{H_2}$                           | 913,53    | 15000             | 0,17878     | 17156,80            | 53,0032        | 13334,32                       | 23320,66           |  |  |
| $11_{H_2O}$                          | 913,53    | 15000             | 1,40232     | 4376,59             | 7,4552         | 2194,01                        | 3811,25            |  |  |
| $11a_{H_2}$                          | 917,56    | 8000              | 0,17878     | 17156,80            | 55,6419        | 12560,78                       | 23182,37           |  |  |
| $11a_{H_20}$                         | 903,34    | 8000              | 1,40232     | 4376,59             | 7,7419         | 2109,94                        | 3693,36            |  |  |
| 12 <sub><i>H</i><sub>2</sub></sub>   | 909,61    | 8000              | 0,17878     | 17034,79            | 55,5391        | 12468,91                       | 23165,95           |  |  |
| $12_{H_2O}$                          | 909,61    | 8000              | 1,40232     | 4392,15             | 7,7551         | 2121,63                        | 3709,75            |  |  |
| 13 <sub><i>H</i><sub>2</sub></sub>   | 779,28    | 8000              | 0,17878     | 15052,64            | 53,7638        | 11007,19                       | 22904,62           |  |  |
| 13 <sub><i>H</i><sub>2</sub>0</sub>  | 779,28    | 8000              | 1,40232     | 4072,60             | 7,4689         | 1885,97                        | 3379,29            |  |  |
| $13a_{H_2}$                          | 782,21    | 3000              | 0,17878     | 15052,64            | 57,8468        | 9810,25                        | 22690,63           |  |  |
| $13a_{H_20}$                         | 768,84    | 3000              | 1,40232     | 4072,60             | 7,9168         | 1754,67                        | 3195,17            |  |  |
| 14 <sub><i>H</i><sub>2</sub></sub>   | 774,85    | 3000              | 0,17878     | 14941,61            | 57,7413        | 9730,17                        | 22676,31           |  |  |
| $14_{H_20}$                          | 774,85    | 3000              | 1,40232     | 4086,75             | 7,9304         | 1764,86                        | 3209,45            |  |  |

Çizelge 4.13. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ün termofiziksel özellikleri

| Nokta          | Т<br>(°С) | <b>P</b><br>(kPa) | <b>ṁ</b><br>(kg/s)     | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e<sub>fiz</sub></i> (kJ/kg) | <b>Ė</b> *<br>(kW) |
|----------------|-----------|-------------------|------------------------|---------------------|----------------|--------------------------------|--------------------|
| $15_{H_2}$     | 335,19    | 3000              | 0,17878                | 8447,21             | 49,7193        | 5587,40                        | 21935,66           |
| $15_{H_2O}$    | 335,19    | 3000              | 1,40232                | 3079,46             | 6,6846         | 1122,76                        | 2309,02            |
| 16             | 1000,00   | 15000             | 1,41885                | 1014,78             | 0,1632         | 967,02                         | 1548,10            |
| 17             | 622,96    | 15000             | 1,41885                | 599,04              | -0,2245        | 664,96                         | 1119,51            |
| 18             | 624,55    | 8000              | 1,41885                | 599,04              | -0,0562        | 615,62                         | 1049,50            |
| 19             | 357,51    | 8000              | 1,41885                | 317,38              | -0,4286        | 443,11                         | 804,74             |
| 20             | 356,43    | 3000              | 1,41885                | 317,38              | -0,1702        | 367,37                         | 697,27             |
| 21             | 233,74    | 3000              | 1,41885                | 195,53              | -0,3873        | 308,15                         | 613,25             |
| 22             | 20,00     | 101,325           | 1,59768                | 83,93               | 0,2962         | 0,00                           | 79,81              |
| 23             | 20,10     | 1200              | 1,59768                | 85,40               | 0,2974         | 1,10                           | 81,57              |
| 24             | 188,00    | 1200              | 3,000                  | 1484,94             | 3,7048         | 401,77                         | 2065,95            |
| 25             | 200,00    | 1200              | 3,000                  | 2815,36             | 6,5890         | 886,69                         | 4231,50            |
| 26             | 335,19    | 3000              | 1,40232                | 3079,46             | 6,6846         | 1122,76                        | 2309,02            |
| 27             | 315,77    | 1200              | 1,40232                | 3079,46             | 7,0897         | 1004,02                        | 2142,51            |
| $H_1$          | 335,19    | 3000              | 0,17878                | 8447,21             | 49,7193        | 5587,40                        | 21935,66           |
| H <sub>2</sub> | 336,79    | 101,325           | 0,17878                | 8447,21             | 63,7317        | 1479,70                        | 21201,76           |
| H <sub>3</sub> | 76,52     | 101,325           | 0,17878                | 4672,36             | 55,6649        | 69,61                          | 20949,66           |
| Abso           | rbsiyonlu | Soğutma Si        | stemi (NH <sub>3</sub> | 3-H2O Eriyiğ        | ģi için)       |                                |                    |
| 1              | 100,00    | 1238,322          | 0,577                  | 1675,78             | 5,8017         | 363,78                         | 11771,18           |
| 2              | 50,42     | 1238,322          | 0,577                  | 1543,65             | 5,4212         | 343,19                         | 11759,30           |
| 3              | 32,00     | 1238,322          | 0,577                  | 351,34              | 1,5192         | 294,75                         | 11550,78           |
| 4              | 15,81     | 1238,322          | 0,577                  | 274,18              | 1,2594         | 293,75                         | 11550,20           |
| 5              | -15,00    | 236,206           | 0,577                  | 274,18              | 1,2959         | 283,04                         | 11547,41           |
| 6              | -15,00    | 236,206           | 0,577                  | 1443,87             | 5,8269         | 124,47                         | 11633,11           |
| 7              | 17,43     | 236,206           | 0,577                  | 1521,03             | 6,1088         | 118,99                         | 11629,95           |
| 8              | 32,00     | 236,206           | 7,020                  | -89,53              | 0,3379         | 103,98                         | 60521,04           |
| 9              | 34,05     | 236,206           | 7,020                  | -78,67              | 0,3723         | 104,75                         | 60526,40           |
| 10             | 34,24     | 1238,322          | 7,020                  | -77,20              | 0,3743         | 105,64                         | 60532,66           |
| 11             | 76,43     | 1238,322          | 7,020                  | 110,43              | 0,9461         | 125,65                         | 60673,13           |
| 12             | 100,00    | 1238,322          | 6,443                  | 227,27              | 1,2529         | 152,55                         | 49212,68           |
| 13             | 53,97     | 1238,322          | 6,443                  | 22,83               | 0,6682         | 119,51                         | 48999,81           |
| 14             | 53,97     | 236,206           | 6,443                  | 22,83               | 0,6682         | 119,51                         | 48999,81           |
| SS3            | 20,00     | 101,325           | 6,326                  | 83,93               | 0,2962         | 0,00                           | 316,02             |
| SS4            | 46,00     | 101,325           | 6,326                  | 192,68              | 0,6516         | 4,56                           | 344,83             |

Çizelge 4.13. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ün termofiziksel özellikleri (devam)

| Nokta            | <b>Т</b><br>(°С) | <b>P</b><br>(kPa) | ṁ<br>(kg/s)  | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |
|------------------|------------------|-------------------|--------------|---------------------|----------------|------------------------------------|--------------------|
| <b>SS</b> 5      | 20,00            | 101,325           | 39,521       | 83,93               | 0,2962         | 0,00                               | 1974,36            |
| SS <sub>6</sub>  | 30,00            | 101,325           | 39,521       | 125,76              | 0,4365         | 0,70                               | 2001,93            |
| Ön S             | oğutmalı 1       | Heylandt Siv      | vilaştırma S | Sistemi             |                |                                    |                    |
| 1                | -60,51           | 101,325           | 0,78108      | 2729,14             | 48,6261        | 189,82                             | 91621,57           |
| 2                | -59,47           | 18000             | 0,78108      | 2789,40             | 27,0123        | 6586,16                            | 96617,61           |
| 3                | -131,29          | 18000             | 0,78108      | 1768,90             | 21,1986        | 7269,93                            | 97151,70           |
| 4                | -195,79          | 18000             | 0,78108      | 867,35              | 12,7133        | 8855,85                            | 98390,42           |
| 4a               | -195,79          | 18000             | 0,39054      | 867,35              | 12,7133        | 8855,85                            | 49195,21           |
| 5                | -237,03          | 18000             | 0,39054      | 325,53              | 2,8856         | 11195,03                           | 50108,75           |
| 6                | -245,46          | 18000             | 0,39054      | 243,28              | 0,3032         | 11869,82                           | 50372,28           |
| 7                | -252,78          | 101,325           | 0,39054      | 243,28              | 11,9439        | 8457,35                            | 49039,58           |
| 8                | -239,09          | 101,325           | 0,21176      | 600,36              | 27,7490        | 4181,14                            | 25684,83           |
| 9                | -250,31          | 101,325           | 0,60230      | 477,61              | 23,3688        | 5342,47                            | 73753,85           |
| 10               | -217,40          | 101,325           | 0,60230      | 828,94              | 32,9462        | 2886,18                            | 72274,43           |
| 11               | -103,58          | 101,325           | 0,60230      | 2152,35             | 45,5979        | 500,75                             | 70837,69           |
| 12               | -252,78          | 101,325           | 0,39054      | 411,06              | 20,1805        | 6210,56                            | 48162,12           |
| f                | -252,78          | 101,325           | 0,17878      | 0,001913            | 0,00009282     | 11715,39                           | 23031,69           |
| ър               | -252,78          | 101,325           | 0,21176      | 448,68              | 22,0276        | 5706,71                            | 26007,89           |
| e                | -195,79          | 18000             | 0,39054      | 867,35              | 12,7133        | 8855,85                            | 49195,21           |
| $N_{s_1v_1}$     | -195,79          | 101,325           | 3,110        | -122,02             | 2,8342         | 741,87                             | 2386,60            |
| $N_{\text{gaz}}$ | -170,79          | 101,325           | 3,110        | 104,41              | 5,7146         | 123,73                             | 464,72             |
| Jeote            | ermal Akış       | kan               |              |                     |                |                                    |                    |
| jeo <sub>1</sub> | 240,00           | 600               | 180,000      | 2935,46             | 7,1399         | 845,30                             | 152154,79**        |
| jeo <sub>2</sub> | 158,86           | 600               | 180,000      | 1713,70             | 4,3458         | 442,62                             | 131313,41***       |
| jeo <sub>3</sub> | 158,86           | 600               | 180,000      | 1704,50             | 4,3245         | 439,67                             | 130404,98          |
| jeo <sub>4</sub> | 240,00           | 1300              | 1,901        | 2907,16             | 6,7406         | 934,04                             | 2771,40            |
| jeo5             | 190,00           | 1300              | 1,901        | 807,62              | 2,2358         | 155,10                             | 389,82             |

**Çizelge 4.13.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ün termofiziksel özellikleri (devam)

\*ORC sisteminde toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiş, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve sıvılaştırma sistemlerinde ise kimyasal ekserji dikkate alınmıştır.

\*\*jeo1 noktası için toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiştir.

\*\*\*jeo2 noktası için verilen ekserji akımı toplam ekserji akımıdır. Ancak ORC sistemindeki ekserji hesaplamalarında kimyasal ekserji ihmal edilmiştir. jeo2 noktasının fiziksel ekserjisi 79672,22 kW olarak hesaplanmıştır.

| Komponent             | <b>Q</b> (kW)   | <b>W</b> (kW) | İ (kW)     | İ (%)  | $\eta_{ex,k}$ |
|-----------------------|-----------------|---------------|------------|--------|---------------|
| ORC Sistemi           |                 |               |            |        |               |
| Buharlaştırıcı        | 219917,31       |               | 11425,05   | 34,101 | 84,24         |
| Türbin                |                 | 46302,56      | 6520,89    | 19,463 | 87,66         |
| Yoğuşturucu           | 174223,46       |               | 3233,83    | 9,652  | 47,33         |
| Pompa                 |                 | 608,72        | 117,76     | 0,351  | 80,65         |
| Isı Eşanjörü          | 42728,85        |               | 2585,50    | 7,717  | 60,68         |
| Yüksek Sıcaklıklı Ele | ektroliz Sisten | ni            |            |        |               |
| Elektroliz Ünitesi    |                 | 22532,70      | 842,23     | 2,514  | 96,26         |
| Isı Eşanjörü (1)      | 2557,46         |               | 151,49     | 0,452  | 90,77         |
| Isı Eşanjörü (2)      | 171,55          |               | 9,71       | 0,029  | 88,44         |
| Isı Eşanjörü (3)      | 799,64          |               | 10,59      | 0,032  | 98,21         |
| Isı Eşanjörü (4)      | 390,15          |               | 24,61      | 0,073  | 89,94         |
| Isı Eşanjörü (5)      | 547,26          |               | 4,03       | 0,012  | 99,04         |
| Isı Eşanjörü (6)      | 579,80          |               | 28,76      | 0,086  | 93,29         |
| Giriş Eşanjörü        | 3991,26         |               | 216,03     | 0,645  | 90,93         |
| Pompa                 |                 | 2,35          | 0,59       | 0,002  | 74,99         |
| Seperatör             |                 |               | 0,00       | 0,000  | 100           |
| Karışım Odası (1)     |                 |               | 158,13     | 0,472  | 92,89         |
| Karışım Odası (2)     |                 |               | 0,00       | 0,000  | 100           |
| Karışım Odası (3)     |                 |               | 3,01       | 0,009  | 99,96         |
| Karışım Odası (4)     |                 |               | 0,03       | 0,001  | 99,99         |
| Karışım Odası (5)     |                 |               | 0,04       | 0,001  | 99,99         |
| Kısılma Vanası (1)    |                 |               | 107,47     | 0,321  | 86,65         |
| Kısılma Vanası (2)    |                 |               | 70,01      | 0,209  | 93,75         |
| Kısılma Vanası (3)    |                 |               | 256,19     | 0,765  | 99,06         |
| Kısılma Vanası (4)    |                 |               | 398,11     | 1,188  | 98,49         |
| Kısılma Vanası (5)    |                 |               | 166,51     | 0,497  | 92,79         |
| Kısılma Vanası (6)    |                 |               | 734,38     | 2,192  | 96,65         |
| Absorbsiyonlu Soğut   | ma Sistemi (N   | NH3-H2O Eri   | yiği için) |        |               |
| Kaynatıcı             | 1655,91         |               | 597,70     | 1,784  | 34,21         |
| Yoğuşturucu           | 687,92          |               | 179,71     | 0,536  | 13,82         |
| Buharlaştırıcı        | 674,87          |               | 166,40     | 0,497  | 34,00         |
| Absorber              | 1653,17         |               | 81,15      | 0,242  | 25,36         |

**Çizelge 4.14.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ü oluşturan komponentlerin enerji ve ekserji performansları

| Komponent                                  | <b>\dot Q</b> (kW) | <b>Ŵ</b> (kW) | İ (kW)  | İ (%) | $\eta_{ex,k}$ |  |  |  |  |
|--------------------------------------------|--------------------|---------------|---------|-------|---------------|--|--|--|--|
| Eriyik Eşanjörü                            | 1317,22            |               | 72,41   | 0,216 | 65,99         |  |  |  |  |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü        | 76,24              |               | 6,51    | 0,019 | 45,19         |  |  |  |  |
| Soğutucu Akışkan<br>Eşanjörü               | 44,52              |               | 3,74    | 0,011 | 18,31         |  |  |  |  |
| Eriyik Pompası                             |                    | 10,32         | 4,05    | 0,012 | 60,70         |  |  |  |  |
| Kısılma Vanası (1)                         |                    |               | 2,79    | 0,008 | 99,98         |  |  |  |  |
| Kısılma Vanası (2)                         |                    |               | 0,00    | 0,000 | 100           |  |  |  |  |
| Ön Soğutmalı Heylandt Sıvılaştırma Sistemi |                    |               |         |       |               |  |  |  |  |
| Kompresör                                  | 3589,81            | 3636,81       | 666,62  | 1,990 | 86,66         |  |  |  |  |
| Türbin                                     |                    | 178,20        | 854,89  | 2,552 | 17,25         |  |  |  |  |
| Isı Eşanjörü (1)                           | 797,09             |               | 902,66  | 2,694 | 37,17         |  |  |  |  |
| Isı Eşanjörü (2)                           | 704,18             |               | 683,16  | 2,039 | 64,45         |  |  |  |  |
| Isı Eşanjörü (3)                           | 211,60             |               | 565,88  | 1,689 | 61,75         |  |  |  |  |
| Isı Eşanjörü (4)                           | 32,12              |               | 59,52   | 0,178 | 81,58         |  |  |  |  |
| Kısılma Vanası                             |                    |               | 1332,70 | 3,978 | 97,35         |  |  |  |  |
| Karışım Odası (1)                          |                    |               | 165,78  | 0,495 | 99,82         |  |  |  |  |
| Karışım Odası (2)                          |                    |               | 0,00    | 0,000 | 100           |  |  |  |  |
| Karışım Odası (3)                          |                    |               | 93,10   | 0,278 | 99,87         |  |  |  |  |
| Seperatör                                  |                    |               | 0,00    | 0,000 | 100           |  |  |  |  |

**Çizelge 4.14.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 3'ü oluşturan komponentlerin enerji ve ekserji performansları (devam)

## 4.5. Model 4 için Analiz Sonuçları

Model 4'de sıvılaştırma çevrimi olarak ön soğutmalı Linde-Hampson sıvılaştırma sistemi kullanılmış ve eriyik çifti olarak ise LiBr–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma çevrimi tercih edilmiştir.

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak Model 4'de üretilen sıvı hidrojen miktarının değişimi Şekil 4.22'de verilmiştir. Genel olarak buharlaştırıcı sıcaklığının artmasıyla, ORC sisteminden elde edilen kullanılabilir iş miktarı artmakta ve buna bağlı olarak sıvı hidrojen üretim sisteminden elde edilen sıvı hidrojen miktarı yükselmektedir. İncelenen diğer modellerde olduğu gibi,

soğutucu akışkan olarak n-Hexane kullanılması durumunda diğer akışkanlara göre sistemden daha fazla sıvı hidrojen üretilmektedir. Buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığına bağlı olarak %30,26 artmaktadır.

Model 4 için soğutucu akışkan olarak R245fa tercih edilmesi durumunda ise sistemden üretilen sıvı hidrojen miktarı diğer akışkanlara göre daha azdır. Ayrıca R245fa için, buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi diğer akışkanlara oranla daha düşük olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığına bağlı olarak %22,72 artmaktadır.



Şekil 4.22. Model 4 için ön soğutmalı Linde-Hampson sıvılaştırma sisteminde üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak elektroliz işinin değişimi Şekil 4.23(a)'da, elektroliz ünitesi geri dönüşüm oranının (r) değişimi ise Şekil 4.23(b)'de verilmiştir. İncelenen diğer modellere benzer şekilde, Model 4'de buharlaştırıcı sıcaklığının yükselmesiyle gerekli elektroliz işi artarken, elektroliz modülü geri dönüşüm oranı azalmaktadır.

Soğutucu akışkan olarak n-Hexane kullanılması durumunda gerekli elektroliz işi diğer akışkanlara göre daha yüksekken, geri dönüşüm oranı ise daha düşük olmaktadır. Ayrıca buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için elektroliz işi %27,37 artarken, geri dönüşüm oranı ise %17,08 azalmaktadır.

ORC sisteminde R245fa kullanılması durumunda elektroliz işi diğer akışkanlara göre daha düşükken, geri dönüşüm oranı ise daha yüksek olmaktadır. R245fa için, buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve elektroliz işi %20,48 artarken, geri dönüşüm oranı ise %12,24 azalmaktadır.



Şekil 4.23. Model 4 için (a) elektroliz işinin ve (b) elektroliz modülü geri dönüşüm oranının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, elektroliz sisteminde ayrıştırılan hidrojenin seperatörden çıkış sıcaklığının buharlaştırıcı sıcaklığı ile değişimi Şekil 4.24'de verilmiştir. Buharlaştırıcı sıcaklığının artmasıyla, elektroliz sistemi içerisinde seperatöre giden hattaki hidrojen ve ayrışmayan sudan oluşan akışkanın toplam debisi azalmakta ve buna bağlı olarak hattaki hidrojen daha düşük sıcaklıklara soğumaktadır.

Çalışma kapsamında, soğutucu akışkan olarak R245fa kullanılması durumunda diğer akışkanlara göre daha yüksek sıcaklıklarda hidrojen seperatörde ayrışırken, n-Hexane kullanılması durumunda ise seperatörden ayrılan hidrojenin sıcaklığı daha düşük olmaktadır. Sabit çalışma şartlarında ORC sisteminde kullanılan soğutucu akışkan, buharlaştırıcı sıcaklığı ve hidrojen miktarı dikkate alınarak seperatörden ayrılan hidrojen sıcaklığı 346,78°C ile 368,19°C arasında değişmektedir.



**Şekil 4.24.** Model 4 için seperatör çıkışındaki hidrojen sıcaklığının buharlaştırıcı sıcaklığı ile değişimi

Elektroliz sisteminde ayrıştırılan hidrojen daha sonra absorbsiyonlu soğutma sistemi (ASS) yardımıyla soğutulmaktadır. ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığındaki artışa bağlı olarak ASS'de soğuyan hidrojenin çıkış sıcaklığının değişimi Şekil 4.25'de verilmiştir. Buharlaştırıcı sıcaklığının etkisiyle, elektroliz sisteminde elde edilen hidrojen miktarı artmakta ve buna bağlı olarak sabit soğutma kapasitesine sahip ASS'de hidrojenin soğutulabildiği sıcaklık yükselmektedir.

Elektroliz sisteminden ayrılan yüksek sıcaklıklı hidrojen kullanılan soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak ASS yardımıyla ortalama 300°C soğutulmaktadır. Soğutucu akışkan olarak R245fa kullanılması durumunda hidrojen diğer akışkanlara kıyasla daha düşük sıcaklıklara soğumaktadır. Sabit çalışma şartlarında buharlaştırıcı sıcaklığı, hidrojen miktarı ve soğutucu akışkana bağlı olarak hidrojenin sıcaklığı ASS'de minimum 14,96°C'ye kadar düşmektedir.



**Şekil 4.25.** Model 4 için absorbsiyonlu soğutma sisteminde soğutulan hidrojenin çıkış sıcaklığının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak ön soğutmalı Linde-Hampson sıvılaştırma sistemindeki kompresör işinin değişimi Şekil 4.26(a)'da, toplam sıvılaştırma işinin değişimi ise Şekil 4.26(b)'de verilmiştir. İncelenen diğer modellere benzer şekilde, Model 4'de buharlaştırıcı sıcaklığının etkisiyle elde edilen hidrojen miktarı yükselmekte ve buna bağlı olarak sırasıyla kompresör işi, ön soğutma ve toplam sıvılaştırma işleri artmaktadır.

Buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, kompresör işi %49,62 artarken, toplam sıvılaştırma işi ise %59,29 artmaktadır. Bununla birlikte, R245fa için buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisi diğer akışkanlara göre daha azdır ve buharlaştırıcı sıcaklığının artmasıyla kompresör işi %38,88 artarken, toplam sıvılaştırma işi ise %47,10 artmaktadır.



**Şekil 4.26.** Model 4 için, ön soğutmalı Linde-Hampson sıvılaştırma sisteminde (a) kompresör işinin ve (b) toplam sıvılaştırma işinin buharlaştırıcı sıcaklığı ile değişimi

Farklı soğutucu akışkanlar için, Model 4'ü oluşturan alt sistemlerin ve sıvı hidrojen üretim sisteminin enerji ve ekserji verimlerinin buharlaştırıcı sıcaklığı ile değişimi Çizelge 4.15'de verilmiştir. Soğutucu akışkan olarak n-Hexane kullanılması durumunda, buharlaştırıcı sıcaklığının elektroliz sisteminin termodinamik performansı üzerindeki etkisi diğer akışkanlara göre daha fazladır ve buharlaştırıcı sıcaklığının etkisiyle Model 4 için elektroliz sisteminin enerji verimi maksimum %10,56 iyileşirken, ekserji verimi ise maksimum %7,02 artmaktadır. Bununla birlikte, R245fa için buharlaştırıcı sıcaklığının elektroliz sisteminin performansı üzerindeki etkisi diğer akışkanlara göre daha fazladır.

Bu çalışma kapsamında Model 4, Model 5 ve Model 6 için, sabit soğutma kapasitesine sahip LiBr–H<sub>2</sub>O eriyikli absorbsiyonlu soğutma sistemi kullanılmıştır. Bu nedenle absorbsiyonlu soğutma sisteminin termodinamik performansı çalışma kapsamında incelenen modellerden, ORC sisteminde kullanılan buharlaştırıcı sıcaklığından ve soğutucu akışkan seçiminden bağımsızdır. Oluşturulan sıvı hidrojen üretim sisteminin soğutma ihtiyacını karşılayan LiBr–H<sub>2</sub>O eriyikli absorbsiyonlu soğutma sisteminin STK değeri %78,68 iken, eSTK değeri ise %14,42 olarak elde edilmiştir.

Model 4 için, soğutucu akışkan olarak n-Hexane kullanılması durumunda sıvılaştırma sisteminin termodinamik performansı diğer akışkanlara göre daha düşükken, R245fa kullanılması durumunda ise sıvılaştırma sisteminin performansı daha yüksek olmaktadır. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı ve soğutucu akışkan etkisiyle ön soğutmalı Linde-Hampson sıvılaştırma sistemin enerji verimi maksimum %5,44 iyileşirken, ekserji verimi ise maksimum %1,48 artmaktadır.

Diğer modellere benzer olarak, n-Hexane için buharlaştırıcı sıcaklığının sıvı hidrojen üretim sisteminin termodinamik performansı üzerindeki etkisi diğer akışkanlara göre daha fazladır ve buharlaştırıcı sıcaklığının etkisiyle Model 4 için sıvı hidrojen üretim sisteminin termodinamik performansındaki iyileşme maksimum olmakta, enerji verimi %7,76'dan %10,11'e artarken, ekserji verimi ise %23,55'den %30,67'ye yükselmektedir. Ancak soğutucu akışkan olarak R245fa kullanılması durumunda ise buharlaştırıcı sıcaklığının sıvı hidrojen üretim sistemi üzerindeki etkisi diğer akışkanlara göre daha düşüktür ve buharlaştırıcı sıcaklığındaki artışa bağlı olarak tüm sistemin termodinamik performansındaki iyileşme minimum olmakta, sistemin enerji verimi %7,53'den %9,24'e artarken, sistemin ekserji verimi ise %22,84'den %28,03'e yükselmektedir.

150°C buharlaştırıcı sıcaklığı için, soğutucu akışkan olarak n-Hexane kullanılması durumunda Model 4'ü oluşturan tüm noktaların termofiziksel özellikleri Çizelge 4.16'da, Model 4'ü oluşturan tüm komponentlerin enerji ve ekserji performansları ise Çizelge 4.17'de verilmiştir.

| Akışkan<br>Sıcaklığı (°C) |     | ORC Sistemi  |                 | Yüksek Sıcaklıklı<br>Elektroliz Sistemi |                        | Absorbsiyonlu<br>Soğutma Sistemi |       | Ön Soğutmalı<br>Linde-Hampson<br>Sıvılaştırma Sistemi |                           | Sıvı Hidrojen<br>Üretim Sistemi |             |
|---------------------------|-----|--------------|-----------------|-----------------------------------------|------------------------|----------------------------------|-------|-------------------------------------------------------|---------------------------|---------------------------------|-------------|
|                           |     | $\eta_{ORC}$ | $\eta_{ex,ORC}$ | $\eta_{elektroliz}$                     | $\eta_{ex,elektroliz}$ | STK                              | eSTK  | $\eta_{Linde-Hampson}$                                | $\eta_{ex,Linde-Hampson}$ | $\eta_{\imath s \imath l}$      | $\eta_{ex}$ |
| R245fa                    | 100 | 13,83        | 41,96           | 69,66                                   | 73,89                  | 78,68                            | 14,42 | 8,03                                                  | 13,74                     | 7,53                            | 22,84       |
| R245fa                    | 120 | 16,12        | 48,91           | 72,69                                   | 76,08                  | 78,68                            | 14,42 | 7,79                                                  | 13,65                     | 8,36                            | 25,36       |
| R245fa                    | 130 | 17,06        | 51,75           | 73,84                                   | 76,90                  | 78,68                            | 14,42 | 7,72                                                  | 13,62                     | 8,70                            | 26,41       |
| R245fa                    | 150 | 18,49        | 56,09           | 75,52                                   | 78,07                  | 78,68                            | 14,42 | 7,64                                                  | 13,57                     | 9,24                            | 28,03       |
| R123                      | 100 | 14,22        | 43,14           | 70,20                                   | 74,28                  | 78,68                            | 14,42 | 7,98                                                  | 13,72                     | 7,67                            | 23,26       |
| R123                      | 120 | 16,79        | 50,94           | 73,52                                   | 76,67                  | 78,68                            | 14,42 | 7,74                                                  | 13,63                     | 8,60                            | 26,11       |
| R123                      | 130 | 17,90        | 54,30           | 74,84                                   | 77,60                  | 78,68                            | 14,42 | 7,67                                                  | 13,59                     | 9,02                            | 27,36       |
| R123                      | 150 | 19,79        | 60,03           | 76,95                                   | 79,06                  | 78,68                            | 14,42 | 7,58                                                  | 13,53                     | 9,73                            | 29,52       |
| R601                      | 100 | 14,24        | 43,22           | 70,23                                   | 74,31                  | 78,68                            | 14,42 | 7,97                                                  | 13,72                     | 7,68                            | 23,29       |
| R601                      | 120 | 16,91        | 51,31           | 73,66                                   | 76,77                  | 78,68                            | 14,42 | 7,73                                                  | 13,62                     | 8,65                            | 26,24       |
| R601                      | 130 | 18,08        | 54,85           | 75,05                                   | 77,74                  | 78,68                            | 14,42 | 7,66                                                  | 13,58                     | 9,08                            | 27,56       |
| R601                      | 150 | 20,12        | 61,04           | 77,31                                   | 79,30                  | 78,68                            | 14,42 | 7,56                                                  | 13,52                     | 9,86                            | 29,91       |
| n-Hexane                  | 100 | 14,48        | 43,93           | 70,55                                   | 74,54                  | 78,68                            | 14,42 | 7,95                                                  | 13,71                     | 7,76                            | 23,55       |
| n-Hexane                  | 120 | 17,28        | 52,41           | 74,10                                   | 77,08                  | 78,68                            | 14,42 | 7,71                                                  | 13,61                     | 8,78                            | 26,65       |
| n-Hexane                  | 130 | 18,53        | 56,21           | 75,56                                   | 78,10                  | 78,68                            | 14,42 | 7,64                                                  | 13,57                     | 9,25                            | 28,07       |
| n-Hexane                  | 150 | 20,78        | 63,04           | 78,00                                   | 79,77                  | 78,68                            | 14,42 | 7,54                                                  | 13,51                     | 10,11                           | 30,67       |

Çizelge 4.15. Farklı soğutucu akışkanlar için, Model 4'ü oluşturan alt sistemlerin ve tüm sistemin enerji ve ekserji verimleri

| Nokta                                | Т<br>(°С) | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e<sub>fiz</sub></i> (kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |
|--------------------------------------|-----------|-------------------|-------------|---------------------|----------------|--------------------------------|--------------------|--|--|
| ORC                                  | Sistemi   |                   |             |                     |                |                                |                    |  |  |
| 1                                    | 160,00    | 735,693           | 447,941     | 599,41              | 1,5450         | 146,59                         | 65662,86           |  |  |
| 2                                    | 98,82     | 24,998            | 447,941     | 496,04              | 1,5947         | 28,66                          | 12839,40           |  |  |
| 2a                                   | 48,07     | 24,998            | 447,941     | 400,65              | 1,3193         | 13,98                          | 6264,02            |  |  |
| 3                                    | 30,00     | 24,998            | 447,941     | 11,71               | 0,0393         | 0,28                           | 124,49             |  |  |
| 4                                    | 30,34     | 735,693           | 447,941     | 13,07               | 0,0402         | 1,37                           | 615,45             |  |  |
| 4a                                   | 70,75     | 735,693           | 447,941     | 108,46              | 0,3352         | 10,28                          | 4605,33            |  |  |
| ss <sub>1</sub>                      | 20,00     | 101,325           | 4164,972    | 83,93               | 0,2962         | 0,00                           | 0,00               |  |  |
| <b>SS</b> <sub>2</sub>               | 30,00     | 101,325           | 4164,972    | 125,76              | 0,4365         | 0,70                           | 2905,70            |  |  |
| Yüksek Sıcaklıklı Elektroliz Sistemi |           |                   |             |                     |                |                                |                    |  |  |
| 1                                    | 200,00    | 1200              | 2,200       | 2815,36             | 6,5890         | 886,69                         | 3103,10            |  |  |
| 2                                    | 732,62    | 1200              | 2,200       | 3997,42             | 8,2644         | 1577,62                        | 4623,14            |  |  |
| 3                                    | 884,37    | 1200              | 2,200       | 4355,68             | 8,5960         | 1838,67                        | 5197,46            |  |  |
| 4                                    | 981,39    | 1200              | 2,200       | 4592,62             | 8,7925         | 2017,99                        | 5591,97            |  |  |
| 5                                    | 200,00    | 1200              | 0,800       | 2815,36             | 6,5890         | 886,69                         | 1128,40            |  |  |
| 6                                    | 257,73    | 1200              | 0,800       | 2951,75             | 6,8613         | 943,26                         | 1173,66            |  |  |
| 7                                    | 432,59    | 1200              | 0,800       | 3330,59             | 7,4787         | 1141,10                        | 1331,93            |  |  |
| 8                                    | 770,29    | 1200              | 0,800       | 4084,93             | 8,3498         | 1640,09                        | 1731,12            |  |  |
| 9                                    | 926,26    | 1200              | 3,000       | 4457,23             | 8,6821         | 1914,96                        | 7316,32            |  |  |
| $10_{H_2}$                           | 1000,00   | 15000             | 0,15779     | 18491,38            | 54,0887        | 14350,69                       | 20743,31           |  |  |
| $10_{H_2O}$                          | 1000,00   | 15000             | 1,58988     | 4597,68             | 7,6350         | 2362,38                        | 4588,71            |  |  |
| $11_{H_2}$                           | 919,68    | 15000             | 0,15779     | 17251,26            | 53,0826        | 13405,51                       | 20594,16           |  |  |
| $11_{H_2O}$                          | 919,68    | 15000             | 1,58988     | 4392,24             | 7,4683         | 2205,80                        | 4339,76            |  |  |
| $11a_{H_2}$                          | 923,71    | 8000              | 0,15779     | 17251,26            | 55,7211        | 12632,05                       | 20472,12           |  |  |
| $11a_{H_20}$                         | 909,65    | 8000              | 1,58988     | 4392,24             | 7,7552         | 2121,70                        | 4206,04            |  |  |
| $12_{H_2}$                           | 915,00    | 8000              | 0,15779     | 17117,44            | 55,6088        | 12531,12                       | 20456,19           |  |  |
| $12_{H_2O}$                          | 915,00    | 8000              | 1,58988     | 4405,52             | 7,7664         | 2131,69                        | 4221,94            |  |  |
| $13_{H_2}$                           | 789,63    | 8000              | 0,15779     | 15208,90            | 53,9115        | 11120,15                       | 20233,55           |  |  |
| 13 <sub><i>H</i><sub>2</sub>0</sub>  | 789,63    | 8000              | 1,58988     | 4097,71             | 7,4927         | 1904,13                        | 3860,13            |  |  |
| $13a_{H_2}$                          | 792,56    | 3000              | 0,15779     | 15208,90            | 57,9942        | 9923,32                        | 20044,70           |  |  |
| $13a_{H_20}$                         | 779,49    | 3000              | 1,58988     | 4097,71             | 7,9408         | 1772,76                        | 3651,28            |  |  |
| 14 <sub><i>H</i><sub>2</sub></sub>   | 784,56    | 3000              | 0,15779     | 15088,12            | 57,8804        | 9835,88                        | 20030,90           |  |  |
| $14_{H_20}$                          | 784,56    | 3000              | 1,58988     | 4109,70             | 7,9522         | 1781,42                        | 3665,04            |  |  |

**Çizelge 4.16.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ün termofiziksel özellikleri

| Nokta          | <b>Т</b><br>(°С)                                      | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |  |
|----------------|-------------------------------------------------------|-------------------|-------------|---------------------|----------------|------------------------------------|--------------------|--|--|--|
| $15_{H_2}$     | 346,78                                                | 3000              | 0,15779     | 8616,12             | 49,9944        | 5675,68                            | 19374,45           |  |  |  |
| $15_{H_2O}$    | 346,78                                                | 3000              | 1,58988     | 3107,14             | 6,7297         | 1137,23                            | 2640,85            |  |  |  |
| 16             | 1000,00                                               | 15000             | 1,25229     | 1014,78             | 0,1632         | 967,02                             | 1366,36            |  |  |  |
| 17             | 551,49                                                | 15000             | 1,25229     | 521,91              | -0,3144        | 614,16                             | 924,47             |  |  |  |
| 18             | 552,57                                                | 8000              | 1,25229     | 521,91              | -0,1459        | 564,78                             | 862,63             |  |  |  |
| 19             | 315,60                                                | 8000              | 1,25229     | 274,40              | -0,4991        | 420,81                             | 682,35             |  |  |  |
| 20             | 313,94                                                | 3000              | 1,25229     | 274,40              | -0,2409        | 345,12                             | 587,56             |  |  |  |
| 21             | 225,34                                                | 3000              | 1,25229     | 186,27              | -0,4037        | 304,71                             | 536,95             |  |  |  |
| 22             | 20,00                                                 | 101,325           | 1,41012     | 83,93               | 0,2962         | 0,00                               | 70,44              |  |  |  |
| 23             | 20,10                                                 | 1200              | 1,41012     | 85,40               | 0,2974         | 1,10                               | 72,00              |  |  |  |
| 24             | 188,00                                                | 1200              | 3,00000     | 1686,80             | 4,1426         | 475,30                             | 2286,56            |  |  |  |
| 25             | 200,00                                                | 1200              | 3,00000     | 2815,36             | 6,5890         | 886,69                             | 4231,50            |  |  |  |
| 26             | 346,78                                                | 3000              | 1,58988     | 3107,14             | 6,7297         | 1137,23                            | 2640,85            |  |  |  |
| 27             | 328,58                                                | 1200              | 1,58988     | 3107,14             | 7,1362         | 1018,07                            | 2451,41            |  |  |  |
| $H_1$          | 346,78                                                | 3000              | 0,15779     | 8616,12             | 49,9944        | 5675,86                            | 19374,45           |  |  |  |
| $H_2$          | 348,39                                                | 101,325           | 0,15779     | 8616,12             | 64,0059        | 1568,16                            | 18726,48           |  |  |  |
| H <sub>3</sub> | 84,59                                                 | 101,325           | 0,15779     | 4788,86             | 55,9943        | 89,55                              | 18493,17           |  |  |  |
| Abso           | Absorbsiyonlu Soğutma Sistemi (LiBr-H2O Eriyiği için) |                   |             |                     |                |                                    |                    |  |  |  |
| 1              | 90,00                                                 | 7,381             | 0,25260     | 2668,27             | 8,5362         | 168,77                             | 174,95             |  |  |  |
| 2              | 54,98                                                 | 7,381             | 0,25260     | 2601,83             | 8,3439         | 158,73                             | 172,42             |  |  |  |
| 3              | 40,00                                                 | 7,381             | 0,25260     | 167,50              | 0,5723         | 2,64                               | 13,29              |  |  |  |
| 4              | 30,59                                                 | 7,381             | 0,25260     | 128,16              | 0,4447         | 0,69                               | 12,79              |  |  |  |
| 5              | 10,00                                                 | 1,228             | 0,25260     | 128,16              | 0,4553         | -2,41                              | 12,74              |  |  |  |
| 6              | 10,00                                                 | 1,228             | 0,25260     | 2518,89             | 8,8986         | -86,85                             | 110,38             |  |  |  |
| 7              | 31,00                                                 | 1,228             | 0,25260     | 2558,23             | 9,0326         | -86,80                             | 110,40             |  |  |  |
| 8              | 40,00                                                 | 1,228             | 2,16819     | 94,05               | 0,2461         | 24,90                              | 1958,87            |  |  |  |
| 9              | 43,80                                                 | 1,228             | 2,16819     | 101,79              | 0,2708         | 25,42                              | 1960,00            |  |  |  |
| 10             | 43,81                                                 | 7,381             | 2,16819     | 101,80              | 0,2708         | 25,42                              | 1960,00            |  |  |  |
| 11             | 74,30                                                 | 7,381             | 2,16819     | 155,14              | 0,4487         | 26,60                              | 1962,56            |  |  |  |
| 12             | 90,00                                                 | 7,381             | 1,91559     | 224,40              | 0,4917         | 83,24                              | 1932,02            |  |  |  |
| 13             | 57,67                                                 | 7,381             | 1,91559     | 164,02              | 0,3175         | 73,95                              | 1914,23            |  |  |  |
| 14             | 57,67                                                 | 1,228             | 1,91559     | 164,02              | 0,3175         | 73,95                              | 1914,23            |  |  |  |
| SS3            | 20,00                                                 | 101,325           | 5,654       | 83,93               | 0,2962         | 0,00                               | 282,48             |  |  |  |
| SS4            | 46,00                                                 | 101,325           | 5,654       | 192,68              | 0,6516         | 4,56                               | 308,24             |  |  |  |

**Çizelge 4.16.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ün termofiziksel özellikleri (devam)

| Nokta              | Т          | Р         | 'n          | h             | S          | $e_{fiz}$ | $\dot{E}^{*}$ |
|--------------------|------------|-----------|-------------|---------------|------------|-----------|---------------|
| ΠΟΚΙΑ              | (°C)       | (kPa)     | (kg/s)      | (kJ/kg)       | (kJ/kg K)  | (kJ/kg)   | (kW)          |
| SS5                | 20,00      | 101,325   | 18,084      | 83,93         | 0,2962     | 0,00      | 903,45        |
| SS <sub>6</sub>    | 30,00      | 101,325   | 18,084      | 125,76        | 0,4365     | 0,70      | 916,07        |
| Ön S               | oğutmalı l | Linde-Ham | pson Sivila | ıştırma Siste | emi        |           |               |
| 1                  | -50,02     | 101,325   | 0,67236     | 2873,53       | 49,2889    | 139,91    | 78835,36      |
| 2                  | -49,35     | 12000     | 0,67236     | 2911,89       | 29,4295    | 6000,03   | 82775,48      |
| 3                  | -119,44    | 12000     | 0,67236     | 1925,63       | 24,1498    | 6561,52   | 83153,00      |
| 4                  | -195,79    | 12000     | 0,67236     | 871,58        | 14,6379    | 8295,89   | 84319,13      |
| 5                  | -202,72    | 12000     | 0,67236     | 768,30        | 13,2390    | 8602,69   | 84525,41      |
| 6                  | -209,79    | 12000     | 0,67236     | 660,17        | 11,6208    | 8968,96   | 84771,67      |
| 7                  | -231,38    | 12000     | 0,67236     | 343,38        | 5,5425     | 10434,01  | 85756,71      |
| 8                  | -252,78    | 101,325   | 0,67236     | 343,38        | 16,8581    | 7116,83   | 83526,37      |
| 9                  | -214,19    | 101,325   | 0,51457     | 862,60        | 33,5333    | 2747,73   | 61676,15      |
| 10                 | -201,37    | 101,325   | 0,51457     | 997,54        | 35,6037    | 2275,73   | 61433,27      |
| 11                 | -93,38     | 101,325   | 0,51457     | 2286,23       | 46,3645    | 409,89    | 60473,17      |
| f                  | -252,78    | 101,325   | 0,15779     | 0,001913      | 0,00009282 | 11715,39  | 20327,61      |
| g                  | -252,78    | 101,325   | 0,51457     | 448,68        | 22,0276    | 5706,71   | 63198,76      |
| $N_{1,s_{1}v_{1}}$ | -195,79    | 101,325   | 3,130       | -122,02       | 2,8342     | 741,87    | 2401,93       |
| N <sub>1,gaz</sub> | -170,79    | 101,325   | 3,130       | 104,41        | 5,7146     | 123,73    | 467,71        |
| $N_{2,s_{1}v_{1}}$ | -209,79    | 13        | 0,301       | -150,33       | 2,4321     | 831,24    | 257,94        |
| N <sub>2,gaz</sub> | -184,79    | 13        | 0,301       | 91,22         | 6,1797     | -25,81    | -0,03         |
| Jeote              | rmal Akış  | kan       |             |               |            |           |               |
| jeo1               | 240,00     | 600       | 180,000     | 2935,46       | 7,1399     | 845,30    | 152154,79**   |
| jeo <sub>2</sub>   | 158,86     | 600       | 180,000     | 1713,70       | 4,3458     | 442,62    | 131313,41***  |
| jeo <sub>3</sub>   | 158,86     | 600       | 180,000     | 1710,34       | 4,3380     | 441,55    | 130982,11     |
| jeo <sub>4</sub>   | 240,00     | 1300      | 1,613       | 2907,16       | 6,7406     | 934,04    | 2350,91       |
| jeo5               | 190,00     | 1300      | 1,613       | 807,62        | 2,2358     | 155,10    | 330,67        |

**Çizelge 4.16.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ün termofiziksel özellikleri (devam)

\*ORC sisteminde toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiş, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve sıvılaştırma sistemlerinde ise kimyasal ekserji dikkate alınmıştır.

\*\*jeo1 noktası için toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiştir.

\*\*\* jeo2 noktası için verilen ekserji akımı toplam ekserji akımıdır. Ancak ORC sistemindeki ekserji hesaplamalarında kimyasal ekserji ihmal edilmiştir. jeo2 noktasının fiziksel ekserjisi 79672,22 kW olarak hesaplanmıştır.

| Komponent             | <b>\dot Q</b> (kW) | <b>W</b> (kW) | <b>İ</b> (kW) | <b>İ</b> (%) | $\eta_{ex,k}$ |
|-----------------------|--------------------|---------------|---------------|--------------|---------------|
| ORC Sistemi           |                    |               |               |              |               |
| Buharlaştırıcı        | 219917,31          |               | 11425,05      | 35,414       | 84,24         |
| Türbin                |                    | 46302,56      | 6520,89       | 20,213       | 87,66         |
| Yoğuşturucu           | 174223,46          |               | 3233,83       | 10,024       | 47,33         |
| Pompa                 |                    | 608,72        | 117,76        | 0,365        | 80,65         |
| Isı Eşanjörü          | 42728,85           |               | 2585,50       | 8,014        | 60,68         |
| Yüksek Sıcaklıklı Ele | ektroliz Sisten    | ni            |               |              |               |
| Elektroliz Ünitesi    |                    | 20057,41      | 675,35        | 2,093        | 96,63         |
| Isı Eşanjörü (1)      | 2600,53            |               | 160,61        | 0,498        | 90,44         |
| Isı Eşanjörü (2)      | 109,11             |               | 5,35          | 0,017        | 89,42         |
| Isı Eşanjörü (3)      | 788,18             |               | 10,12         | 0,031        | 98,27         |
| Isı Eşanjörü (4)      | 303,07             |               | 22,01         | 0,068        | 87,79         |
| Isı Eşanjörü (5)      | 521,26             |               | 3,58          | 0,011        | 99,10         |
| Isı Eşanjörü (6)      | 603,47             |               | 42,70         | 0,132        | 90,34         |
| Giriş Eşanjörü        | 3385,69            |               | 75,29         | 0,233        | 96,27         |
| Pompa                 |                    | 2,07          | 0,52          | 0,002        | 74,99         |
| Seperatör             |                    |               | 0,00          | 0,000        | 100           |
| Karışım Odası (1)     |                    |               | 236,84        | 0,734        | 90,61         |
| Karışım Odası (2)     |                    |               | 0,00          | 0,000        | 100           |
| Karışım Odası (3)     |                    |               | 6,78          | 0,021        | 99,91         |
| Karışım Odası (4)     |                    |               | 0,03          | 0,001        | 99,99         |
| Karışım Odası (5)     |                    |               | 0,03          | 0,001        | 99,99         |
| Kısılma Vanası (1)    |                    |               | 94,79         | 0,294        | 86,11         |
| Kısılma Vanası (2)    |                    |               | 61,84         | 0,192        | 93,31         |
| Kısılma Vanası (3)    |                    |               | 255,76        | 0,793        | 98,97         |
| Kısılma Vanası (4)    |                    |               | 397,71        | 1,233        | 98,35         |
| Kısılma Vanası (5)    |                    |               | 189,44        | 0,587        | 92,83         |
| Kısılma Vanası (6)    |                    |               | 648,12        | 2,009        | 96,65         |
| Absorbsiyonlu Soğut   | ma Sistemi (I      | .iBr-H₂O Er   | iyiği için)   |              |               |
| Kaynatıcı             | 767,49             |               | 186,89        | 0,579        | 43,59         |
| Yoğuşturucu           | 614,91             |               | 133,38        | 0,413        | 16,19         |
| Buharlaştırıcı        | 603,90             |               | 135,67        | 0,421        | 41,85         |
| Absorber              | 756,48             |               | 53,13         | 0,165        | 19,19         |

**Çizelge 4.17.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ü oluşturan komponentlerin enerji ve ekserji performansları

| Komponent                                       | <b>Q</b> (kW) | <b>Ŵ</b> (kW) | <b>İ</b> (kW) | <b>İ</b> (%) | $\eta_{ex,k}$ |  |  |  |  |
|-------------------------------------------------|---------------|---------------|---------------|--------------|---------------|--|--|--|--|
| Eriyik Eşanjörü                                 | 115,66        |               | 15,23         | 0,047        | 14,40         |  |  |  |  |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü             | 16,78         |               | 1,41          | 0,004        | 44,24         |  |  |  |  |
| Soğutucu Akışkan<br>Eşanjörü                    | 9,94          |               | 0,48          | 0,001        | 2,58          |  |  |  |  |
| Eriyik Pompası                                  |               | 0,01          | 0,01          | 0,001        | 7,25          |  |  |  |  |
| Kısılma Vanası (1)                              |               |               | 0,05          | 0,001        | 99,58         |  |  |  |  |
| Kısılma Vanası (2)                              |               |               | 0,00          | 0,000        | 100           |  |  |  |  |
| Ön Soğutmalı Linde-Hampson Sıvılaştırma Sistemi |               |               |               |              |               |  |  |  |  |
| Kompresör                                       | 2979,38       | 3005,16       | 667,37        | 2,069        | 83,06         |  |  |  |  |
| Isı Eşanjörü (1)                                | 663,12        |               | 582,59        | 1,806        | 39,32         |  |  |  |  |
| Isı Eşanjörü (2)                                | 708,71        |               | 768,10        | 2,381        | 60,29         |  |  |  |  |
| Isı Eşanjörü (3)                                | 69,44         |               | 36,60         | 0,113        | 84,93         |  |  |  |  |
| Isı Eşanjörü (4)                                | 72,71         |               | 11,72         | 0,036        | 95,46         |  |  |  |  |
| Isı Eşanjörü (5)                                | 212,99        |               | 537,56        | 1,666        | 64,69         |  |  |  |  |
| Kısılma Vanası                                  |               |               | 2230,34       | 6,913        | 97,40         |  |  |  |  |
| Karışım Odası                                   |               |               | 130,98        | 0,406        | 99,83         |  |  |  |  |
| Seperatör                                       |               |               | 0,00          | 0,000        | 100           |  |  |  |  |

**Çizelge 4.17.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 4'ü oluşturan komponentlerin enerji ve ekserji performansları (devam)

## 4.6. Model 5 için Analiz Sonuçları

Model 5'de sıvılaştırma çevrimi olarak ön soğutmalı Claude sıvılaştırma sistemi kullanılmış ve eriyik çifti olarak ise LiBr–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma çevrimi tercih edilmiştir.

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak Model 5'de üretilen sıvı hidrojen miktarının değişimi Şekil 4.27'de verilmiştir. Şekil 4.27'de görüldüğü gibi soğutucu akışkan olarak n-Hexane kullanılması durumunda diğer akışkanlara göre sistemden daha fazla sıvı hidrojen üretilirken, R245fa tercih edilmesi halinde ise üretilen sıvı hidrojen miktarı diğer akışkanlara göre daha düşük olmaktadır.

n-Hexane için, buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi diğer akışkanlara göre daha fazla olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığına bağlı olarak %31,64 artmaktadır. Bununla birlikte, R245fa için buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi daha düşük olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının etkisiyle %23,74 artmaktadır.



**Şekil 4.27.** Model 5 için ön soğutmalı Claude sıvılaştırma sisteminde üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak elektroliz işinin değişimi Şekil 4.28(a)'da, elektroliz ünitesi geri dönüşüm oranının (r) değişimi ise Şekil 4.28(b)'de verilmiştir. Şekil 4.28'de görüldüğü gibi, buharlaştırıcı sıcaklığının yükselmesiyle gerekli elektroliz işi artarken, elektroliz modülü geri dönüşüm oranı azalmaktadır.

Model 5 için, buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane iken, etkisinin en az olduğu akışkan ise R245fa'dır. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı, soğutucu akışkan ve hidrojen miktarına bağlı olarak elektroliz işi maksimum %28,87 artarken, elektroliz ünitesi geri dönüşüm oranı ise maksimum %20,44 oranında azalmaktadır.



**Şekil 4.28.** Model 5 için (a) elektroliz işinin ve (b) elektroliz modülü geri dönüşüm oranının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak ön soğutmalı Claude sıvılaştırma sistemindeki kompresör işinin değişimi Şekil 4.29(a)'da, elde edilen türbin işinin değişimi Şekil 4.29(b)'de ve toplam sıvılaştırma işinin değişimi ise Şekil 4.29(c)'de verilmiştir. Önceki verilen modellere benzer şekilde, Model 5'de buharlaştırıcı sıcaklığının artmasıyla elde edilen hidrojen miktarı yükselmekte ve bu durumda sırasıyla kompresör işi, türbin işi ve toplam sıvılaştırma işi artmaktadır.

Model 5 için, n-Hexane kullanılması durumunda gerekli olan kompresör işi, elde edilen türbin işi ve toplam sıvılaştırma işi diğer akışkanlara göre daha yüksek olmaktadır. Buharlaştırıcı sıcaklığının kompresör, türbin ve toplam sıvılaştırma işi üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır. Buharlaştırıcı sıcaklığının 100°C'den 150°C'ye yükselmesiyle, n-Hexane için kompresör işi %48, türbin işi %31,64 ve toplam sıvılaştırma işi ise %60,27 artmaktadır. Soğutucu akışkan olarak R245fa kullanılması durumunda ise gerekli olan kompresör işi, elde edilen türbin işi ve toplam sıvılaştırma işi diğer akışkanlara göre daha düşüktür. R245fa için buharlaştırıcı sıcaklığının kompresör ve toplam sıvılaştırma işi üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve buharlaştırıcı sıcaklığının etkisiyle kompresör işi %37,51, türbin işi %23,75 ve toplam sıvılaştırma işi ise %48,04 artmaktadır.



**Şekil 4.29.** Model 5 için ön soğutmalı Claude sıvılaştırma sisteminde (a) kompresör işinin, (b) türbin işinin ve (c) toplam sıvılaştırma işinin buharlaştırıcı sıcaklığı ile değişimi

150°C buharlaştırıcı sıcaklığı için, soğutucu akışkan olarak n-Hexane kullanılması durumunda Model 5'i oluşturan tüm noktaların termofiziksel özellikleri Çizelge 4.18'de, Model 5'i oluşturan tüm komponentlerin enerji ve ekserji performansları ise Çizelge 4.19'da verilmiştir.

| Nokta                               | Т<br>(°С)   | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | e <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |  |
|-------------------------------------|-------------|-------------------|-------------|---------------------|----------------|-----------------------------|--------------------|--|--|--|
| ORC Sistemi                         |             |                   |             |                     |                |                             |                    |  |  |  |
| 1                                   | 160,00      | 735,693           | 447,941     | 599,41              | 1,5450         | 146,59                      | 65662,86           |  |  |  |
| 2                                   | 98,82       | 24,998            | 447,941     | 496,04              | 1,5947         | 28,66                       | 12839,40           |  |  |  |
| 2a                                  | 48,07       | 24,998            | 447,941     | 400,65              | 1,3193         | 13,98                       | 6264,02            |  |  |  |
| 3                                   | 30,00       | 24,998            | 447,941     | 11,71               | 0,0393         | 0,28                        | 124,49             |  |  |  |
| 4                                   | 30,34       | 735,693           | 447,941     | 13,07               | 0,0402         | 1,37                        | 615,45             |  |  |  |
| 4a                                  | 70,75       | 735,693           | 447,941     | 108,46              | 0,3352         | 10,28                       | 4605,33            |  |  |  |
| ss <sub>1</sub>                     | 20,00       | 101,325           | 4164,972    | 83,93               | 0,2962         | 0,00                        | 0,00               |  |  |  |
| ss <sub>2</sub>                     | 30,00       | 101,325           | 4164,972    | 125,76              | 0,4365         | 0,70                        | 2905,70            |  |  |  |
| Yüks                                | ek Sıcaklıl | klı Elektro       | liz Sistemi |                     |                |                             |                    |  |  |  |
| 1                                   | 200,00      | 1200              | 2,200       | 2815,36             | 6,5890         | 886,69                      | 3103,10            |  |  |  |
| 2                                   | 726,30      | 1200              | 2,200       | 3982,81             | 8,2498         | 1567,28                     | 4600,41            |  |  |  |
| 3                                   | 879,96      | 1200              | 2,200       | 4345,07             | 8,5868         | 1830,75                     | 5180,03            |  |  |  |
| 4                                   | 980,63      | 1200              | 2,200       | 4590,74             | 8,7910         | 2016,55                     | 5588,80            |  |  |  |
| 5                                   | 200,00      | 1200              | 0,800       | 2815,36             | 6,5890         | 886,69                      | 1128,40            |  |  |  |
| 6                                   | 282,00      | 1200              | 0,800       | 3005,74             | 6,9607         | 968,10                      | 1193,53            |  |  |  |
| 7                                   | 494,68      | 1200              | 0,800       | 3464,81             | 7,6610         | 1221,90                     | 1396,57            |  |  |  |
| 8                                   | 820,63      | 1200              | 0,800       | 4203,34             | 8,4606         | 1726,01                     | 1799,86            |  |  |  |
| 9                                   | 938,63      | 1200              | 3,000       | 4487,43             | 8,7072         | 1937,82                     | 7384,88            |  |  |  |
| 10 <sub><i>H</i><sub>2</sub></sub>  | 1000,00     | 15000             | 0,17347     | 18491,38            | 54,0887        | 14350,69                    | 22803,78           |  |  |  |
| $10_{H_2O}$                         | 1000,00     | 15000             | 1,44981     | 4597,68             | 7,6350         | 2362,38                     | 4184,44            |  |  |  |
| $11_{H_2}$                          | 915,15      | 15000             | 0,17347     | 17181,66            | 53,0242        | 13353,04                    | 22630,72           |  |  |  |
| $11_{H_2O}$                         | 915,15      | 15000             | 1,44981     | 4380,71             | 7,4586         | 2197,11                     | 3944,82            |  |  |  |
| $11a_{H_2}$                         | 919,18      | 8000              | 0,17347     | 17181,66            | 55,6628        | 12579,52                    | 22496,54           |  |  |  |
| $11a_{H_20}$                        | 905,00      | 8000              | 1,44981     | 4380,71             | 7,7454         | 2113,03                     | 3822,92            |  |  |  |
| 12 <sub><i>H</i><sub>2</sub></sub>  | 911,03      | 8000              | 0,17347     | 17056,59            | 55,5575        | 12485,31                    | 22480,20           |  |  |  |
| $12_{H_2O}$                         | 911,03      | 8000              | 1,44981     | 4395,67             | 7,7581         | 2124,28                     | 3839,23            |  |  |  |
| $13_{H_2}$                          | 781,95      | 8000              | 0,17347     | 15092,86            | 53,8020        | 11036,22                    | 22228,83           |  |  |  |
| 13 <sub><i>H</i><sub>2</sub>0</sub> | 781,95      | 8000              | 1,44981     | 4079,06             | 7,4751         | 1890,64                     | 3500,49            |  |  |  |
| $13a_{H_2}$                         | 784,87      | 3000              | 0,17347     | 15092,86            | 57,8849        | 9839,31                     | 22021,20           |  |  |  |
| $13a_{H_20}$                        | 771,59      | 3000              | 1,44981     | 4079,06             | 7,9230         | 1759,32                     | 3310,11            |  |  |  |
| 14 <sub><i>H</i><sub>2</sub></sub>  | 777,34      | 3000              | 0,17347     | 14979,28            | 57,7772        | 9757,31                     | 22006,98           |  |  |  |
| $14_{H_20}$                         | 777,34      | 3000              | 1,44981     | 4092,65             | 7,9360         | 1769,11                     | 3324,30            |  |  |  |

Çizelge 4.18. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'in termofiziksel özellikleri

| Nokta           | Т<br>(°С) | <b>P</b><br>(kPa) | <b>ṁ</b><br>(kg/s) | <b>h</b><br>(kJ/kg)      | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |
|-----------------|-----------|-------------------|--------------------|--------------------------|----------------|------------------------------------|--------------------|
| $15_{H_2}$      | 338,16    | 3000              | 0,17347            | 8490,48                  | 49,7903        | 5609,87                            | 21287,54           |
| $15_{H_2O}$     | 338,16    | 3000              | 1,44981            | 3086,59                  | 6,6963         | 1126,46                            | 2392,58            |
| 16              | 1000,00   | 15000             | 1,37668            | 1014,78                  | 0,1632         | 967,02                             | 1502,08            |
| 17              | 603,11    | 15000             | 1,37668            | 577,55                   | -0,2488        | 650,58                             | 1066,45            |
| 18              | 604,57    | 8000              | 1,37668            | 577,55                   | -0,0805        | 601,23                             | 998,50             |
| 19              | 344,85    | 8000              | 1,37668            | 304,35                   | -0,4495        | 436,20                             | 771,31             |
| 20              | 343,60    | 3000              | 1,37668            | 304,35                   | -0,1911        | 360,47                             | 667,05             |
| 21              | 231,27    | 3000              | 1,37668            | 193,10                   | -0,3921        | 307,13                             | 593,62             |
| 22              | 20,00     | 101,325           | 1,55019            | 83,93                    | 0,2962         | 0,00                               | 77,44              |
| 23              | 20,10     | 1200              | 1,55019            | 85,40                    | 0,2974         | 1,10                               | 79,15              |
| 24              | 188,00    | 1200              | 3,000              | 1535,78                  | 3,8151         | 420,29                             | 2121,52            |
| 25              | 200,00    | 1200              | 3,000              | 2815,36                  | 6,5890         | 886,69                             | 4231,50            |
| 26              | 338,16    | 3000              | 1,44981            | 3086,59                  | 6,6963         | 1126,46                            | 2392,58            |
| 27              | 319,07    | 1200              | 1,44981            | 3086,59                  | 7,1017         | 1007,61                            | 2220,27            |
| $H_1$           | 338,16    | 3000              | 0,17347            | 8490,48                  | 49,7903        | 5609,87                            | 21287,54           |
| $H_2$           | 339,76    | 101,325           | 0,17347            | 8490,48                  | 63,8024        | 1502,22                            | 20575,94           |
| $H_3$           | 99,84     | 101,325           | 0,17347            | 5009,21                  | 56,5975        | 133,08                             | 20338,44           |
| Abso            | rbsiyonlu | Soğutma S         | Sistemi (Lil       | Br-H <sub>2</sub> O Eriy | viği için)     |                                    |                    |
| 1               | 90,00     | 7,381             | 0,25260            | 2668,27                  | 8,5362         | 168,77                             | 174,95             |
| 2               | 54,98     | 7,381             | 0,25260            | 2601,83                  | 8,3439         | 158,73                             | 172,42             |
| 3               | 40,00     | 7,381             | 0,25260            | 167,50                   | 0,5723         | 2,64                               | 13,29              |
| 4               | 30,59     | 7,381             | 0,25260            | 128,16                   | 0,4447         | 0,69                               | 12,79              |
| 5               | 10,00     | 1,228             | 0,25260            | 128,16                   | 0,4553         | -2,41                              | 12,74              |
| 6               | 10,00     | 1,228             | 0,25260            | 2518,89                  | 8,8986         | -86,85                             | 110,38             |
| 7               | 31,00     | 1,228             | 0,25260            | 2558,23                  | 9,0326         | -86,80                             | 110,40             |
| 8               | 40,00     | 1,228             | 2,16819            | 94,05                    | 0,2461         | 24,90                              | 1958,87            |
| 9               | 43,80     | 1,228             | 2,16819            | 101,79                   | 0,2708         | 25,42                              | 1960,00            |
| 10              | 43,81     | 7,381             | 2,16819            | 101,80                   | 0,2708         | 25,42                              | 1960,00            |
| 11              | 74,30     | 7,381             | 2,16819            | 155,14                   | 0,4487         | 26,60                              | 1962,56            |
| 12              | 90,00     | 7,381             | 1,91559            | 224,40                   | 0,4917         | 83,24                              | 1932,02            |
| 13              | 57,67     | 7,381             | 1,91559            | 164,02                   | 0,3175         | 73,95                              | 1914,23            |
| 14              | 57,67     | 1,228             | 1,91559            | 164,02                   | 0,3175         | 73,95                              | 1914,23            |
| SS <sub>3</sub> | 20,00     | 101,325           | 5,654              | 83,93                    | 0,2962         | 0,00                               | 282,48             |
| SS4             | 46,00     | 101,325           | 5,654              | 192,68                   | 0,6516         | 4,56                               | 308,24             |

Çizelge 4.18. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'in termofiziksel özellikleri (devam)

| Nokta                                    | Т<br>(°С) | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | e <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |  |
|------------------------------------------|-----------|-------------------|-------------|---------------------|----------------|-----------------------------|--------------------|--|--|--|
| <b>SS</b> 5                              | 20,00     | 101,325           | 18,084      | 83,93               | 0,2962         | 0,00                        | 903,45             |  |  |  |
| SS <sub>6</sub>                          | 30,00     | 101,325           | 18,084      | 125,76              | 0,4365         | 0,70                        | 916,07             |  |  |  |
| Ön Soğutmalı Claude Sıvılaştırma Sistemi |           |                   |             |                     |                |                             |                    |  |  |  |
| 1                                        | -37,62    | 101,325           | 0,69202     | 3045,68             | 50,0397        | 91,96                       | 81107,55           |  |  |  |
| 2                                        | -37,28    | 6000              | 0,69202     | 3064,81             | 33,1269        | 5069,08                     | 84551,83           |  |  |  |
| 3                                        | -112,47   | 6000              | 0,69202     | 2022,84             | 27,8169        | 5583,74                     | 84907,99           |  |  |  |
| 4                                        | -195,79   | 6000              | 0,69202     | 930,74              | 18,2315        | 7301,60                     | 86096,78           |  |  |  |
| 5                                        | -202,80   | 6000              | 0,69202     | 830,93              | 16,8784        | 7598,45                     | 86302,21           |  |  |  |
| 5a                                       | -202,80   | 6000              | 0,34601     | 830,93              | 16,8784        | 7598,45                     | 43151,11           |  |  |  |
| 6                                        | -231,38   | 6000              | 0,34601     | 326,49              | 7,5649         | 9824,25                     | 43921,26           |  |  |  |
| 7                                        | -237,80   | 6000              | 0,34601     | 223,74              | 4,9022         | 10502,06                    | 44155,79           |  |  |  |
| 8                                        | -252,78   | 101,325           | 0,34601     | 223,74              | 10,9843        | 8719,11                     | 43538,87           |  |  |  |
| 9                                        | -233,98   | 101,325           | 0,17254     | 654,73              | 29,2366        | 3799,43                     | 20862,16           |  |  |  |
| 10                                       | -251,35   | 101,325           | 0,34601     | 465,58              | 22,8297        | 5488,48                     | 42421,03           |  |  |  |
| 11                                       | -245,74   | 101,325           | 0,51855     | 528,52              | 25,4015        | 4797,47                     | 63216,30           |  |  |  |
| 12                                       | -213,95   | 101,325           | 0,51855     | 865,12              | 33,5758        | 2737,78                     | 62148,24           |  |  |  |
| 13                                       | -201,30   | 101,325           | 0,51855     | 998,31              | 35,6144        | 2273,37                     | 61907,42           |  |  |  |
| 14                                       | -85,66    | 101,325           | 0,51855     | 2388,85             | 46,9234        | 348,67                      | 60909,36           |  |  |  |
| f                                        | -252,78   | 101,325           | 0,17347     | 0,001913            | 0,00009282     | 11715,39                    | 22347,62           |  |  |  |
| g                                        | -252,78   | 101,325           | 0,17254     | 448,68              | 22,0276        | 5706,71                     | 21191,25           |  |  |  |
| e                                        | -202,80   | 6000              | 0,34601     | 830,93              | 16,8784        | 7598,45                     | 43151,11           |  |  |  |
| $N_{s_1v_1}$                             | -195,79   | 101,325           | 3,33780     | -122,02             | 2,8342         | 741,87                      | 2561,41            |  |  |  |
| $\mathbf{N}_{\text{gaz}}$                | -170,79   | 101,325           | 3,33780     | 104,41              | 5,7146         | 123,73                      | 498,76             |  |  |  |
| Jeotermal Akışkan                        |           |                   |             |                     |                |                             |                    |  |  |  |
| jeo <sub>1</sub>                         | 240,00    | 600               | 180,000     | 2935,46             | 7,1399         | 845,30                      | 152154,79**        |  |  |  |
| jeo <sub>2</sub>                         | 158,86    | 600               | 180,000     | 1713,70             | 4,3458         | 442,62                      | 131313,41***       |  |  |  |
| jeo <sub>3</sub>                         | 158,86    | 600               | 180,000     | 1710,34             | 4,3380         | 441,55                      | 130982,11          |  |  |  |
| jeo4                                     | 240,00    | 1300              | 1,828       | 2907,16             | 6,7406         | 934,04                      | 2665,49            |  |  |  |
| jeo5                                     | 190,00    | 1300              | 1,828       | 807,62              | 2,2358         | 155,10                      | 374,92             |  |  |  |

**Çizelge 4.18.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'in termofiziksel özellikleri (devam)

\*ORC sisteminde toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiş, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve sıvılaştırma sistemlerinde ise kimyasal ekserji dikkate alınmıştır.

\*\*jeo1 noktası için toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiştir.

\*\*\*jeo2 noktası için verilen ekserji akımı toplam ekserji akımıdır. Ancak ORC sistemindeki ekserji hesaplamalarında kimyasal ekserji ihmal edilmiştir. jeo2 noktasının fiziksel ekserjisi 79672,22 kW olarak hesaplanmıştır.

| Komponent                                             | <b>perponent</b> $\dot{\boldsymbol{Q}}$ (kW) $\dot{\boldsymbol{W}}$ (kW) |          | İ (kW)   | İ (%)  | $\eta_{ex,k}$ |  |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------|----------|----------|--------|---------------|--|--|--|--|--|
| ORC Sistemi                                           |                                                                          |          |          |        |               |  |  |  |  |  |
| Buharlaştırıcı                                        | 219917,31                                                                |          | 11425,05 | 36,130 | 84,24         |  |  |  |  |  |
| Türbin                                                |                                                                          | 46302,56 | 6520,89  | 20,622 | 87,66         |  |  |  |  |  |
| Yoğuşturucu                                           | 174223,46                                                                |          | 3233,83  | 10,227 | 47,33         |  |  |  |  |  |
| Pompa                                                 |                                                                          | 608,72   | 117,76   | 0,372  | 80,65         |  |  |  |  |  |
| Isı Eşanjörü                                          | 42728,85                                                                 |          | 2585,50  | 8,176  | 60,68         |  |  |  |  |  |
| Yüksek Sıcaklıklı Ele                                 | ektroliz Sisten                                                          | ni       |          |        |               |  |  |  |  |  |
| Elektroliz Ünitesi                                    |                                                                          | 21905,16 | 799,75   | 2,529  | 96,35         |  |  |  |  |  |
| Isı Eşanjörü (1)                                      | 2568,40                                                                  |          | 153,86   | 0,487  | 90,68         |  |  |  |  |  |
| Isı Eşanjörü (2)                                      | 152,31                                                                   |          | 8,31     | 0,026  | 88,68         |  |  |  |  |  |
| Isı Eşanjörü (3)                                      | 796,96                                                                   |          | 10,48    | 0,033  | 98,22         |  |  |  |  |  |
| Isı Eşanjörü (4)                                      | 367,26                                                                   |          | 24,15    | 0,076  | 89,37         |  |  |  |  |  |
| Isı Eşanjörü (5)                                      | 540,48                                                                   |          | 3,91     | 0,012  | 99,05         |  |  |  |  |  |
| Isı Eşanjörü (6)                                      | 590,82                                                                   |          | 32,34    | 0,102  | 92,58         |  |  |  |  |  |
| Giriş Eşanjörü                                        | 3838,74                                                                  |          | 180,58   | 0,571  | 92,12         |  |  |  |  |  |
| Pompa                                                 |                                                                          | 2,28     | 0,57     | 0,002  | 74,99         |  |  |  |  |  |
| Seperatör                                             |                                                                          |          | 0,00     | 0,000  | 100           |  |  |  |  |  |
| Karışım Odası (1)                                     |                                                                          |          | 177,91   | 0,563  | 92,26         |  |  |  |  |  |
| Karışım Odası (2)                                     |                                                                          |          | 0,00     | 0,000  | 100           |  |  |  |  |  |
| Karışım Odası (3)                                     |                                                                          |          | 3,78     | 0,012  | 99,95         |  |  |  |  |  |
| Karışım Odası (4)                                     |                                                                          |          | 0,03     | 0,001  | 99,99         |  |  |  |  |  |
| Karışım Odası (5)                                     |                                                                          |          | 0,04     | 0,001  | 99,99         |  |  |  |  |  |
| Kısılma Vanası (1)                                    |                                                                          |          | 104,26   | 0,330  | 86,48         |  |  |  |  |  |
| Kısılma Vanası (2)                                    |                                                                          |          | 67,94    | 0,215  | 93,63         |  |  |  |  |  |
| Kısılma Vanası (3)                                    |                                                                          |          | 256,08   | 0,810  | 99,04         |  |  |  |  |  |
| Kısılma Vanası (4)                                    |                                                                          |          | 398,01   | 1,259  | 98,45         |  |  |  |  |  |
| Kısılma Vanası (5)                                    |                                                                          |          | 172,31   | 0,545  | 92,80         |  |  |  |  |  |
| Kısılma Vanası (6)                                    |                                                                          |          | 712,56   | 2,253  | 96,66         |  |  |  |  |  |
| Absorbsiyonlu Soğutma Sistemi (LiBr-H2O Eriyiği için) |                                                                          |          |          |        |               |  |  |  |  |  |
| Kaynatıcı                                             | 767,49                                                                   |          | 186,89   | 0,591  | 43,59         |  |  |  |  |  |
| Yoğuşturucu                                           | 614,91                                                                   |          | 133,38   | 0,422  | 16,19         |  |  |  |  |  |
| Buharlaştırıcı                                        | 603,90                                                                   |          | 139,86   | 0,442  | 41,11         |  |  |  |  |  |
| Absorber                                              | 756,48                                                                   |          | 53,13    | 0,168  | 19,19         |  |  |  |  |  |

**Çizelge 4.19.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'i oluşturan komponentlerin enerji ve ekserji performansları

| Komponent                                | <b>Q</b> (kW) | <b>W</b> (kW) | <b>İ</b> (kW) | <b>İ</b> (%) | $\eta_{ex,k}$ |  |  |  |  |
|------------------------------------------|---------------|---------------|---------------|--------------|---------------|--|--|--|--|
| Eriyik Eşanjörü                          | 115,66        |               | 15,23         | 0,048        | 14,40         |  |  |  |  |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü      | 16,78         |               | 1,41          | 0,004        | 44,24         |  |  |  |  |
| Soğutucu Akışkan<br>Eşanjörü             | 9,94          |               | 0,48          | 0,002        | 2,58          |  |  |  |  |
| Eriyik Pompası                           |               | 0,01          | 0,01          | 0,001        | 7,25          |  |  |  |  |
| Kısılma Vanası (1)                       |               |               | 0,05          | 0,001        | 99,58         |  |  |  |  |
| Kısılma Vanası (2)                       |               |               | 0,00          | 0,000        | 100           |  |  |  |  |
| Ön Soğutmalı Claude Sıvılaştırma Sistemi |               |               |               |              |               |  |  |  |  |
| Kompresör                                | 2756,64       | 2769,93       | 730,13        | 2,309        | 78,80         |  |  |  |  |
| Türbin                                   |               | 126,42        | 603,66        | 1,909        | 17,32         |  |  |  |  |
| Isı Eşanjörü (1)                         | 721,07        |               | 641,90        | 2,030        | 35,69         |  |  |  |  |
| Isı Eşanjörü (2)                         | 755,76        |               | 873,85        | 2,763        | 57,63         |  |  |  |  |
| Isı Eşanjörü (3)                         | 69,07         |               | 35,40         | 0,112        | 85,30         |  |  |  |  |
| Isı Eşanjörü (4)                         | 174,54        |               | 297,91        | 0,942        | 72,11         |  |  |  |  |
| Isı Eşanjörü (5)                         | 35,55         |               | 94,55         | 0,299        | 71,27         |  |  |  |  |
| Kısılma Vanası                           |               |               | 616,92        | 1,951        | 98,60         |  |  |  |  |
| Karışım Odası (1)                        |               |               | 140,25        | 0,444        | 99,83         |  |  |  |  |
| Karışım Odası (2)                        |               |               | 0,00          | 0,000        | 100           |  |  |  |  |
| Karışım Odası (3)                        |               |               | 66,89         | 0,212        | 99,89         |  |  |  |  |
| Seperatör                                |               |               | 0,00          | 0,000        | 100           |  |  |  |  |

**Çizelge 4.19.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 5'i oluşturan komponentlerin enerji ve ekserji performansları (devam)

## 4.7. Model 6 için Analiz Sonuçları

Model 6'da sıvılaştırma çevrimi olarak ön soğutmalı Heylandt sıvılaştırma sistemi kullanılmış ve eriyik çifti olarak ise LiBr–H<sub>2</sub>O eriyiği kullanılan absorbsiyonlu soğutma çevrimi tercih edilmiştir.

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak Model 6'da üretilen sıvı hidrojen miktarının değişimi Şekil 4.30'da verilmiştir. n-Hexane için, buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi diğer akışkanlara göre daha fazla olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığına bağlı olarak %30,59 artmaktadır. Bununla birlikte, R245fa için buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının üretilen sıvı hidrojen miktarı üzerindeki etkisi daha düşük olmakta ve üretilen sıvı hidrojen miktarı buharlaştırıcı sıcaklığının etkisiyle %22,89 artmaktadır.



Şekil 4.30. Model 6 için ön soğutmalı Heylandt sıvılaştırma sisteminde üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için buharlaştırıcı sıcaklığının artışına bağlı olarak elektroliz işinin değişimi Şekil 4.31(a)'da, elektroliz ünitesi geri dönüşüm oranının (r) değişimi ise Şekil 4.31(b)'de verilmiştir. Diğer modellere benzer şekilde, buharlaştırıcı sıcaklığının yükselmesiyle gerekli elektroliz işi artarken, elektroliz modülü geri dönüşüm oranı azalmaktadır.

Model 6 için, buharlaştırıcı sıcaklığının elektroliz işi ve geri dönüşüm oranı üzerindeki etkisinin en fazla olduğu akışkan n-Hexane iken, etkisinin en az olduğu akışkan ise R245fa'dır. Sabit çalışma şartlarında, buharlaştırıcı sıcaklığı, soğutucu akışkan ve hidrojen miktarına bağlı olarak elektroliz işi maksimum %27,89 artarken, elektroliz ünitesi geri dönüşüm oranı ise maksimum %19,62 oranında azalmaktadır.



Şekil 4.31. Model 6 için (a) elektroliz işinin ve (b) elektroliz modülü geri dönüşüm oranının buharlaştırıcı sıcaklığı ile değişimi

ORC sisteminde kullanılan farklı soğutucu akışkanlar için, buharlaştırıcı sıcaklığına bağlı olarak ön soğutmalı Heylandt sıvılaştırma sistemindeki kompresör işinin değişimi Şekil 4.32(a)'da, elde edilen türbin işinin değişimi Şekil 4.32(b)'de ve toplam sıvılaştırma işinin değişimi ise Şekil 4.32(c)'de verilmiştir. Buharlaştırıcı sıcaklığının kompresör, türbin ve toplam sıvılaştırma işi üzerindeki etkisinin en fazla olduğu akışkan n-Hexane'dır ve n-Hexane için, buharlaştırıcı sıcaklığındaki artışa bağlı olarak kompresör işi %46,64, türbin işi %30,59 ve toplam sıvılaştırma işi ise %61,24 artmaktadır. Bununla birlikte, R245fa için buharlaştırıcı sıcaklığının kompresör, türbin ve toplam sıvılaştırma işi üzerindeki etkisi diğer akışkanlara göre daha az olmakta ve kompresör işi %36,32, türbin işi %22,89 ve toplam sıvılaştırma işi ise %48,88 artmaktadır.



**Şekil 4.32.** Model 6 için ön soğutmalı Heylandt sıvılaştırma sisteminde (a) kompresör işinin, (b) türbin işinin ve (c) toplam sıvılaştırma işinin buharlaştırıcı sıcaklığı ile değişimi

150°C buharlaştırıcı sıcaklığı için, soğutucu akışkan olarak n-Hexane kullanılması durumunda Model 6'yı oluşturan tüm noktaların termofiziksel özellikleri Çizelge 4.20'de, Model 6'yı oluşturan tüm komponentlerin enerji ve ekserji performansları ise Çizelge 4.21'de verilmiştir.

| Nokta                               | Т<br>(°С)   | <b>P</b><br>(kPa) | m<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |
|-------------------------------------|-------------|-------------------|-------------|---------------------|----------------|------------------------------------|--------------------|--|--|
| ORC Sistemi                         |             |                   |             |                     |                |                                    |                    |  |  |
| 1                                   | 160,00      | 735,693           | 447,941     | 599,41              | 1,5450         | 146,59                             | 65662,86           |  |  |
| 2                                   | 98,82       | 24,998            | 447,941     | 496,04              | 1,5947         | 28,66                              | 12839,40           |  |  |
| 2a                                  | 48,07       | 24,998            | 447,941     | 400,65              | 1,3193         | 13,98                              | 6264,02            |  |  |
| 3                                   | 30,00       | 24,998            | 447,941     | 11,71               | 0,0393         | 0,28                               | 124,49             |  |  |
| 4                                   | 30,34       | 735,693           | 447,941     | 13,07               | 0,0402         | 1,37                               | 615,45             |  |  |
| 4a                                  | 70,75       | 735,693           | 447,941     | 108,46              | 0,3352         | 10,28                              | 4605,33            |  |  |
| ss <sub>1</sub>                     | 20,00       | 101,325           | 4164,972    | 83,93               | 0,2962         | 0,00                               | 0,00               |  |  |
| ss <sub>2</sub>                     | 30,00       | 101,325           | 4164,972    | 125,76              | 0,4365         | 0,70                               | 2905,70            |  |  |
| Yüks                                | ek Sıcaklıl | klı Elektroli     | z Sistemi   |                     |                |                                    |                    |  |  |
| 1                                   | 200,00      | 1200              | 2,200       | 2815,36             | 6,5890         | 886,69                             | 3103,10            |  |  |
| 2                                   | 727,27      | 1200              | 2,200       | 3985,05             | 8,2520         | 1568,86                            | 4603,88            |  |  |
| 3                                   | 880,63      | 1200              | 2,200       | 4346,66             | 8,5882         | 1831,94                            | 5182,65            |  |  |
| 4                                   | 980,75      | 1200              | 2,200       | 4591,02             | 8,7912         | 2016,77                            | 5589,28            |  |  |
| 5                                   | 200,00      | 1200              | 0,800       | 2815,36             | 6,5890         | 886,69                             | 1128,40            |  |  |
| 6                                   | 278,06      | 1200              | 0,800       | 2997,05             | 6,9450         | 964,01                             | 1190,26            |  |  |
| 7                                   | 485,43      | 1200              | 0,800       | 3444,74             | 7,6347         | 1209,53                            | 1386,68            |  |  |
| 8                                   | 813,94      | 1200              | 0,800       | 4187,52             | 8,4461         | 1714,45                            | 1790,61            |  |  |
| 9                                   | 936,99      | 1200              | 3,000       | 4483,42             | 8,7039         | 1934,77                            | 7375,76            |  |  |
| $10_{H_2}$                          | 1000,00     | 15000             | 0,17133     | 18491,38            | 54,0887        | 14350,69                           | 22523,11           |  |  |
| $10_{H_2O}$                         | 1000,00     | 15000             | 1,46889     | 4597,68             | 7,6350         | 2362,38                            | 4239,51            |  |  |
| $11_{H_2}$                          | 915,82      | 15000             | 0,17133     | 17191,94            | 53,0328        | 13360,78                           | 22353,50           |  |  |
| $11_{H_2O}$                         | 915,82      | 15000             | 1,46889     | 4382,41             | 7,4601         | 2198,39                            | 3998,62            |  |  |
| $11a_{H_2}$                         | 919,85      | 8000              | 0,17133     | 17191,94            | 55,6714        | 12587,28                           | 22220,98           |  |  |
| $11a_{H_20}$                        | 905,69      | 8000              | 1,46889     | 4382,41             | 7,7469         | 2114,31                            | 3875,11            |  |  |
| $12_{H_2}$                          | 911,62      | 8000              | 0,17133     | 17065,66            | 55,5652        | 12492,14                           | 22204,68           |  |  |
| $12_{H_2O}$                         | 911,62      | 8000              | 1,46889     | 4397,14             | 7,7594         | 2125,38                            | 3891,38            |  |  |
| $13_{H_2}$                          | 783,09      | 8000              | 0,17133     | 15110,10            | 53,8183        | 11048,68                           | 21957,37           |  |  |
| 13 <sub><i>H</i><sub>2</sub>0</sub> | 783,09      | 8000              | 1,46889     | 4081,83             | 7,4777         | 1892,64                            | 3549,50            |  |  |
| $13a_{H_2}$                         | 786,01      | 3000              | 0,17133     | 15110,10            | 57,9012        | 9851,78                            | 21752,30           |  |  |
| $13a_{H_20}$                        | 772,76      | 3000              | 1,46889     | 4081,83             | 7,9257         | 1761,32                            | 3356,60            |  |  |
| 14 <sub><i>H</i><sub>2</sub></sub>  | 778,42      | 3000              | 0,17133     | 14995,53            | 57,7926        | 9769,03                            | 21738,12           |  |  |
| $14_{H_20}$                         | 778,42      | 3000              | 1,46889     | 4095,19             | 7,9384         | 1770,94                            | 3370,74            |  |  |

Çizelge 4.20. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'nın termofiziksel özellikleri

| Nokta          | Т<br>(°С)                                             | <b>P</b><br>(kPa) | <i>ṁ</i><br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e<sub>fiz</sub></i> (kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |  |
|----------------|-------------------------------------------------------|-------------------|--------------------|---------------------|----------------|--------------------------------|--------------------|--|--|--|
| $15_{H_2}$     | 339,34                                                | 3000              | 0,17133            | 8507,66             | 49,8184        | 5618,82                        | 21027,06           |  |  |  |
| $15_{H_2O}$    | 339,34                                                | 3000              | 1,46889            | 3089,41             | 6,7009         | 1127,93                        | 2426,23            |  |  |  |
| 16             | 1000,00                                               | 15000             | 1,35974            | 1014,78             | 0,1632         | 967,02                         | 1483,59            |  |  |  |
| 17             | 595,48                                                | 15000             | 1,35974            | 569,30              | -0,2583        | 645,11                         | 1045,88            |  |  |  |
| 18             | 596,89                                                | 8000              | 1,35974            | 569,30              | -0,0899        | 595,76                         | 978,77             |  |  |  |
| 19             | 340,22                                                | 8000              | 1,35974            | 299,60              | -0,4572        | 433,71                         | 758,43             |  |  |  |
| 20             | 338,91                                                | 3000              | 1,35974            | 299,60              | -0,1989        | 357,99                         | 655,47             |  |  |  |
| 21             | 230,34                                                | 3000              | 1,35974            | 192,19              | -0,3939        | 306,75                         | 585,79             |  |  |  |
| 22             | 20,00                                                 | 101,325           | 1,53111            | 83,93               | 0,2962         | 0,00                           | 76,49              |  |  |  |
| 23             | 20,10                                                 | 1200              | 1,53111            | 85,40               | 0,2974         | 1,10                           | 78,17              |  |  |  |
| 24             | 188,00                                                | 1200              | 3,000              | 1556,25             | 3,8595         | 427,75                         | 2143,89            |  |  |  |
| 25             | 200,00                                                | 1200              | 3,000              | 2815,36             | 6,5890         | 886,69                         | 4231,50            |  |  |  |
| 26             | 339,34                                                | 3000              | 1,46889            | 3089,41             | 6,7009         | 1127,93                        | 2426,23            |  |  |  |
| 27             | 320,37                                                | 1200              | 1,46889            | 3089,41             | 7,1065         | 1009,04                        | 2251,59            |  |  |  |
| $H_1$          | 339,34                                                | 3000              | 0,17133            | 8507,66             | 49,8184        | 5618,82                        | 21027,06           |  |  |  |
| $H_2$          | 340,94                                                | 101,325           | 0,17133            | 5807,66             | 63,8305        | 1511,19                        | 20323,65           |  |  |  |
| H <sub>3</sub> | 98,03                                                 | 101,325           | 0,17133            | 4982,92             | 56,5268        | 127,50                         | 20086,58           |  |  |  |
| Abso           | Absorbsiyonlu Soğutma Sistemi (LiBr-H2O Eriyiği için) |                   |                    |                     |                |                                |                    |  |  |  |
| 1              | 90,00                                                 | 7,381             | 0,25260            | 2668,27             | 8,5362         | 168,77                         | 174,95             |  |  |  |
| 2              | 54,98                                                 | 7,381             | 0,25260            | 2601,83             | 8,3439         | 158,73                         | 172,42             |  |  |  |
| 3              | 40,00                                                 | 7,381             | 0,25260            | 167,50              | 0,5723         | 2,64                           | 13,29              |  |  |  |
| 4              | 30,59                                                 | 7,381             | 0,25260            | 128,16              | 0,4447         | 0,69                           | 12,79              |  |  |  |
| 5              | 10,00                                                 | 1,228             | 0,25260            | 128,16              | 0,4553         | -2,41                          | 12,74              |  |  |  |
| 6              | 10,00                                                 | 1,228             | 0,25260            | 2518,89             | 8,8986         | -86,85                         | 110,38             |  |  |  |
| 7              | 31,00                                                 | 1,228             | 0,25260            | 2558,23             | 9,0326         | -86,80                         | 110,40             |  |  |  |
| 8              | 40,00                                                 | 1,228             | 2,16819            | 94,05               | 0,2461         | 24,90                          | 1958,87            |  |  |  |
| 9              | 43,81                                                 | 1,228             | 2,16819            | 101,79              | 0,2708         | 25,42                          | 1960,00            |  |  |  |
| 10             | 43,81                                                 | 7,381             | 2,16819            | 101,80              | 0,2708         | 25,42                          | 1960,00            |  |  |  |
| 11             | 74,30                                                 | 7,381             | 2,16819            | 155,14              | 0,4487         | 26,60                          | 1962,56            |  |  |  |
| 12             | 90,00                                                 | 7,381             | 1,91559            | 224,40              | 0,4917         | 83,24                          | 1932,02            |  |  |  |
| 13             | 57,67                                                 | 7,381             | 1,91559            | 164,02              | 0,3175         | 73,95                          | 1914,23            |  |  |  |
| 14             | 57,67                                                 | 1,228             | 1,91559            | 164,02              | 0,3175         | 73,95                          | 1914,23            |  |  |  |
| SS3            | 20,00                                                 | 101,325           | 5,654              | 83,93               | 0,2962         | 0,00                           | 282,48             |  |  |  |
| SS4            | 46,00                                                 | 101,325           | 5,654              | 192,68              | 0,6516         | 4,56                           | 308,24             |  |  |  |

Çizelge 4.20. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'nın termofiziksel özellikleri (devam)

| Nokta                                      | Т<br>(°С) | <b>P</b><br>(kPa) | ṁ<br>(kg/s) | <b>h</b><br>(kJ/kg) | s<br>(kJ/kg K) | <i>e</i> <sub>fiz</sub><br>(kJ/kg) | <b>Ė</b> *<br>(kW) |  |  |  |
|--------------------------------------------|-----------|-------------------|-------------|---------------------|----------------|------------------------------------|--------------------|--|--|--|
| <b>SS</b> 5                                | 20,00     | 101,325           | 18,084      | 83,93               | 0,2962         | 0,00                               | 903,45             |  |  |  |
| <b>SS</b> <sub>6</sub>                     | 30,00     | 101,325           | 18,084      | 125,76              | 0,4365         | 0,70                               | 916,07             |  |  |  |
| Ön Soğutmalı Heylandt Sıvılaştırma Sistemi |           |                   |             |                     |                |                                    |                    |  |  |  |
| 1                                          | -50,63    | 101,325           | 0,74853     | 2865,14             | 49,2512        | 142,55                             | 87768,20           |  |  |  |
| 2                                          | -49,43    | 18000             | 0,74853     | 2934,68             | 27,6767        | 6536,67                            | 92554,39           |  |  |  |
| 3                                          | -125,54   | 18000             | 0,74853     | 1849,28             | 21,7541        | 7187,49                            | 93041,54           |  |  |  |
| 4                                          | -195,79   | 18000             | 0,74853     | 867,35              | 12,7133        | 8855,85                            | 94290,36           |  |  |  |
| 4a                                         | -195,79   | 18000             | 0,37426     | 867,35              | 12,7133        | 8855,85                            | 47145,18           |  |  |  |
| 5                                          | -237,03   | 18000             | 0,37426     | 325,53              | 2,8856         | 11195,03                           | 48020,65           |  |  |  |
| 6                                          | -245,46   | 18000             | 0,37426     | 243,28              | 0,3032         | 11869,82                           | 48273,20           |  |  |  |
| 7                                          | -252,78   | 101,325           | 0,37426     | 243,28              | 11,9439        | 8457,35                            | 46996,04           |  |  |  |
| 8                                          | -239,09   | 101,325           | 0,20293     | 600,36              | 27,7490        | 4181,14                            | 24614,51           |  |  |  |
| 9                                          | -250,31   | 101,325           | 0,57720     | 477,61              | 23,3688        | 5342,47                            | 70680,43           |  |  |  |
| 10                                         | -217,40   | 101,325           | 0,57720     | 828,94              | 32,9462        | 2886,18                            | 69262,66           |  |  |  |
| 11                                         | -97,15    | 101,325           | 0,57720     | 2236,51             | 46,0850        | 442,11                             | 67851,95           |  |  |  |
| 12                                         | -252,78   | 101,325           | 0,37426     | 411,06              | 20,1805        | 6210,56                            | 46155,14           |  |  |  |
| f                                          | -252,78   | 101,325           | 0,17133     | 0,001913            | 0,00009282     | 11715,39                           | 22071,93           |  |  |  |
| g                                          | -252,78   | 101,325           | 0,20293     | 448,68              | 22,0276        | 5706,71                            | 24924,10           |  |  |  |
| e                                          | -195,79   | 18000             | 0,37426     | 867,35              | 12,7133        | 8855,85                            | 47145,18           |  |  |  |
| $N_{s_{1}v_{1}}$                           | -195,79   | 101,325           | 3,246       | -122,02             | 2,8342         | 741,69                             | 2491,07            |  |  |  |
| $N_{\text{gaz}}$                           | -170,79   | 101,325           | 3,246       | 104,41              | 5,7146         | 123,73                             | 485,07             |  |  |  |
| Jeotermal Akışkan                          |           |                   |             |                     |                |                                    |                    |  |  |  |
| jeo <sub>1</sub>                           | 240,00    | 600               | 180,000     | 2935,46             | 7,1399         | 845,30                             | 152154,79**        |  |  |  |
| jeo <sub>2</sub>                           | 158,86    | 600               | 180,000     | 1713,70             | 4,3458         | 442,62                             | 131313,41***       |  |  |  |
| jeo <sub>3</sub>                           | 158,86    | 600               | 180,000     | 1710,34             | 4,3380         | 441,55                             | 130982,11          |  |  |  |
| jeo <sub>4</sub>                           | 240,00    | 1300              | 1,799       | 2907,16             | 6,7406         | 934,04                             | 2622,85            |  |  |  |
| jeo5                                       | 190,00    | 1300              | 1,799       | 807,62              | 2,2358         | 155,10                             | 368,92             |  |  |  |

**Çizelge 4.20.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'nın termofiziksel özellikleri (devam)

\*ORC sisteminde toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiş, yüksek sıcaklıklı elektroliz, absorbsiyonlu soğutma ve sıvılaştırma sistemlerinde ise kimyasal ekserji dikkate alınmıştır.

\*\*jeo1 noktası için toplam ekserji akımı hesaplanırken kimyasal ekserji ihmal edilmiştir.

\*\*\*jeo2 noktası için verilen ekserji akımı toplam ekserji akımıdır. Ancak ORC sistemindeki ekserji hesaplamalarında kimyasal ekserji ihmal edilmiştir. jeo2 noktasının fiziksel ekserjisi 79672,22 kW olarak hesaplanmıştır.

| <b>Component</b> $\dot{\boldsymbol{Q}}$ (kW) $\dot{\boldsymbol{W}}$ (kW) |                | <b>W</b> (kW) | İ (kW)   | İ (%)  | $\eta_{ex,k}$ |  |  |  |  |  |
|--------------------------------------------------------------------------|----------------|---------------|----------|--------|---------------|--|--|--|--|--|
| ORC Sistemi                                                              |                |               |          |        |               |  |  |  |  |  |
| Buharlaştırıcı                                                           | 219917,31      |               | 11425,05 | 34,702 | 84,24         |  |  |  |  |  |
| Türbin                                                                   |                | 46302,56      | 6520,89  | 19,806 | 87,66         |  |  |  |  |  |
| Yoğuşturucu                                                              | 174223,46      |               | 3233,83  | 9,822  | 47,33         |  |  |  |  |  |
| Pompa                                                                    |                | 608,72        | 117,76   | 0,358  | 80,65         |  |  |  |  |  |
| Isı Eşanjörü                                                             | 42728,85       |               | 2585,50  | 7,853  | 60,68         |  |  |  |  |  |
| Yüksek Sıcaklıklı                                                        | Elektroliz Sis | temi          |          |        |               |  |  |  |  |  |
| Elektroliz Ünitesi                                                       |                | 21653,16      | 782,71   | 2,377  | 96,39         |  |  |  |  |  |
| Isı Eşanjörü (1)                                                         | 2573,32        |               | 154,80   | 0,470  | 90,65         |  |  |  |  |  |
| Isı Eşanjörü (2)                                                         | 145,35         |               | 7,82     | 0,024  | 88,78         |  |  |  |  |  |
| Isı Eşanjörü (3)                                                         | 795,54         |               | 10,42    | 0,032  | 98,23         |  |  |  |  |  |
| Isı Eşanjörü (4)                                                         | 358,15         |               | 23,92    | 0,073  | 89,14         |  |  |  |  |  |
| Isı Eşanjörü (5)                                                         | 537,59         |               | 3,86     | 0,012  | 99,06         |  |  |  |  |  |
| Isı Eşanjörü (6)                                                         | 594,23         |               | 33,78    | 0,103  | 92,28         |  |  |  |  |  |
| Giriş Eşanjörü                                                           | 3777,33        |               | 166,31   | 0,505  | 92,62         |  |  |  |  |  |
| Pompa                                                                    |                | 2,25          | 0,56     | 0,002  | 74,99         |  |  |  |  |  |
| Seperatör                                                                |                |               | 0,00     | 0,000  | 100           |  |  |  |  |  |
| Karışım Odası (1)                                                        |                |               | 185,88   | 0,565  | 92,02         |  |  |  |  |  |
| Karışım Odası (2)                                                        |                |               | 0,00     | 0,000  | 100           |  |  |  |  |  |
| Karışım Odası (3)                                                        |                |               | 4,13     | 0,013  | 99,94         |  |  |  |  |  |
| Karışım Odası (4)                                                        |                |               | 0,03     | 0,001  | 99,99         |  |  |  |  |  |
| Karışım Odası (5)                                                        |                |               | 0,04     | 0,001  | 99,99         |  |  |  |  |  |
| Kısılma Vanası (1)                                                       |                |               | 102,97   | 0,313  | 86,42         |  |  |  |  |  |
| Kısılma Vanası (2)                                                       |                |               | 67,11    | 0,204  | 93,58         |  |  |  |  |  |
| Kısılma Vanası (3)                                                       |                |               | 256,04   | 0,778  | 99,03         |  |  |  |  |  |
| Kısılma Vanası (4)                                                       |                |               | 397,97   | 1,209  | 98,44         |  |  |  |  |  |
| Kısılma Vanası (5)                                                       |                |               | 174,64   | 0,530  | 92,80         |  |  |  |  |  |
| Kısılma Vanası (6)                                                       |                |               | 703,76   | 2,138  | 96,65         |  |  |  |  |  |
| Absorbsiyonlu Soğutma Sistemi (LiBr-H2O Eriyiği için)                    |                |               |          |        |               |  |  |  |  |  |
| Kaynatıcı                                                                | 767,49         |               | 186,89   | 0,568  | 43,59         |  |  |  |  |  |
| Yoğuşturucu                                                              | 614,91         |               | 133,38   | 0,405  | 16,19         |  |  |  |  |  |
| Buharlaştırıcı                                                           | 603,90         |               | 139,42   | 0,423  | 41,19         |  |  |  |  |  |
| Absorber                                                                 | 756,48         |               | 53,13    | 0,161  | 19,19         |  |  |  |  |  |

**Çizelge 4.21.** 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'yı oluşturan komponentlerin enerji ve ekserji performansları
| Komponent                                  | <b>\dot Q</b> (kW) | <b>W</b> (kW) | İ (kW)  | İ (%) | $\eta_{ex,k}$ |
|--------------------------------------------|--------------------|---------------|---------|-------|---------------|
| Eriyik Eşanjörü                            | 115,66             |               | 15,23   | 0,046 | 14,40         |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü        | 16,78              |               | 1,41    | 0,004 | 44,24         |
| Soğutucu Akışkan<br>Eşanjörü               | 9,94               |               | 0,48    | 0,001 | 2,58          |
| Eriyik Pompası                             |                    | 0,01          | 0,01    | 0,001 | 7,25          |
| Kısılma Vanası (1)                         |                    |               | 0,05    | 0,001 | 99,58         |
| Kısılma Vanası (2)                         |                    |               | 0,00    | 0,000 | 100           |
| Ön Soğutmalı Heylandt Sıvılaştırma Sistemi |                    |               |         |       |               |
| Kompresör                                  | 3593,51            | 3645,61       | 797,32  | 2,422 | 83,34         |
| Türbin                                     |                    | 170,77        | 819,26  | 2,488 | 17,25         |
| Isı Eşanjörü (1)                           | 812,45             |               | 923,56  | 2,805 | 34,53         |
| Isı Eşanjörü (2)                           | 735,01             |               | 757,19  | 2,300 | 62,25         |
| Isı Eşanjörü (3)                           | 202,79             |               | 542,30  | 1,647 | 61,75         |
| Isı Eşanjörü (4)                           | 30,78              |               | 57,04   | 0,173 | 81,58         |
| Kısılma Vanası                             |                    |               | 1277,17 | 3,879 | 97,35         |
| Karışım Odası (1)                          |                    |               | 170,33  | 0,517 | 99,81         |
| Karışım Odası (2)                          |                    |               | 0,00    | 0,000 | 100           |
| Karışım Odası (3)                          |                    |               | 89,22   | 0,271 | 99,87         |
| Seperatör                                  |                    |               | 0,00    | 0,000 | 100           |

Çizelge 4.21. 150°C buharlaştırıcı sıcaklığında, n-Hexane için Model 6'yı oluşturan komponentlerin enerji ve ekserji performansları (devam)

#### 4.8. Modellerin Termodinamik Performanslarının Karşılaştırılması

## 4.8.1. Kullanılan Farklı Soğutucu Akışkanlar için Performans Karşılaştırması

Bu çalışma kapsamında oluşturulan modellerin termodinamik performansları 150°C buharlaştırıcı sıcaklığında farklı soğutucu akışkanlar için aşağıda değerlendirilmiştir.

Oluşturulan altı farklı modelden üretilen sıvı hidrojen miktarının değişimi Şekil 4.33'de farklı soğutucu akışkanlar için verilmiştir. Genel olarak her altı modelde de soğutucu akışkan olarak n-Hexane kullanılması durumunda elde edilen sıvı hidrojen miktarı diğer akışkanlara göre daha fazla iken, R245fa kullanılması durumunda ise üretilen sıvı hidrojen miktarı daha düşük olmaktadır. Tüm modeller birlikte ele alındığında, üretilen sıvı hidrojen miktarı açısından Model 2'nin daha performanslı ve kullanılabilir olduğu görülmektedir. Performans açısından Model 2'yi sırasıyla Model 3 ve Model 5 takip etmektedir. Bununla birlikte Model 4'ün performansı ise diğer modellere kıyasla daha düşüktür. 150°C buharlaştırıcı sıcaklığında, oluşturulan modele ve kullanılan soğutucu akışkana bağlı olarak sistemden üretilen sıvı hidrojen miktarı maksimum %25,18 artmaktadır.



Şekil 4.33. Farklı modeller için üretilen sıvı hidrojen miktarının değişimi

Oluşturulan modeller için gerekli olan elektroliz işinin değişimi Şekil 4.34'de farklı soğutucu akışkanlara bağlı olarak verilmiştir. Model 2'de üretilen hidrojen miktarının diğer modellere kıyasla daha fazla olması Model 2 için gerekli olan elektroliz işinin daha yüksek olmasına neden olmaktadır. Bununla birlikte Model 4'de üretilen sıvı hidrojen miktarına bağlı olarak, Model 4 için gerekli olan elektroliz işi diğer modellere göre daha düşüktür. 150°C buharlaştırıcı sıcaklığında, oluşturulan modele ve kullanılan soğutucu akışkana bağlı olarak gerekli olan elektroliz işi maksimum %23,18 artmaktadır.



Şekil 4.34. Farklı modeller için gerekli elektroliz işinin değişimi

Altı farklı model için gerekli olan toplam sıvılaştırma işinin değişimi Şekil 4.35'de farklı soğutucu akışkanlara bağlı olarak verilmiştir. Model 1, Model 2 ve Model 3'de NH<sub>3</sub>–H<sub>2</sub>O eriyikli ASS kullanılmış, Model 4, Model 5 ve Model 6'da ise LiBr–H<sub>2</sub>O eriyikli ASS tercih edilmiştir. Bu durumda kullanılan eriyik çiftine bağlı olarak Model 1, Model 2 ve Model 3 için ASS'de daha düşük sıcaklıklara soğutma yapılmakta ve sıvılaştırma sistemine giren hidrojen sıcaklığı diğer modellere göre daha düşük olmaktadır. Her ne kadar Model 1, Model 2 ve Model 3'de sıvılaştırılacak hidrojen miktarı daha fazla olsa da, sıvılaştırma sistemine giren hidrojen sıcaklığı diğer sıcaklığının daha düşük olması nedeniyle bu modeller için gerekli olan toplam sıvılaştırma işi genel olarak diğer modellere kıyasla daha azdır. Tüm modeller birlikte ele alındığında, toplam sıvılaştırma işi Model 4 için maksimum iken, Model 2 için minimum olmaktadır. 150°C buharlaştırıcı sıcaklığında,

oluşturulan modele ve kullanılan soğutucu akışkana bağlı olarak gerekli olan toplam sıvılaştırma işi maksimum %29,67 artmaktadır.



Şekil 4.35. Farklı modeller için toplam sıvılaştırma işinin değişimi

Çalışma kapsamında oluşturulan modeller için sıvı hidrojen üretim sistemi enerji veriminin değişimi Şekil 4.36'da, sistemin ekserji veriminin değişimi ise Şekil 4.37'de verilmiştir. Genel olarak her altı modelde de soğutucu akışkan olarak n-Hexane kullanılması durumunda sıvı hidrojen üretim sisteminin enerji ve ekserji verimi diğer akışkanlara göre maksimum iken, R245fa kullanılması durumunda ise sistemin enerji ve ekserji verimi en düşük olmaktadır.

Oluşturulan modeller birlikte ele alındığında, sıvı hidrojen üretim sisteminin enerji ve ekserji verimi açısından Model 2'nin termodinamik performansının diğer modellere kıyasla daha yüksek olduğu anlaşılmaktadır. Termodinamik performans yönünden Model 2'yi sırasıyla Model 3 ve Model 5 takip etmektedir. Bununla birlikte Model 4 enerji ve ekserji verimi açısından oluşturulan modeller arasında termodinamik performansı en düşük model olarak belirlenmiştir. 150°C buharlaştırıcı sıcaklığında, oluşturulan modele ve kullanılan soğutucu akışkana bağlı olarak sıvı hidrojen üretim sisteminin enerji verimi %9,24 ile %11,56 arasında değişirken, ekserji verimi ise %28,03 ile %35,09 arasında değişimektedir.



Şekil 4.36. Farklı modeller için sıvı hidrojen üretim sistemi enerji veriminin değişimi



Şekil 4.37. Farklı modeller için sıvı hidrojen üretim sistemi ekserji veriminin değişimi

#### 4.8.2. Farklı Buharlaştırıcı Sıcaklıkları için Performans Karşılaştırması

Oluşturulan modellerde soğutucu akışkan olarak n-Hexane kullanılması durumunda, farklı buharlaştırıcı sıcaklıkları için modellerin termodinamik performansı aşağıda değerlendirilmiştir.

Bu çalışma kapsamında oluşturulan altı farklı modelden üretilen sıvı hidrojen miktarının değişimi Şekil 4.38'de farklı buharlaştırıcı sıcaklıkları için verilmiştir. Genel olarak

buharlaştırıcı sıcaklığının yükselmesiyle, her altı modelden de elde edilen hidrojen miktarı artmaktadır. Oluşturulan modeller birlikte ele alındığında, incelenen buharlaştırıcı sıcaklık aralığı (100-150°C) için sıvı hidrojen üretimi açısından Model 2 diğer modellere kıyasla daha performanslı olmaktadır. Bununla birlikte Model 4 hidrojen üretimi açısından en düşük performansa sahip model olarak belirlenmiştir. Soğutucu akışkan olarak n-Hexane kullanılması durumunda, buharlaştırıcı sıcaklığı ve oluşturulan modele bağlı olarak üretilen sıvı hidrojen miktarı maksimum %49,01 artmaktadır.



Şekil 4.38. Farklı modeller için üretilen sıvı hidrojen miktarının buharlaştırıcı sıcaklığı ile değişimi

Buharlaştırıcı sıcaklıkları dikkate alınarak, çalışma kapsamında oluşturulan modeller için sıvı hidrojen üretim sistemi enerji veriminin değişimi Şekil 4.39'da, sistemin ekserji veriminin değişimi ise Şekil 4.40'da verilmiştir. Buharlaştırıcı sıcaklığının yükselmesi, sıvı hidrojen üretim sisteminin enerji ve ekserji verimini arttırarak sistemin termodinamik performansının yükselmesini sağlamaktadır.

Soğutucu akışkan olarak n-Hexane kullanılması durumunda, buharlaştırıcı sıcaklığı ve oluşturulan modele bağlı olarak sıvı hidrojen üretim sisteminin enerji verimi %7,76'dan %11,56'ya yükselirken, sistemin ekserji verimi ise %23,55'den %35,09'a artmaktadır.



Şekil 4.39. Farklı modeller için sıvı hidrojen üretim sistemi enerji veriminin buharlaştırıcı sıcaklığı ile değişimi



Şekil 4.40. Farklı modeller için sıvı hidrojen üretim sistemi ekserji veriminin buharlaştırıcı sıcaklığı ile değişimi

## 4.9. Eksergoekonomik Analiz Sonuçları

Önceki bölümlerde yapılan enerji ve ekserji analizleri dikkate alınarak, diğer modellere kıyasla termodinamik performansı daha yüksek olan Model 2'nin eksergoekonomik analizleri 150°C buharlaştırıcı sıcaklığı ve n-Hexane için gerçekleştirilmiş ve komponentlerin eksergoekonomik performansları bu bölümde değerlendirilmiştir.

Sıvı hidrojen üretim sistemini oluşturan komponentlerin satın alma, ilk yatırım, bakım, onarım ve işletme maliyetleri ile toplam yatırım maliyeti Çizelge 4.22'de verilmiştir. Komponentlerin satın alma maliyetleri için, Çizelge 3.2, Çizelge 3.5, Çizelge 3.7 ve Çizelge 3.9'da verilen satın alma maliyet denklemlerinden yararlanılmıştır. Bu çalışma kapsamında oluşturulan sıvı hidrojen üretim sisteminin yıllık toplam çalışma süresi 7884 saat olarak belirlenmiş ve sistemin ekonomik ömrü 25 yıl olarak kabul edilmiştir (Bejan ve ark. 1996, Balli ve ark. 2008, Abuşoğlu ve ark. 2013). Ayrıca ekonomik analizler için kullanılacak olan bileşik faiz oranı %12 olarak alınmıştır.

Sıvı hidrojen üretim sistemini oluşturan komponentler arasında elektroliz ünitesi 441,206 USD/h ile en yüksek yatırım maliyetine sahip komponent olmaktadır. Elektroliz ünitesini 290,966 USD/h yatırım maliyeti ile ORC türbini takip etmektedir. Bununla birlikte absorbsiyonlu soğutma sisteminde kullanılan eriyik pompası ise 0,021 USD/h yatırım maliyeti ile en düşük yatırım maliyetine sahip komponent olmaktadır.

| Komponent      | Satın Alma<br>Maliyeti<br>(USD) | İlk Yatırım<br>Maliyeti<br>(USD/h) | Bakım, Onarım ve<br>İşletme Maliyeti<br>(USD/h) | Toplam Yatırım<br>Maliyeti<br>(USD/h) |
|----------------|---------------------------------|------------------------------------|-------------------------------------------------|---------------------------------------|
| ORC Sistemi    |                                 |                                    |                                                 |                                       |
| Buharlaştırıcı | 897 218                         | 14,510                             | 2,902                                           | 17,412                                |
| Türbin         | 14 993 305                      | 242,472                            | 48,494                                          | 290,966                               |
| Yoğuşturucu    | 794 199                         | 12,844                             | 2,569                                           | 15,413                                |
| Pompa          | 189 125                         | 3,059                              | 0,612                                           | 3,671                                 |
| Isı Eşanjörü   | 657 535                         | 10,634                             | 2,127                                           | 12,761                                |

**Çizelge 4.22.** Sıvı hidrojen üretim sistemini oluşturan komponentlerin satın alma, ilk yatırım, bakım, onarım, işletme ve toplam yatırım maliyetleri

| Komponent                           | Satın Alma<br>Maliyeti<br>(USD) | İlk Yatırım<br>Maliyeti<br>(USD/h) | Bakım, Onarım ve<br>İşletme Maliyeti<br>(USD/h) | Toplam Yatırım<br>Maliyeti<br>(USD/h) |
|-------------------------------------|---------------------------------|------------------------------------|-------------------------------------------------|---------------------------------------|
| Yüksek Sıcaklıl                     | dı Elektroliz Si                | stemi                              |                                                 |                                       |
| Elektroliz Ünitesi                  | 22 735 079                      | 367,671                            | 73,534                                          | 441,206                               |
| Isı Eşanjörü (1)                    | 59 182                          | 0,9571                             | 0,1914                                          | 1,1485                                |
| Isı Eşanjörü (2)                    | 42 378                          | 0,6853                             | 0,1371                                          | 0,8224                                |
| Isı Eşanjörü (3)                    | 52 454                          | 0,8483                             | 0,1697                                          | 1,018                                 |
| Isı Eşanjörü (4)                    | 42 778                          | 0,6918                             | 0,1384                                          | 0,8302                                |
| Isı Eşanjörü (5)                    | 53 462                          | 0,8646                             | 0,1729                                          | 1,0375                                |
| Isı Eşanjörü (6)                    | 42 642                          | 0,6896                             | 0,1379                                          | 0,8275                                |
| Giriş Eşanjörü                      | 175 788                         | 2,8429                             | 0,5686                                          | 3,4115                                |
| Pompa                               | 2 231                           | 0,03609                            | 0,007217                                        | 0,043307                              |
| Seperatör                           | 21 557                          | 0,3486                             | 0,06972                                         | 0,41832                               |
| Karışım Odası (1)                   | 17 241                          | 0,2788                             | 0,05577                                         | 0,33457                               |
| Karışım Odası (2)                   | 29 478                          | 0,4767                             | 0,09535                                         | 0,57205                               |
| Karışım Odası (3)                   | 53 299                          | 0,862                              | 0,1724                                          | 1,0344                                |
| Karışım Odası (4)                   | 18 858                          | 0,305                              | 0,061                                           | 0,366                                 |
| Karışım Odası (5)                   | 28 713                          | 0,4643                             | 0,09287                                         | 0,55717                               |
| Kısılma Vanası (1)                  | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |
| Kısılma Vanası (2)                  | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |
| Kısılma Vanası (3)                  | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |
| Kısılma Vanası (4)                  | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |
| Kısılma Vanası (5)                  | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |
| Kısılma Vanası (6)                  | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |
| Absorbsiyonlu                       | Soğutma Sisten                  | ni (NH3-H2O Er                     | iyiği için)                                     |                                       |
| Kaynatıcı                           | 6 777                           | 0,110                              | 0,022                                           | 0,132                                 |
| Yoğuşturucu                         | 7 123                           | 0,115                              | 0,023                                           | 0,138                                 |
| Buharlaştırıcı                      | 36 238                          | 0,586                              | 0,117                                           | 0,703                                 |
| Absorber                            | 43 270                          | 0,700                              | 0,140                                           | 0,840                                 |
| Eriyik Eşanjörü                     | 75 988                          | 1,229                              | 0,246                                           | 1,475                                 |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü | 42 869                          | 0,693                              | 0,139                                           | 0,832                                 |
| Soğutucu Akışkan<br>Eşanjörü        | 42 860                          | 0,693                              | 0,139                                           | 0,832                                 |
| Eriyik Pompası                      | 1 058                           | 0,017                              | 0,003                                           | 0,021                                 |

**Çizelge 4.22.** Sıvı hidrojen üretim sistemini oluşturan komponentlerin satın alma, ilk yatırım, bakım, onarım, işletme ve toplam yatırım maliyetleri (devam)

| Komponent                                | Satın Alma<br>Maliyeti<br>(USD) | İlk Yatırım<br>Maliyeti<br>(USD/h) | Bakım, Onarım ve<br>İşletme Maliyeti<br>(USD/h) | Toplam Yatırım<br>Maliyeti<br>(USD/h) |  |  |
|------------------------------------------|---------------------------------|------------------------------------|-------------------------------------------------|---------------------------------------|--|--|
| Kısılma Vanası (1)                       | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |  |  |
| Kısılma Vanası (2)                       | 2 500                           | 0,040                              | 0,008                                           | 0,049                                 |  |  |
| Ön Soğutmalı Claude Sıvılaştırma Sistemi |                                 |                                    |                                                 |                                       |  |  |
| Kompresör                                | 1 286 383                       | 20,803                             | 4,161                                           | 24,964                                |  |  |
| Türbin                                   | 184 488                         | 2,984                              | 0,597                                           | 3,581                                 |  |  |
| Isı Eşanjörü (1)                         | 47 178                          | 0,763                              | 0,153                                           | 0,916                                 |  |  |
| Isı Eşanjörü (2)                         | 58 035                          | 0,939                              | 0,188                                           | 1,126                                 |  |  |
| Isı Eşanjörü (3)                         | 45 481                          | 0,736                              | 0,147                                           | 0,883                                 |  |  |
| Isı Eşanjörü (4)                         | 49 242                          | 0,796                              | 0,159                                           | 0,956                                 |  |  |
| Isı Eşanjörü (5)                         | 43 015                          | 0,696                              | 0,139                                           | 0,835                                 |  |  |
| Kısılma Vanası                           | 7 500                           | 0,121                              | 0,024                                           | 0,146                                 |  |  |
| Karışım Odası (1)                        | 80 879                          | 1,308                              | 0,262                                           | 1,570                                 |  |  |
| Karışım Odası (2)                        | 9 602                           | 0,155                              | 0,031                                           | 0,186                                 |  |  |
| Karışım Odası (3)                        | 31 568                          | 0,511                              | 0,102                                           | 0,613                                 |  |  |
| Seperatör                                | 15 850                          | 0,256                              | 0,051                                           | 0,308                                 |  |  |

**Çizelge 4.22.** Sıvı hidrojen üretim sistemini oluşturan komponentlerin satın alma, ilk yatırım, bakım, onarım, işletme ve toplam yatırım maliyetleri (devam)

Model 2'de kullanılan ön soğutmalı Claude sıvılaştırma sistemindeki ön soğutma işlemi için 4 826 793 USD toplam satın alma maliyeti hesaplanmıştır. Model 2 için oluşturulan sıvı hidrojen üretim sisteminin toplam maliyetleri Çizelge 4.23'de verilmiştir.

Çizelge 4.23. Model 2 için oluşturulan sıvı hidrojen üretim sisteminin toplam maliyetleri

| Ön soğutma Sistemi Toplam Satın Alma Maliyeti  | 4 826 793 USD  |
|------------------------------------------------|----------------|
| Tüm Sistemin Satın Alma Maliyeti               | 47 868 737 USD |
| Tüm Sistemin Bakım, Onarım ve İşletme Maliyeti | 9 573 747 USD  |
| Tüm Sistemin Toplam Maliyeti                   | 57 442 484 USD |

Model 2'yi oluşturan noktalardaki ekserji akımı, birim ekserji ve ekserji maliyetleri Çizelge 4.24'de verilmiştir. Çizelge 4.24 incelendiğinde, birim ekserji maliyeti en yüksek olan noktanın 21,307 USD/GJ ile sıvılaştırma sisteminde ön soğutma amacıyla kullanılan (2) numaralı eşanjörün azot girişi/çıkışı olduğu belirlenmiştir. Isı eşanjörünü 16,273 USD/GJ ile ASS'deki kaynatıcı girişi (11) takip etmektedir. Birim ekserji maliyeti sıfır olan çevre şartlarındaki su dışında, en düşük birim ekserji maliyetine sahip nokta ise elektroliz sistemindeki pompa çıkışı (23) olarak tespit edilmiştir.

Çalışma kapsamında jeotermal akışkanın birim ekserji maliyeti 1,373 USD/GJ (Kordlar ve Mahmoudi 2017, Yilmaz 2018) olarak kabul edilmiş ve şebekeden satın alınan elektriğin güncel birim fiyatı dikkate alınarak elektrik birim ekserji maliyeti ise 22,375 USD/GJ olarak belirlenmiştir. Elektroliz ve absorbsiyonlu soğutma sisteminde kullanılan pompalarda gerekli olan elektrik şebekeden sağlanmıştır. Bu çalışma kapsamında Model 2 için ORC sisteminde üretilen elektriğin birim ekserji maliyeti 3,899 USD/GJ olarak hesaplanmıştır.

Elektroliz sistemine çevre şartlarında ve sıfır birim ekserji maliyetiyle giren elektroliz suyu sistemde ayrıştıktan sonra hidrojen 9,528 USD/GJ birim ekserji maliyetiyle sistemi terk etmektedir. Elektroliz sistemine giren ve çıkan akışkan arasındaki birim ekserji maliyet farkının yüksek olmasının temel nedeni ise elektroliz sisteminin yüksek yatırım maliyetine sahip olmasıdır.

Absorbsiyonlu soğutma sistemi yardımıyla soğutulduktan sonra 9,860 USD/GJ birim ekserji maliyetiyle ön soğutmalı Claude sıvılaştırma sistemine giren gaz fazındaki hidrojen, sıvılaştırma sistemini 11,277 USD/GJ birim ekserji maliyetiyle sıvı fazda terk etmektedir. Ön soğutmalı Claude sıvılaştırma sistemindeki türbinden elde edilen elektriğin birim ekserji maliyeti 70,912 USD/GJ olarak hesaplanmıştır. Elde edilen bu maliyet, şebekeden satın alınan elektrik birim ekserji maliyetinin yaklaşık üç katıdır. Bu nedenle ön soğutmalı Claude sıvılaştırma sisteminin elektrik üretimi amacıyla kullanımı ekserji maliyeti açısından uygun olmamaktadır.

Model 2 için sıvı hidrojen üretim sistemi değerlendirildiğinde, 1,373 USD/GJ birim ekserji maliyetine sahip jeotermal akışkandan yararlanılarak 11,277 USD/GJ birim ekserji maliyetine sahip sıvı hidrojen elde edilmiştir.

| Nokta           | <b>Ė</b> (kW)        | c (USD/GJ) | <b>Ċ</b> (USD/h) |
|-----------------|----------------------|------------|------------------|
| ORC Sis         | temi                 |            |                  |
| 1               | 65662,86             | 1,888      | 446,297          |
| 2               | 12839,40             | 1,888      | 87,267           |
| 2a              | 6264,02              | 1,888      | 42,575           |
| 3               | 124,49               | 1,888      | 0,846            |
| 4               | 615,45               | 5,895      | 13,061           |
| 4a              | 4605,33              | 4,252      | 70,495           |
| ss <sub>1</sub> | 0,00                 | 0,000      | 0,000            |
| ss <sub>2</sub> | 2905,70              | 5,462      | 57,135           |
| jeo1            | 152154,79            | 1,373      | 752,071          |
| jeo2*           | 79672,22             | 1,373      | 393,804          |
| Türbin          | 46302,56             | 3,899      | 649,921          |
| Pompa           | 608,72               | 3,899      | 8,544            |
| Yüksek S        | Sıcaklıklı Elektroli | z Sistemi  |                  |
| 1               | 3103,10              | 6,223      | 69,518           |
| 2               | 4589,73              | 7,674      | 126,798          |
| 3               | 5171,65              | 7,939      | 147,808          |
| 4               | 5587,27              | 8,097      | 162,864          |
| 5               | 1128,40              | 6,223      | 25,279           |
| 6               | 1206,01              | 6,845      | 29,718           |
| 7               | 1431,84              | 7,661      | 39,490           |
| 8               | 1829,97              | 8,279      | 54,541           |
| 9               | 7414,46              | 8,184      | 218,448          |
| 10              | 27730,65             | 9,281      | 926,525          |
| 11              | 27310,96             | 9,281      | 912,503          |
| 11a             | 27054,73             | 9,370      | 912,610          |
| 12              | 27054,70             | 9,373      | 912,901          |
| 13              | 26462,14             | 9,373      | 892,907          |
| 13a             | 26064,00             | 9,517      | 892,984          |
| 14              | 26063,96             | 9,523      | 893,545          |
| 15              | 24426,61             | 9,523      | 837.413          |
| 16              | 1562,92              | 9,281      | 52,220           |
| 17              | 1137,18              | 9,281      | 37,995           |
| 18              | 1066,51              | 9,909      | 38,045           |

Çizelge 4.24. Model 2'yi oluşturan noktalardaki ekserji akımı, birim ekserji ve ekserji maliyetleri

| Nokta                                                | $\dot{E}$ (kW) $c$ (USD/GJ) |         | <b>Ċ</b> (USD/h) |  |
|------------------------------------------------------|-----------------------------|---------|------------------|--|
| 19                                                   | 815,95                      | 9,909   | 29,107           |  |
| 20                                                   | 707,46                      | 11,448  | 29,156           |  |
| 21                                                   | 619,64                      | 11,448  | 25,537           |  |
| 22                                                   | 80,58                       | 0,000   | 0,000            |  |
| 23                                                   | 82,35                       | 0,789   | 0,234            |  |
| 24                                                   | 2048,11                     | 10,700  | 78,893           |  |
| 25                                                   | 4231,50                     | 6,185   | 94,219           |  |
| 26                                                   | 2282,18                     | 9,528   | 78,281           |  |
| 27                                                   | 2117,54                     | 10,280  | 78,366           |  |
| $H_1$                                                | 22144,43                    | 9,528   | 759,572          |  |
| jeo <sub>4</sub>                                     | 2805,41                     | 1,373   | 13,867           |  |
| jeo5                                                 | 394,60                      | 1,373   | 1,950            |  |
| Elektroliz<br>Ünitesi                                | 22735,08                    | 3,899   | 319,119          |  |
| Pompa                                                | 2,37                        | 22,375  | 0,191            |  |
| Absorbsiyonlu Soğutma Sistemi (NH3-H2O Eriyiği için) |                             |         |                  |  |
| 1                                                    | 11771,18                    | 16,013  | 678,571          |  |
| 2                                                    | 11759,30                    | 16,013  | 677,886          |  |
| 3                                                    | 11550,78                    | 16,013  | 665,865          |  |
| 4                                                    | 11550,20                    | 16,013  | 665,832          |  |
| 5                                                    | 11547,41                    | 16,018  | 665,879          |  |
| 6                                                    | 11633,11                    | 16,131  | 675,553          |  |
| 7                                                    | 11629,95                    | 16,145  | 675,956          |  |
| 8                                                    | 60521,04                    | 16,2387 | 3538,019         |  |
| 9                                                    | 60526,40                    | 16,24   | 3538,616         |  |
| 10                                                   | 60532,66                    | 16,242  | 3539,417         |  |
| 11                                                   | 60673,13                    | 16,273  | 3554,402         |  |
| 12                                                   | 49212,68                    | 16,258  | 2880,359         |  |
| 13                                                   | 48999,81                    | 16,258  | 2867,900         |  |
| 14                                                   | 48999,81                    | 16,2583 | 2867,953         |  |
| H <sub>2</sub>                                       | 21403,25                    | 9,860   | 759,730          |  |
| H <sub>3</sub>                                       | 21150,69                    | 9,860   | 750,765          |  |
| <b>SS</b> 3                                          | 316,02                      | 0,000   | 0,000            |  |
| <b>SS</b> 4                                          | 344,83                      | 9,795   | 12,159           |  |

Çizelge 4.24. Model 2'yi oluşturan noktalardaki ekserji akımı, birim ekserji ve ekserji maliyetleri (devam)

| Nokta                                    | c (USD/GJ) <b>c</b> (USD/GJ) |        | <b>Ċ</b> (USD/h) |  |  |
|------------------------------------------|------------------------------|--------|------------------|--|--|
| <b>SS</b> 5                              | 1974,36                      | 0,000  | 0,000            |  |  |
| SS <sub>6</sub>                          | 2001,93                      | 0,9984 | 7,195            |  |  |
| jeo2*                                    | 131313,41                    | 1,373  | 649,056          |  |  |
| jeo3                                     | 130404,98                    | 1,373  | 644,566          |  |  |
| Pompa                                    | 10,32                        | 22,375 | 0,831            |  |  |
| Ön Soğutmalı Claude Sıvılaştırma Sistemi |                              |        |                  |  |  |
| 1                                        | 84418,59                     | 10,818 | 3287,665         |  |  |
| 2                                        | 88002,81                     | 10,579 | 3351,534         |  |  |
| 3                                        | 88395,28                     | 10,661 | 3392,576         |  |  |
| 4                                        | 89580,96                     | 10,996 | 3546,116         |  |  |
| 5                                        | 89794,70                     | 11,003 | 3556,840         |  |  |
| 5a                                       | 44897,35                     | 11,004 | 1778,582         |  |  |
| 6                                        | 45698,67                     | 11,087 | 1823,980         |  |  |
| 7                                        | 45942,69                     | 11,117 | 1838,682         |  |  |
| 8                                        | 45300,80                     | 11,275 | 1838,760         |  |  |
| 9                                        | 21706,42                     | 11,277 | 881,220          |  |  |
| 10                                       | 44137,73                     | 11,004 | 1748,490         |  |  |
| 11                                       | 65774,55                     | 11,108 | 2630,245         |  |  |
| 12                                       | 64663,26                     | 11,108 | 2585,806         |  |  |
| 13                                       | 64412,70                     | 11,108 | 2575,786         |  |  |
| 14                                       | 63402,96                     | 11,108 | 2535,408         |  |  |
| e                                        | 44897,35                     | 11,004 | 1778,582         |  |  |
| f                                        | 23251,99                     | 11,277 | 943,966          |  |  |
| g                                        | 22048,82                     | 11,277 | 895,120          |  |  |
| $N_{s_1v_1}$                             | 2463,26                      | 21,307 | 188,945          |  |  |
| N <sub>gaz</sub>                         | 479,65                       | 21,307 | 36,792           |  |  |
| Kompresör                                | 2753,59                      | 3,899  | 38,650           |  |  |
| Türbin                                   | 131,53                       | 70,912 | 33,578           |  |  |

Çizelge 4.24. Model 2'yi oluşturan noktalardaki ekserji akımı, birim ekserji ve ekserji maliyetleri (devam)

\*ORC sisteminde kimyasal ekserji ihmal edildiği için bu sistemde verilen jeo2 noktasının ekserji akımını fiziksel ekserji oluşturmaktadır. Ancak diğer sistemlerde kimyasal ekserji dikkate alındığı için absorbsiyonlu soğutma sisteminde verilen jeo2 noktasının ekserji akımını fiziksel ve kimyasal ekserji oluşturmaktadır.

Model 2 için sıvı hidrojen üretim sistemini oluşturan komponentlerin ekserjiye bağlı yakıt ve ürün maliyetleri, ekserji yıkımları ve ekserji yıkım maliyetleri, bağıl maliyet farkları

ve eksergoekonomik faktörleri Çizelge 4.25'de verilmiştir. Çalışma kapsamında, sıvı hidrojen üretim sisteminde ekserji yıkım maliyeti en yüksek olan komponentin 61,206 USD/h maliyet ile Claude sıvılaştırma sistemindeki (2) numaralı eşanjör olduğu belirlenmiştir. Isı eşanjörünü sırasıyla 56,472 USD/h ve 44,321 USD/h ekserji yıkım maliyetleri ile ORC sistemindeki buharlaştırıcı ve türbin takip etmektedir.

Eksergoekonomik performans parametreleri dikkate alındığında, sıvı hidrojen üretim sisteminde bağıl maliyet farkı en yüksek olan komponentin %632,07 ile ASS'de kullanılan yoğuşturucu olduğu belirlenmiştir. Yoğuşturucuyu sırasıyla %544,42 ve %381,71 bağıl maliyet farkları ile sıvılaştırma sistemindeki türbin ve ASS'deki absorber takip etmektedir. Bu komponentlerin bağıl maliyet farklarının düşürülmesi için komponentlerin termodinamik performansları iyileştirilmeli ve yatırım maliyetleri azaltılmalıdır.

Çalışma kapsamında Model 2 için, yüksek sıcaklıklı elektroliz sisteminde kullanılan seperatörün, (2) numaralı karışım odasının, ASS'de kullanılan (2) numaralı kısılma vanasının, sıvılaştırma sisteminde kullanılan seperatör ve (2) numaralı karışım odasının eksergoekonomik faktörü %100 olarak belirlenmiştir. Bu komponentleri sırasıyla %99,77, %99,70 ve %97,35 eksergoekonomik faktör ile elektroliz sistemindeki (5) ve (4) numaralı karışım odaları ve elektroliz ünitesi takip etmektedir. Yüksek eksergoekonomik faktöre sahip bu komponentlerdeki ekserji yıkım maliyeti yatırım maliyetine oranla çok düşüktür veya hiç yoktur. Bu komponentlerin yatırım maliyetleri düşürülerek toplam yatırım maliyetinden tasarruf edilmesi söz konusudur.

Bununla birlikte, sıvı hidrojen üretim sistemini oluşturan komponentlerden genel olarak elektroliz sistemindeki kısılma vanalarının eksergoekonomik faktörü düşüktür. Bu komponentler dışında, %1,32 ile ASS'deki yoğuşturucu, %1,81 ile sıvılaştırma sistemindeki (2) numaralı eşanjör ve %3,58 ile sıvılaştırma sistemindeki (1) numaralı eşanjör eksergoekonomik faktörü düşük olan diğer komponentlerdir. Bu komponentlerin ekserji verimi açısından termodinamik performansı iyileştirilmeli veya bu durum söz konusu değilse bu komponentler yerine daha düşük maliyetli komponentler tercih edilmelidir.

Eksergoekonomik analizler kapsamında bağıl maliyet farkı ve eksergoekonomik faktör birlikte ele alındığında, öncelikli olarak ASS'de kullanılan yoğuşturucu ve absorberin, sıvılaştırma sisteminde kullanılan türbinin termodinamik performansının iyileştirilmesi, elektroliz sistemindeki elektroliz ünitesinin ise yatırım maliyetinin azaltılması önerilmektedir.

| Komponent          | с <sub>F</sub><br>(USD/GJ) | с <sub>р</sub><br>(USD/GJ) | İ<br>(kW) | Ċ <sub>D</sub><br>(USD/h) | r<br>(%) | f<br>(%) |
|--------------------|----------------------------|----------------------------|-----------|---------------------------|----------|----------|
| ORC Sistemi        |                            |                            |           |                           |          |          |
| Buharlaştırıcı     | 1,373                      | 1,710                      | 11425,05  | 56,472                    | 24,52    | 23,57    |
| Türbin             | 1,888                      | 3,899                      | 6520,89   | 44,321                    | 106,52   | 86,78    |
| Yoğuşturucu        | 1,888                      | 5,462                      | 3233,83   | 21,980                    | 189,30   | 41,22    |
| Pompa              | 3,899                      | 6,911                      | 117,76    | 1,653                     | 77,25    | 68,95    |
| Isı Eşanjörü       | 1,888                      | 3,999                      | 2585,50   | 17,573                    | 111,79   | 42,07    |
| Yüksek Sıcaklık    | lı Elektroliz              | Sistemi                    |           |                           |          |          |
| Elektroliz Ünitesi | 3,899                      | 9,653                      | 855,97    | 12,015                    | 147,57   | 97,35    |
| Isı Eşanjörü (1)   | 9,523                      | 10,703                     | 150,72    | 5,167                     | 12,39    | 18,19    |
| Isı Eşanjörü (2)   | 11,448                     | 15,889                     | 10,21     | 0,421                     | 38,79    | 66,14    |
| Isı Eşanjörü (3)   | 9,373                      | 10,029                     | 10,64     | 0,359                     | 7,00     | 73,93    |
| Isı Eşanjörü (4)   | 9,909                      | 12,019                     | 24,72     | 0,882                     | 21,29    | 48,49    |
| Isı Eşanjörü (5)   | 9,281                      | 10,063                     | 4,07      | 0,136                     | 8,43     | 88,41    |
| Isı Eşanjörü (6)   | 9,281                      | 10,502                     | 27,61     | 0,922                     | 13,15    | 47,29    |
| Giriş Eşanjörü     | 1,373                      | 1,950                      | 227,41    | 1,124                     | 42,01    | 75,22    |
| Pompa              | 22,375                     | 36,615                     | 0,59      | 0,048                     | 63,64    | 47,59    |
| Seperatör          | 9,523                      | 9,528                      | 0,00      | 0,000                     | 0,05     | 100,00   |
| Karışım Odası (1)  | 9,925                      | 10,700                     | 151,79    | 5,423                     | 7,81     | 5,81     |
| Karışım Odası (2)  | 6,185                      | 6,223                      | 0,00      | 0,000                     | 0,61     | 100,00   |
| Karışım Odası (3)  | 8,142                      | 8,184                      | 2,78      | 0,082                     | 0,52     | 92,69    |
| Karışım Odası (4)  | 9,370                      | 9,373                      | 0,03      | 0,001                     | 0,03     | 99,70    |
| Karışım Odası (5)  | 9,517                      | 9,523                      | 0,04      | 0,001                     | 0,06     | 99,77    |
| Kısılma Vanası (1) | 9,909                      | 11,448                     | 108,50    | 3,870                     | 15,53    | 1,24     |
| Kısılma Vanası (2) | 9,281                      | 9,909                      | 70,67     | 2,361                     | 6,77     | 2,01     |
| Kısılma Vanası (3) | 9,281                      | 9,370                      | 256,22    | 8,561                     | 0,96     | 0,56     |
| Kısılma Vanası (4) | 9,373                      | 9,517                      | 398,15    | 1,435                     | 1,54     | 0,36     |
| Kısılma Vanası (5) | 9,528                      | 10,280                     | 164,64    | 5,647                     | 7,89     | 0,85     |

| Çizelg | ge 4.25. Model 2' | yi olu | şturan kom | ponentler i | çin ekser | goekonomik | analiz sonu | çları |
|--------|-------------------|--------|------------|-------------|-----------|------------|-------------|-------|
|--------|-------------------|--------|------------|-------------|-----------|------------|-------------|-------|

| Komponent                                            | <b>c</b> <sub>F</sub><br>(USD/GJ)        | с <sub>р</sub><br>(USD/GJ) | İ<br>(kW) | <b>Ċ</b> <sub>D</sub><br>(USD/h) | r<br>(%) | f<br>(%) |
|------------------------------------------------------|------------------------------------------|----------------------------|-----------|----------------------------------|----------|----------|
| Kısılma Vanası (6)                                   | 9,528                                    | 9,860                      | 741,18    | 25,423                           | 3,48     | 0,19     |
| Absorbsiyonlu Soğutma Sistemi (NH3-H2O Eriyiği için) |                                          |                            |           |                                  |          |          |
| Kaynatıcı                                            | 1,373                                    | 4,048                      | 597,70    | 2,954                            | 194,84   | 4,26     |
| Yoğuşturucu                                          | 16,013                                   | 117,226                    | 179,71    | 10,360                           | 632,07   | 1,32     |
| Buharlaştırıcı                                       | 9,860                                    | 31,357                     | 166,86    | 5,923                            | 218,02   | 10,61    |
| Absorber                                             | 15,049                                   | 72,494                     | 81,15     | 4,397                            | 381,71   | 16,04    |
| Eriyik Eşanjörü                                      | 16,258                                   | 16,337                     | 72,41     | 4,238                            | 0,49     | 25,82    |
| Eriyik-Soğutucu<br>Akışkan Eşanjörü                  | 16,013                                   | 30,899                     | 6,51      | 0,375                            | 92,97    | 68,92    |
| Soğutucu Akışkan<br>Eşanjörü                         | 16,013                                   | 35,394                     | 3,74      | 0,216                            | 121,03   | 79,42    |
| Eriyik Pompası                                       | 22,375                                   | 35,576                     | 4,05      | 0,327                            | 59,00    | 5,92     |
| Kısılma Vanası (1)                                   | 16,013                                   | 16,018                     | 2,79      | 0,161                            | 0,03     | 23,16    |
| Kısılma Vanası (2)                                   | 16,240                                   | 16,242                     | 0,00      | 0,000                            | 0,01     | 100,00   |
| Ön Soğutmalı C                                       | Ön Soğutmalı Claude Sıvılaştırma Sistemi |                            |           |                                  |          |          |
| Kompresör                                            | 3,899                                    | 4,950                      | 631,97    | 8,871                            | 26,95    | 73,78    |
| Türbin                                               | 11,004                                   | 70,912                     | 628,09    | 24,881                           | 544,42   | 12,58    |
| Isı Eşanjörü (1)                                     | 11,108                                   | 29,048                     | 617,27    | 24,684                           | 161,50   | 3,58     |
| Isı Eşanjörü (2)                                     | 21,307                                   | 35,971                     | 797,94    | 61,206                           | 68,82    | 1,81     |
| Isı Eşanjörü (3)                                     | 11,108                                   | 13,937                     | 36,83     | 1,473                            | 25,47    | 37,47    |
| Isı Eşanjörü (4)                                     | 11,108                                   | 15,737                     | 309,97    | 12,395                           | 41,68    | 7,16     |
| Isı Eşanjörü (5)                                     | 11,277                                   | 16,735                     | 98,38     | 3,994                            | 48,40    | 17,29    |
| Kısılma Vanası                                       | 11,117                                   | 11,275                     | 641,88    | 25,689                           | 1,42     | 0,56     |
| Karışım Odası (1)                                    | 10,796                                   | 10,818                     | 135,05    | 5,249                            | 0,21     | 23,02    |
| Karışım Odası (2)                                    | 11,003                                   | 11,004                     | 0,00      | 0,000                            | 0,01     | 100,00   |
| Karışım Odası (3)                                    | 11,094                                   | 11,108                     | 69,60     | 2,780                            | 0,13     | 18,06    |
| Seperatör                                            | 11,275                                   | 11,277                     | 0,00      | 0,000                            | 0,02     | 100,00   |

Ç**izelge 4.25.** Model 2'yi oluşturan komponentler için eksergoekonomik analiz sonuçları (devam)

## 5. SONUÇ

Bu tez çalışmasında, sıvı hidrojen üretimi için geliştirilen jeotermal enerji kaynaklı ve alt modül olarak sırasıyla ORC sistemi, yüksek sıcaklıklı elektroliz sistemi, absorbsiyonlu soğutma sistemi ve hidrojen sıvılaştırma sisteminden oluşan kapsamlı bir sistem modellenmiş, modellenen sistemin termodinamik optimizasyonu ve eksergoekonomik analizleri gerçekleştirilmiştir. Ayrıca, sıvı hidrojen üretimi için modellenen sistemin termodinamik performansı ORC sistemlerinde kullanılan farklı soğutucu akışkanlar (R123, R245fa, R601, n-Hexane) için farklı buharlaştırıcı sıcaklıklarında (100°C-150°C) incelenmiştir.

Sistemin alt modüllerinden absorbsiyonlu soğutma sisteminde kullanılan eriyik çiftinin (NH<sub>3</sub>-H<sub>2</sub>O, LiBr-H<sub>2</sub>O) sistem performansına ve üretilen hidrojen miktarına olan etkisi araştırılmıştır. Hidrojen sıvılaştırma sistemleri olarak ise ön soğutmalı Linde-Hampson çevrimi, ön soğutmalı Claude çevrimi ve ön soğutmalı Heylandt çevriminin performansı değerlendirilmiştir. Bu kapsamda incelenen sıvılaştırma çevrimleri ve absorbsiyonlu soğutma sisteminde kullanılan eriyik çiftleri dikkate alınarak hidrojen üretim sistemi için altı farklı model oluşturulmuştur. Oluşturulan altı farklı modelin enerji ve ekserji analizleri gerçekleştirilmiş, termodinamik performansları karşılaştırılmıştır. Elde edilen enerji ve ekserji analizleri sonucunda optimum çalışma şartları ve modeli belirlenmiştir. Son olarak belirlenen optimum çalışma şartları için eksergoekonomik analizler gerçekleştirilmiş ve modellenen sistemi oluşturan komponentlerin eksergoekonomik performansları değerlendirilmiştir. Tez çalışması kapsamında elde edilen sonuçlar aşağıda sunulmuştur:

 ORC sisteminde kullanılan buharlaştırıcının çalışma sıcaklığındaki artışa bağlı olarak türbinde üretilen elektrik işi artmış ve bağlı olarak sistemin hidrojen üretim performansı yükselmiştir. Sabit çalışma şartlarında kullanılan soğutucu akışkana bağlı olarak, buharlaştırıcı sıcaklığının 100°C'den 150°C'ye yükselmesiyle türbinden elde edilen elektrik işi maksimum %44,48 oranında artarken, tüm sistemden elde edilen sıvı hidrojen miktarı ise modele ve soğutucu akışkana bağlı olarak maksimum %49,01 oranında artmıştır.

- ORC sisteminde soğutucu akışkan olarak n-Hexane kullanılması durumunda sistemin termodinamik performansının ve hidrojen üretim miktarının daha yüksek olduğu belirlenmiştir. Bununla birlikte soğutucu akışkan olarak R245fa tercih edilmesi durumunda ise sistemin performansının diğer akışkanlara oranla daha düşük olduğu tespit edilmiştir.
- Sabit çalışma şartlarında, soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak ORC sisteminin ısıl verimi %13,83 ile %20,78 arasında değişirken, ekserji verimi ise %41,96 ile %63,04 arasında değişmiştir.
- Tüm modeller birlikte ele alındığında, Model 2'nin termodinamik performansının diğer modellere kıyasla daha yüksek olduğu ve hidrojen üretim miktarı açısından ise daha kullanılabilir olduğu belirlenmiştir. Sabit çalışma şartlarında, soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak Model 2'de üretilen hidrojen miktarı maksimum 0,18049 kg/s olarak hesaplanmıştır. Yapılan analizler sonucunda Model 2'nin enerji ve ekserji verimi sırasıyla maksimum %11,56 ve %35,09 olarak belirlenmiştir.
- Model 2'yi performans açısından Model 3 ve Model 5 takip etmiştir. Bu modellerde üretilen maksimum hidrojen miktarı ise sırasıyla 0,17878 kg/s ve 0,17347 kg/s olarak hesaplanmıştır.
- Oluşturulan modeller arasında, Model 4'ün termodinamik performansının diğer modellere kıyasla daha düşük olduğu belirlenmiştir. Sabit çalışma şartlarında, soğutucu akışkan ve buharlaştırıcı sıcaklığına bağlı olarak Model 4'de üretilen hidrojen miktarı maksimum 0,15779 kg/s olarak hesaplanmıştır. Model 4'ün enerji ve ekserji verimi ise sırasıyla maksimum %10,11 ve %30,67 olarak tespit edilmiştir.
- Ön soğutmalı Claude çevriminin incelenen diğer sıvılaştırma çevrimlerine kıyasla termodinamik performansının daha yüksek olduğu belirlenmiştir. Hidrojen üretim performansı dikkate alındığında, bu çevrimi sırasıyla ön soğutmalı Heylandt çevrimi ve ön soğutmalı Linde-Hampson çevrimi takip etmiştir.
- Absorbsiyonlu soğutma sisteminde kullanılan eriyik çiftleri incelendiğinde, LiBr-H<sub>2</sub>O eriyiğine kıyasla hidrojen gazının daha düşük sıcaklıklara soğutulmasını sağlayan NH<sub>3</sub>-H<sub>2</sub>O eriyiğinin sistemin termodinamik performansına katkısının daha fazla olduğu tespit edilmiştir.

- Yapılan enerji ve ekserji analizleri dikkate alınarak, 150°C buharlaştırıcı sıcaklığı ve n-Hexane için Model 2'nin eksergoekonomik analizleri gerçekleştirilmiştir. Bu çalışma şartlarında, sıvı hidrojen üretimi için modellenen sistemin toplam satın alma maliyeti 57 442 484 USD olarak belirlenmiştir.
- Sıvı hidrojen üretim sistemini oluşturan komponentler arasında elektroliz ünitesi 441,206 USD/h ile en yüksek yatırım maliyetine sahip komponent olmuştur. Elektroliz ünitesini 290,966 USD/h yatırım maliyeti ile ORC türbini takip etmektedir.
- Model 2 için belirlenen çalışma şartları altında, 1,373 USD/GJ birim ekserji maliyetine sahip jeotermal akışkandan yararlanılarak 11,277 USD/GJ birim ekserji maliyetine sahip sıvı hidrojen elde edilmiştir.
- Sıvı hidrojen üretim sisteminde ekserji yıkım maliyeti en yüksek olan komponentin 61,206 USD/h maliyet ile Claude sıvılaştırma sistemindeki (2) numaralı eşanjör olduğu belirlenmiştir. Isı eşanjörünü sırasıyla 56,472 USD/h ve 44,321 USD/h ekserji yıkım maliyetleri ile ORC sistemindeki buharlaştırıcı ve türbin takip etmektedir.
- Yapılan eksergoekonomik analizler sonucunda, bağıl maliyet farkı ve eksergoekonomik faktör birlikte ele alındığında, öncelikli olarak absorbsiyonlu soğutma sisteminde kullanılan yoğuşturucu ve absorberin, sıvılaştırma sisteminde kullanılan türbinin termodinamik performansının iyileştirilmesi, elektroliz sistemindeki elektroliz ünitesinin ise yatırım maliyetinin düşürülmesi önerilmiştir.

#### KAYNAKLAR

**Abed, A.M., Alghoul, M.A., Sirawn, R., Al-Shamani, A.N., Sopian, K. 2015.** Performance enhancement of ejector-absorption cooling cycle by re-arrangement of solution streamlines and adding RHE. *Applied Thermal Engineering*, 77: 65-75.

Abuşoğlu, A., Demir, S., Kanoğlu, M. 2013. Biyogaz beslemeli gaz motorlu bir kojenerasyon sisteminin termoekonomik analizi. *Isı Bilimi ve Tekniği Dergisi*, 33: 9-21.

Ahmadi, M.H., Mehrpooya, M., Pourfayaz, F. 2016. Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal Energy with liquefied natural gas as its heat sink. *Energy Conversion and Management*, 119: 422-434.

Akrami, E., Chitsaz, A., Nami, H., Mahmoudi, S.M.S. 2017. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. *Energy*, 124: 625-639.

Aljundi, I.H. 2011. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle. *Renewable Energy*, 36: 1196-1202.

Aman, J., Ting, D.S.K., Henshaw, P. 2014. Residential solar air conditioning: Energy and exergy analyses of an ammonia-water absorption cooling system. *Applied Thermal Engineering*, 62: 424-432.

Aneke, M., Agnew, B., Underwood, C., Menkiti, M. 2012. Thermodynamic analysis of alternative refrigeration cycles driven from waste heat in a food processing application. *International Journal of Refrigeration*, 35: 1349-1358.

Ansarinasab, H., Mehrpooya, M., Sadeghzadeh, M. 2019. An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses. *Journal of Cleaner Production*, 210: 530-541.

**Bademlioglu, A.H., Canbolat, A.S., Yamankaradeniz, N., Kaynakli, O. 2018.** Investigation of parameters affecting Organic Rankine Cycle efficiency by using Taguchi and ANOVA methods. *Applied Thermal Engineering*, 145: 221-228.

**Bademlioglu, A.H., Yamankaradeniz, R., Kaynakli, O. 2019a.** Exergy analysis of the Organic Rankine Cycle based on the pinch point temperature difference. *Journal of Thermal Engineering*, 5: 157-165.

**Bademlioglu, A.H., Canbolat, A.S., Yamankaradeniz, N., Kaynakli, O. 2019b.** A Parametric Analysis of the Performance of Organic Rankine Cycle with Heat Recovery Exchanger and Its Statistical Evaluation. *Journal of Thermal Science and Technology*, 39(2): 121-135.

**Bademlioglu, A.H., Canbolat, A.S., Kaynakli, O. 2020.** Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis. *Renewable and Sustainable Energy Reviews*, 117: 109483.

**Balli, O., Aras, H., Hepbasli, A. 2008.** Exergoeconomic analysis of a combined heat and power (CHP) system. *International Journal of Energy Research*, 32: 273-289.

**Balta, M.T., Dincer, I., Hepbasli, A. 2009.** Thermodynamic assessment of geothermal energy use in hydrogen production. *International Journal of Hydrogen Energy*, 34: 2925-2939.

Balta, M.T., Kizilkan, O., Yilmaz, F. 2016. Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis. *International Journal of Hydrogen Energy*, 41: 8032-8041.

**Barron, R.F. 1972.** Liquefaction cycles for cryogens: Advances in Cryogenic Engineering, Ed.: Timmerhaus, K.D., Springer, pp: 20-36.

Bejan, A., Tsatsaronis, G., Moran, M., 1996. Thermal Design and Optimization. John Wiley & Sons, Canada, 280 pp.

**Boyaghchi, F.A., Heidarnejad, P. 2015.** Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application. *Energy Conversion and Management*, 97: 224-234.

**Bu, X.B., Li, H.S., Wang, L.B. 2013.** Performance analysis and working fluids selection of solar powered organic Rankine-vapor compression ice maker. *Solar Energy*, 95: 271-278.

**Canbolat, A.S., Bademlioglu, A.H., Arslanoglu, N., Kaynakli, O. 2019.** Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods. *Journal of Cleaner Production*, 229: 874-885.

Canbolat, A.S., Bademlioglu, A.H., Kaynakli, O. 2020. A Modelling of Electricity Generation by Using Geothermal Assisted Organic Rankine Cycle with Internal Heat Recovery. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*. doi: 10.1080/15567036.2019.1684598. (*Kabul edildi*)

**Corumlu, V., Ozsoy, A., Ozturk, M. 2018.** Thermodynamic studies of a novel heat pipe evacuated tube solar collectors based integrated process for hydrogen production. *International Journal of Hydrogen Energy*, 43: 1060-1070.

**Çengel, Y.A., Boles, M.A. 2012.** Termodinamik, Mühendislik Yaklaşımıyla. Güven Yayınevi, Türkiye, 932 pp.

**Deethayat, T., Kiatsiriroat, T., Thawonngamyingsakul, C. 2015.** Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid. *Case Studies in Thermal Engineering*, 6: 155-161.

Dinçer, F., Rüstemli, S., Yılmaz, Ş., Çıngı, A. 2017. Kilis ili için farklı yüksekliklerdeki rüzgar potansiyelinin belirlenmesi. *Bitlis Eren Üniversitesi Fen Bilimleri Dergisi*, 6:12-20.

**El-Emam, R.S., Dincer, I. 2013.** Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. *Applied Thermal Engineering*, 59: 435-444.

Fernández-Seara, J., Sieres, J. 2006. Ammonia-water absorption refrigeration systems with flooded evaporators. *Applied Thermal Engineering*, 26: 2236-2246.

Fujiwara, S., Kasai, S., Yamauchi, H., Yamada, K., Makino, S., Matsunaga, K., Yoshino, M., Kameda, T., Ogawa, T., Momma, S., Hoashi, E. 2008. Hydrogen production by high temperature electrolysis with nuclear reactor. *Progress in Nuclear Energy*, 50: 422-426.

He, W.F., Ji, C., Han, D., Wu, Y.K., Huang, L., Zhang, X.K. 2017. Performance analysis of the mechanical vapor compression desalination system driven by an organic Rankine cycle. *Energy*, 141: 1177-1186.

**Heberle, F., Brüggemann, D. 2015.** Thermo-economic evaluation of Organic Rankine Cycles for geothermal power generation using zeotropic mixtures. *Energies*, 8: 2097-2124.

**Ghazizade-Ahsaee, H., Ameri, M., Askari, I.B. 2019.** A comparative exergo-economic analysis of four configurations of carbon dioxide direct-expansion geothermal heat pump. *Applied Thermal Engineering*, 163: 114347.

Jonsson, V.K., Gunnarsson, R.L., Arnason, B., Sigfusson T.I. 1992. The feasibility of using geothermal energy in hydrogen production. *Geothermics*, 21: 673-681.

**Joybari, M.M., Haghighat, F. 2016.** Exergy analysis of single effect absorption refrigeration systems: The heat exchange aspect. *Energy Conversion and Management*, 126: 799-810.

Kanoglu, M., Dincer, I., Rosen, M.A. 2007. Geothermal energy use in hydrogen liquefaction. *International Journal of Hydrogen Energy*, 32: 4250-4257.

Kanoglu, M., Ayanoglu, A., Abusoglu, A. 2011. Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system. *Energy*, 36: 4422-4433.

Kanoglu, M., Cengel, Y.A., Dincer, I. 2012. Efficiency Evaluation of Energy Systems. Springer, New York, USA, 176 pp.

Kanoglu, M., Yilmaz, C., Abusoglu, A. 2016. Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle. *International Journal of Hydrogen Energy*, 41: 11185-11200.

Karagöl, E.T., Kavaz, İ. 2017. Dünyada ve Türkiye'de yenilenebilir enerji. SETA Vakfi Analiz Dergisi, 197: 5-32.

Karamangil, M.I., Coskun, S., Kaynakli, O., Yamankaradeniz, N. 2010. A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives. *Renewable and Sustainable Energy Reviews*, 14: 1969-1978.

Kaya, T. 2015. Jeotermal potansiyelimiz. Mühendis ve Makina, 664: 24-29.

Kaynakli, O., Yamankaradeniz, R. 2003. Absorpsiyonlu soğutma sistemlerinde kullanılan eşanjörlerin sistemin performansına etkisi. *Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi*, 8: 111-120.

**Kaynakli, O., Kilic, M. 2007.** Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. *Energy Conversion and Management*, 48: 599-607.

Kaynakli, O., Bademlioglu, A.H., Yamankaradeniz, N., Yamankaradeniz, R. 2017. Thermodynamic analysis of the Organic Rankine Cycle and the effect of refrigerant selection on cycle performance. *International Journal of Energy Applications and Technology*, 4: 101-108.

**Kazemi, N., Samadi, F. 2016.** Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources. *Energy Conversion and Management*, 121: 391-401.

**Keshtkar, M.M., Khani, A.G. 2018.** Exergoeconomic analysis and optimization of a hybrid system based on multi-objective generation system in Iran: a case study. *Renewable Energy Focus*, 27: 1-13.

Ketfi, O., Merzouk, M., Merzouk, N.K., El Metenan, S. 2015. Performance of a single effect solar absorption cooling system. *Energy Procedia*, 74: 130-138.

Kotas, T.J. 1985. The Exergy Method of Thermal Plant Analysis. Butterworths, Great Britain, 296 pp.

**Kordlar, M.A., Mahmoudi, S.M.S. 2017.** Exergoeconomic analysis and optimization of a novel cogeneration system producing power and refrigeration. *Energy Conversion and Management*, 134: 208-220.

Kumar, L., Hasanuzzaman, M., Rahim, N.A. 2019. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. *Energy Conversion and Management*, 195: 885-908.

**Kumar, V., Pandya, B., Patel, J., Matawala, V. 2017.** Cut-off temperature evaluation and performance comparison from energetic and exergetic perspective for NH<sub>3</sub>-H<sub>2</sub>O absorption refrigeration system. *Thermal Science and Engineering Progress*, 4: 97-105.

Lazzaretto, A., Tsatsaronis, G. 2006. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. *Energy*, 31: 1257-1289.

Li, L., Ge, Y.T., Luo, X., Tassou, S.A. 2018. Design and dynamic investigation of lowgrade power generation systems with CO<sub>2</sub> transcritical power cycles and R245fa organic Rankine cycles. *Thermal Science and Engineering Progress*, 8: 211-222. Mansilla, C., Sigurvinsson, J., Bontemps, A., Marechal, A., Werkoff, F. 2007. Heat management for hydrogen production by high temperature steam electrolysis. *Energy*, 32: 423-430.

Midilli, A., Ay, M., Dincer, I., Rosen, M.A. 2005. On hydrogen and hydrogen energy strategies I: current status and needs. *Renewable and Sustainable Energy Reviews*, 9: 255-271.

Mingyi, L., Bo, Y., Jingming, X., Jing, C. 2008. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production. *Journal of Power Sources*, 177: 493-499.

**Modi, B., Mudgal, A., Patel, B. 2017.** Energy and exergy investigation of small capacity single effect lithium bromide absorption refrigeration system. *Energy Procedia*, 109: 203-210.

Mohammadkhani, F., Shokati, N., Mahmoudi, S.M.S., Yari, M., Rosen, M.A. 2014. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. *Energy*, 65: 533-543.

Mokhtari, H., Hadiannasab, H., Mostafavi, M., Ahmadibeni, A., Shahriari, B. 2016. Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger. *Energy*, 102: 260-275.

Moloney, F., Almatrafi, E., Goswami, D.Y. 2017. Working fluid parametric analysis for regenerative supercritical organic Rankine cycles for medium geothermal reservoir temperatures. *Energy Procedia*, 129: 599-606.

Nandi, T.K., Sarangi, S. 1993. Performance and optimization of hydrogen liquefaction cycles. *International Journal of Hydrogen Energy*, 18: 131-139.

**Noroozian, A., Naeimi, A., Bidi, M., Ahmadi, M.H. 2019.** Exergoeconomic comparison and optimization of organic Rankine cycle, trilateral Rankine cycle and transcritical carbon dioxide cycle for heat recovery of low-temperature geothermal water. *Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy*, 233(8), 1068–1084.

Novella, R., Dolz, V., Martín, J., Royo-Pascual, L. 2017. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine. *Applied Thermal Engineering*, 111: 257-270.

**Ouadha, A., El-Gotni, Y. 2013.** Integration of an ammonia-water absorption refrigeration system with a marine Diesel engine: A thermodynamic study. *Procedia Computer Science*, 19: 754-761.

**Ozcan, H., Dincer, I. 2016.** Thermodynamic modeling of a nuclear energy based integrated system for hydrogen production and liquefaction. *Computers and Chemical Engineering*, 90: 234-246.

Öztürk, H.H. 2008. Yenilenebilir Enerji Kaynakları ve Kullanımı. Teknik Yayınevi, Ankara, Türkiye, 376 pp.

**Palacios-Bereche, R., Gonzales, R., Nebra, S.A. 2012.** Exergy calculation of lithium bromide-water solution and its application in the exergetic evaluation of absorption refrigeration systems LiBr-H<sub>2</sub>O. *International Journal of Energy Research*, 36: 166-181.

**Parikhani, T., Ghaebi, H., Rostamzadeh, H. 2018.** A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis. *Energy*, 153: 265-277.

Quoilin, S., Declaye, S., Tchanche, B.F., Lemort, V. 2011. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. *Applied Thermal Engineering*, 31: 2885-2893.

**Roy, J.P., Mishra, M.K., Misra, A. 2010.** Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. *Energy*, 35: 5049-5062.

Sadaghiani, M.S., Mehrpooya, M., Ansarinasab, H. 2017. Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process. *International Journal of Hydrogen Energy*, 42: 29797-29819.

Sadat, S.M.S., Lavasani, A.M., Ghaebi, H. 2019. Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system. *Energy*, 175:515-533.

Saleh, A., Mosa, M. 2014. Optimization study of a single-effect water-lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions. *Energy Conversion and Management*, 87: 29-36.

Scardigno, D., Fanelli, E., Viggiano, A., Braccio, G., Magi, V. 2015. A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources. *Energy*, 91: 807-8015.

Shokati, N., Khanahmadzadeh, S. 2018. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle. *Applied Thermal Engineering*, 141: 1141-1160.

Sigurvinsson, J., Mansilla, C., Arnason, B., Bontemps, A., Marechal, A., Sigfusson, T.I., Werkoff, F. 2006. Heat transfer problems for the production of hydrogen from geothermal energy. *Energy Conversion and Management*, 47: 3543-3551.

Sigurvinsson, J., Mansilla, C., Lovera, P., Werkoff, F. 2007. Can high temperature steam electrolysis function with geothermal heat?. *International Journal of Hydrogen Energy*, 32: 1174-1182.

Tchanche, B.F., Papadakis, G., Lambrinos, G., Frangoudakis, A. 2009. Fluid selection for a low-temperature solar organic Rankine cycle. *Applied Thermal Engineering*, 29: 2468-2476.

**Timmerhaus, K.D., Flynn, T.M. 1989.** Cryogenic Process Engineering. Springer, New York, USA, 614 pp.

**Tozlu, A., Özahi, E., Abuşoğlu, A. 2018.** Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi. *Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi*, 33: 917-928.

**Tuğcu, A., Arslan, O., Köse, R., Yamankaradeniz, N. 2016.** Jeotermal destekli absorbsiyonlu soğutma sisteminin termodinamik ve ekonomik analizi: Simav örneği. *Isu Bilimi ve Tekniği Dergisi*, 36: 143-159.

Turton, R., Shaeiwitz, J.A., Bhattacharyya, D., Whiting, W.B. 2018. Analysis, Synthesis, and Design of Chemical Processes. Prentice Hall, Boston, USA, 1549 pp.

Walker, G. 2014. Cryocoolers, Part I: Fundamentals. Springer, New York, USA, 365 pp.

Wang, H., Li, H., Wang, L., Bu, X. 2017. Thermodynamic analysis of Organic Rankine Cycle with Hydrofluoroethers as working fluids. *Energy Procedia*, 105: 1889-1894.

**Wang, X., Dai, Y. 2016.** An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO<sub>2</sub> cycles. *Energy Conversion and Management*, 126: 561-572.

Windmeier, C., Barron, R.F. 2013. Cryogenic Technology: Ullman's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, pp: 1-71.

**Yadav, D., Banerjee, R. 2018.** Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process. *Journal of Cleaner Production*, 183: 1131-1155.

**Yamankaradeniz, N., Bademlioglu, A.H., Kaynakli, O. 2018.** Performance assessments of Organic Rankine Cycle with internal heat exchanger based on exergetic approach. *Journal of Energy Resources Technology – Transactions of the ASME*, 140: 102001.

**Yari, M. 2010.** Exergetic analysis of various types of geothermal power plants. *Applied Thermal Engineering*, 30: 1326-1332.

**Yıldırım, E., Yeşilata, B. 2013.** Düşük sıcaklıkta ısı kaynağı kullanan bir absorbsiyonlu soğutma sisteminin termoekonomik optimizasyonu. *Isı Bilimi ve Tekniği Dergisi*, 33: 111-117.

**Yilmaz, C. 2018.** A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle. *Renewable Energy*, 128: 68-80.

**Yilmaz, C., Kaska, O. 2018.** Performance analysis and optimization of a hydrogen liquefaction system assisted by geothermal absorption precooling refrigeration cycle. *International Journal of Hydrogen Energy*, 43: 20203-20213.

Yilmaz, C., Cetin, T.H., Ozturkmen, B., Kanoglu, M. 2019. Thermodynamic performance analysis of gas liquefaction cycles for cryogenic applications. *Journal of Thermal Engineering*, 5: 62-75.

**Yilmaz, C. 2020.** Optimum energy evaluation and life cycle cost assessment of a hydrogen liquefaction system assisted by geothermal energy. *International Journal of Hydrogen Energy*, 45: 3558-3568.

**Yilmaz, F., Ozturk, M., Selbas, R. 2018.** Thermodynamic performance assessment of ocean thermal energy conversion based hydrogen production and liquefaction process. *International Journal of Hydrogen Energy*, 43: 10626-10636.

**Yuksel, Y.E., Ozturk, M., Dincer, I. 2018.** Analysis and performance assessment of a combined geothermal power-based hydrogen production and liquefaction system. *International Journal of Hydrogen Energy*, 43: 10268-10280.

**Yuksel, Y.E., Ozturk, M., Dincer, I. 2019.** Energy and exergy analyses of an integrated system using waste material gasification for hydrogen production and liquefaction. *Energy Conversion and Management*, 185: 718-729.

Zaim, A., Çavşi, H. 2018. Türkiye'deki jeotermal enerji santrallerinin durumu. *Mühendis ve Makina*, 691: 45-58.

**Zare, V.A. 2015.** A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. *Energy Conversion and Management*, 105: 127-138.

**Zare, V., Mahmoudi, S.M.S. 2015.** A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor. *Energy*, 79: 398-406.

**Zare, V.A. 2016.** A comparative thermodynamic analysis of two tri-generation systems utilizing low-grade geothermal energy. *Energy Conversion and Management*, 118: 264-274.

# ÖZGEÇMİŞ

| Adı Soyadı<br>Doğum Yeri ve Tarihi<br>Yabancı Dil | : Ali Hüsnü BADEMLİOĞLU<br>: Bursa / 1988<br>: İngilizce / Almanca                                    |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Eğitim Durumu                                     |                                                                                                       |
| Lise                                              | : Ulubatlı Hasan Anadolu Lisesi                                                                       |
| Lisans                                            | : Uludağ Üniversitesi, Mühendislik-Mimarlık Fakültesi,<br>Makine Mühendisliği Bölümü                  |
| Yüksek Lisans                                     | : Uludağ Üniversitesi, Fen Bilimleri Enstitüsü,<br>Makine Mühendisliği Anabilim Dalı                  |
| Çalıştığı Kurum/Kurumlar                          | : Bursa Teknik Üniversitesi, Fen Bilimleri Enstitüsü,<br>Enerji Sistemleri Mühendisliği Anabilim Dalı |
| İletişim (e-posta)                                | : husnu.bademlioglu@btu.edu.tr                                                                        |
| Yayınları                                         | :                                                                                                     |

**Bademlioglu, A.H., Canbolat, A.S., Yamankaradeniz, N., Kaynakli, O. 2018.** Investigation of parameters affecting Organic Rankine Cycle efficiency by using Taguchi and ANOVA methods. *Applied Thermal Engineering*, 145: 221-228. doi: 10.1016/j.applthermaleng.2018.09.032.

**Bademlioglu, A.H., Kaynakli, O., Yamankaradeniz, N. 2018.** The effect of water vapor diffusion resistance factor of insulation materials for outer walls on condensation. *Journal of Thermal Science and Technology*, 38(2): 15-23.

**Bademlioglu, A.H., Canbolat, A.S., Kaynakli, O. 2018.** Calculation of optimum insulation thickness using the heating degree-days method for the different cost approaches. *International Research Journal of Advanced Engineering and Science*, 3(4): 189-192. doi: 10.5281/zenodo.2539317.

**Bademlioğlu, A.H., Canbolat, A.S., Kaynaklı, Ö. 2018.** Bina dış duvarlarında yoğuşma dikkate alınarak gerekli yalıtım kalınlığının belirlenmesi: Bitlis ili örnek çalışma. *Uludağ Üniversitesi Mühendislik Fakültesi Dergisi*, 23(3): 333-340.

**Bademlioğlu, A.H., Canbolat, A.S., Türkan, B., Kaynaklı, Ö. 2018.** Güneş radyasyonu hesaba katılarak optimum yalıtım kalınlığının duvar yönlerine bağlı incelenmesi. IV. Uluslararası Katılımlı Anadolu Enerji Sempozyumu, 18-20 Nisan 2018, Edirne-Türkiye.

**Bademlioğlu, A.H., Canbolat, A.S., Kaynaklı, F., Kaynaklı, Ö. 2018.** Otomobillerde kabin içi soğutma sürecinin incelenmesi ve ısıl konfor açısından değerlendirilmesi. 9th International Automotive Technologies Congress, 7-8 May 2018, Bursa-Turkey.

**Bademlioglu, A.H., Canbolat, A.S., Yamankaradeniz, N., Kaynakli, O. 2019.** A Parametric Analysis of the Performance of Organic Rankine Cycle with Heat Recovery Exchanger and Its Statistical Evaluation. *Journal of Thermal Science and Technology*, 39(2): 121-135.

**Bademlioglu, A.H., Yamankaradeniz, R., Kaynakli, O. 2019.** Exergy analysis of the Organic Rankine Cycle based on the pinch point temperature difference. *Journal of Thermal Engineering*, 5: 157-165. doi: 10.18186/thermal.540149.

**Bademlioglu, A.H., Canbolat, A.S., Kaynakli, O. 2019.** The effect of environmental conditions on optimum insulation thickness by considering condensation and its statistical analysis. 22nd Congress on Thermal Science and Technology, 11-14 September 2019, Kocaeli-Turkey.

**Bademlioğlu, A.H., Canbolat, A.S., Kaynaklı, Ö. 2019.** Organik Rankine çevriminin ıslak ve kuru tip akışkanlar için performans analizi. 22. Isı Bilimi ve Tekniği Kongresi, 11-14 Eylül 2019, Kocaeli-Türkiye.

**Bademlioglu, A.H., Canbolat, A.S., Kaynakli, O. 2020.** Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis. *Renewable and Sustainable Energy Reviews*, 117: 109483. doi: 10.1016/j.rser.2019.109483.

**Canbolat, A.S., Bademlioglu, A.H., Kaynakli, O. 2018.** Determination of proper insulation thickness for building walls regarding economic consideration. *International Research Journal of Advanced Engineering and Science*, 3(4): 173-176. doi: 10.5281/zenodo.2539297.

**Canbolat, A.S., Bademlioglu, A.H., Kaynakli, O. 2018.** A study on optimum insulation thicknesses and payback periods for the use of a building during heating and cooling seasons. 3th Conference Of Interdisciplinary Research On Real Estate, 20-21 September 2018, Groningen-Holland.

**Canbolat, A.S., Bademlioglu, A.H., Yamankaradeniz, N., Kaynakli, O. 2018.** Effect of using dimpled tubes in car radiators into thermal performance and pressure drop characteristics. Alternative Energy Sources, Materials and Technologies, 14-15 May 2018, Plovdiv-Bulgaria.

**Canbolat, A.S., Kaynaklı, Ö., Bademlioğlu, A.H., Türkan, B. 2018.** İki farklı akış konfigürasyonu için otomobil radyatörlerinde 1s1 ve akış analizinin nümerik incelenmesi. 9th International Automotive Technologies Congress, 7-8 May 2018, Bursa-Turkey.

**Canbolat, A.S., Bademlioğlu, A.H., Kaynaklı, Ö. 2018.** Sandviç duvarlar için yalıtım kalınlığının belirlenmesinde yoğuşma faktörünün etkisi. IV. Uluslararası Katılımlı Anadolu Enerji Sempozyumu, 18-20 Nisan 2018, Edirne-Türkiye.

**Canbolat, A.S., Bademlioğlu, A.H., Kaynaklı, Ö. 2019.** Çatı katlarındaki ısıl konforun farklı ısıtma sistemleri kullanılarak incelenmesi. 22. Isı Bilimi ve Tekniği Kongresi, 11-14 Eylül 2019, Kocaeli-Türkiye.

**Canbolat, A.S., Bademlioğlu, A.H., Perut, A.H., Yeter, A., Kaynaklı, Ö. 2019.** Bir taşıt radyatöründe ısı geçişine etki eden parametrelerin istatiksel analizi. 22. Isı Bilimi ve Tekniği Kongresi, 11-14 Eylül 2019, Kocaeli-Türkiye.

Canbolat, A.S., Bademlioglu, A.H., Arslanoglu, N., Kaynakli, O. 2019. Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods. *Journal of Cleaner Production*, 229: 874-885. doi: 10.1016/j.jclepro.2019.05.020.

Canbolat, A.S., Bademlioglu, A.H., Saka, K., Kaynakli, O. 2020. Investigation of parameters affecting the optimum thermal insulation thickness for buildings in hot and cold climates. *Thermal Science*, 24: 2891-2903. doi: 10.2298/TSCI181105068C.

Canbolat, A.S., Bademlioglu, A.H., Kaynakli, O. 2020. A Modelling of Electricity Generation by Using Geothermal Assisted Organic Rankine Cycle with Internal Heat Recovery. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*. doi: 10.1080/15567036.2019.1684598. (*Kabul edildi*)

Kaynakli, O., Bademlioglu, A.H., Yamankaradeniz, N., Yamankaradeniz, R. 2017. Thermodynamic analysis of the Organic Rankine Cycle and the effect of refrigerant selection on cycle performance. *International Journal of Energy Applications and Technology*, 4: 101-108.

**Kaynakli, O., Canbolat, A.S., Bademlioglu, A.H. 2017.** A study on the parameters affecting insulation thickness on external wall of buildings. *International Journal of Mechanical and Production Engineering*, 5(7): 81-84.

**Kaynakli, O., Bademlioglu, A.H., Ufat, H. 2018.** Determination of optimum insulation thickness for different insulation applications considering condensation. *Tehnicki Vjesnik-Technical Gazette*, 25: 32-42. doi: 10.17559/TV-20160402130509.

**Yamankaradeniz, N., Bademlioglu, A.H., Kaynakli, O. 2018.** Performance assessments of Organic Rankine Cycle with internal heat exchanger based on exergetic approach. *Journal of Energy Resources Technology – Transactions of the ASME*, 140: 102001-102008. doi: 10.1115/1.4040108.