PRODUCT SUBMANIFOLDS WITH POINTWISE 3-PLANAR NORMAL SECTIONS

by KADRI ARSLAN ${ }^{1}$ and ALAN WEST

(Received 21 June, 1993)
0. Introduction. Let M be a smooth m-dimensional submanifold in $(m+d)$ dimensional Euclidean space \mathbb{R}^{m+d}. For $x \in M$ and a non-zero vector X in $T_{x} M$, we define the ($d+1$)-dimensional affine subspace $E(x, X)$ of \mathbb{R}^{m+d} by

$$
E(x, X)=x+\operatorname{span}\left\{X, N_{x}(M)\right\} .
$$

In a neighbourhood of x, the intersection $M \cap E(x, X)$ is a regular curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$. We suppose the parameter $t \in(-\varepsilon, \varepsilon)$ is a multiple of the arc-length such that $\gamma(0)=x$ and $\dot{\gamma}(0)=X$. Each choice of $X \in T(M)$ yields a different curve which is called the normal section of M at x in the direction of X, where $X \in T_{x}(M)$ (Section 3).

For such a normal section we can write

$$
\begin{equation*}
\gamma(t)=x+\lambda(t) X+N(t) . \tag{0.1}
\end{equation*}
$$

where $N(t) \in N_{x}(M)$ and $\lambda(t) \in \mathbb{R}$.
The submanifold M is said to have pointwise k-planar normal sections ($P k-P N S$) if for each normal section γ the first, second and higher order derivatives

$$
\left\{\dot{\gamma}(0), \ddot{\gamma}(0), \ddot{\gamma}(0), \ldots, \gamma^{(k)}(0)\right\}
$$

are linearly dependent as vectors in \mathbb{R}^{n+d}.
Submanifolds with pointwise 3-planar normal sections have been studied by $\mathrm{S} . \mathrm{J} . \mathrm{Li}$ in the case when M is isotropic [6] and also in the case when M is spherical [7].

In this paper we consider product submanifolds $M=M_{1} \times M_{2}$ with P3-PNS and we show that this implies strong conditions on M_{1} and M_{2}.

1. Basic notation. Let M be an m-dimensional submanifold in ($m+d$)-dimensional Euclidean space \mathbb{R}^{m+d}. Let ∇ and D denote the covariant derivatives in M and \mathbb{R}^{m+d} respectively. Thus D_{X} is just the directional derivative in the direction X in \mathbb{R}^{m+d}. Then for tangent vector fields X, Y and Z over M we have

$$
D_{X} Y=\nabla_{X} Y+h(X, Y)
$$

where h is the second fundamental form of M. We define $\bar{\nabla}_{X} h$ as usual by

$$
\begin{equation*}
\bar{\nabla}_{X}(h(Y, Z))=\left(\bar{\nabla}_{X} h\right)(Y, Z)+h\left(\nabla_{X} Y, Z\right)+h\left(Y, \nabla_{X} Z\right) \tag{1.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
h(X, Y)=h(Y, X) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\bar{\nabla}_{X} h\right)(Y, Z) & =\left(\bar{\nabla}_{Y} h\right)(X, Z)=\left(\bar{\nabla}_{Z} h\right)(X, Y)=\left(\bar{\nabla}_{X} h\right)(Z, Y) \\
& =\left(\bar{\nabla}_{Y} h\right)(Z, X)=\left(\bar{\nabla}_{Z} h\right)(Y, X) . \tag{1.3}
\end{align*}
$$

[^0]Glasgow Math. J. 37 (1995) 73-81.

We will also need to refer to the shape operator A_{v} where this is defined for a normal field $v: M \rightarrow N(M)$ by $\langle h(X, Y), v\rangle=\left\langle A_{v} X, Y\right\rangle$. Note however that $h(X, Y),\left(\nabla_{X} h\right)(Y, Z)$ and $A_{\nu} X$ have values at $x \in M$ which depend only on the values of X, Y, Z and v at $x \in M$ and not on their derivatives.
2. Preliminary results. Let us write

$$
\begin{aligned}
H(X) & =h(X, X) \\
\nabla H(X) & =\left(\bar{\nabla}_{X} h\right)(X, X) \\
J(X) & =\left(\bar{\nabla}_{X} \bar{\nabla}_{X} h\right)(X, X)+3 h\left(A_{h(X, X)} X, X\right)
\end{aligned}
$$

so that $H: T(M) \rightarrow N(M)$ and $\nabla H: T(M) \rightarrow N(M)$ and $J: T(M) \rightarrow N(M)$ are fibre maps whose restriction to each fibre $T_{x}(M)$ is a homogeneous polynomial map, H is of degree 2 and ∇H is of degree 3 and J is of degree 4.

Note that (1.2) shows that h is completely determined by H and (1.3) shows that $\bar{\nabla} h$ is completely determined by ∇H.

Lemma 2.1. M has P3-PNS if and only if for all $x \in M$ and $X \in T_{x}(M), H(X), \nabla H(X)$ and $J(X)$ are linearly dependent vectors in $N_{x}(M)$.

Proof. Differentiating the formula (0.2) and evaluating at $t=0$ we obtain after some calculation

$$
\begin{aligned}
\dot{\gamma}(0)= & X, \dot{N}(0)=0 \\
\ddot{\gamma}(0)= & h(X, X)=\ddot{N}(0) \\
\dddot{\gamma}(0)= & \nabla_{X} \nabla_{X} X-A_{h(X, X)} X+\left(\bar{\nabla}_{X} h\right)(X, X)=\dddot{\lambda}(0) X+\dddot{N}(0) \\
\gamma^{(\mathrm{iv})}(0)= & \left(\text { terms in } T_{x}(M)\right)+4 \lambda^{(\mathrm{iv})}(0) h(X, X)+ \\
& +3 h\left(A_{h(X, X)} X, X\right)+\left(\bar{\nabla}_{X} \bar{\nabla}_{X} h\right)(X, X)= \\
= & \lambda^{(\mathrm{iv})}(0) X+N^{(\mathrm{iv})}(0) .
\end{aligned}
$$

From this it is clear that $\left\{\dot{\gamma}(0), \ddot{\gamma}(0), \ddot{\gamma}(0), \gamma^{(\mathrm{iv})}(0)\right\}$ is a linearly dependent set if and only if $\left\{\ddot{N}(0), \ddot{N}(0), N^{(\mathrm{iv})}(0)\right\}$ is a linearly dependent set. It is also clear that $\ddot{N}(0)=H(X)$, $\ddot{N}(0)=\Gamma H(X), N^{(\mathrm{iv})}(0)=4 \lambda^{(\mathrm{iv})}(0) H(X)+J(X)$. Hence $\left\{\ddot{N}(0), \dddot{N}(0), N^{(\text {iv })}(0)\right\}$ is a linearly dependent set if and only if $\{H(X), \nabla H(X), J(X)\}$ is a linearly dependent set.

Lemma 2.2. M has P2-PNS if and only if

$$
\begin{equation*}
\|H\|^{2} \nabla H-\langle H, \nabla H\rangle H \equiv 0 \tag{2.1}
\end{equation*}
$$

Proof. $\langle H, \nabla H\rangle \nabla H-\langle H, \nabla H\rangle H \equiv 0$ means that for all $x \in M$ and $X \in T_{x}(M)$,

$$
\begin{equation*}
\|H(X)\|^{2} \nabla H(X)-\langle H(X), \nabla H(X)\rangle H(X)=0 \tag{2.2}
\end{equation*}
$$

Suppose M has P2-PNS, then for all $X \in T(M), H(X)$ and $\nabla H(X)$ are linearly dependent. So either $\|H(X)\|=0$ or for some $\alpha \in \mathbb{R}, \nabla H(x)=\alpha H(X)$. In either case it is easy to check that (2.2) holds. The converse is obvious.

Theorem 2.3. M has P3-PNS if and only if

$$
\begin{align*}
& \left\{\|H\|^{2}\|\nabla H\|^{2}-\langle H, \nabla H\rangle^{2}\right\} J \\
& \quad \equiv\left\{\langle J, H\rangle\|\nabla H\|^{2}-\langle J, \nabla H\rangle\langle H, \nabla H\rangle\right\} H+\left\{\langle J, \nabla H\rangle\|H\|^{2}-\langle J, H\rangle\langle\nabla H, H\rangle\right\} \nabla H . \tag{2.3}
\end{align*}
$$

Proof. Observe that

$$
\left\|\|H\|^{2} \nabla H-\langle H, \nabla H\rangle H\right\|^{2}=\|H\|^{2}\left\{\|H\|^{2}\|\nabla H\|^{2}-\langle H, \nabla H\rangle^{2}\right\}
$$

Again the condition (2.3) means that for all $X \in T(M)$

$$
\begin{gather*}
\left\{\|H(X)\|^{2} \nabla H(X)-\langle H(X), \nabla H(X)\rangle^{2}\right\} J(X) \\
=\left\{\langle J(X), H(X)\rangle\|\nabla H(X)\|^{2}-\langle J(X), \nabla H(X)\rangle\langle H(X), \nabla H(X)\rangle\right\} H(X) \\
+\left\{\langle J(X), \nabla H(X)\rangle\|H(X)\|^{2}-\langle J(X), H(X)\rangle\langle\nabla H(X), H(X)\rangle\right\} \nabla H(X) . \tag{2.4}
\end{gather*}
$$

In this case the condition that $H(X), \nabla H(X), J(X)$ are linearly dependent can be written as either
(a) $H(X), \nabla H(X)$ are linearly dependent or
(b) $J(X)=\alpha H(X)+\beta \nabla H(X)$ for some $\alpha, \beta \in \mathbb{R}$.

So in case (a) we can use Lemma (2.2) to see that (2.4) is true since the coefficients of $H(X), \nabla H(X)$ and $J(X)$ are all zero. In case (b) one checks that (2.4) is true by substituting for $J(X)$.

Conversely if (2.4) is true, this says that $H(X), \nabla H(X), J(X)$ are linearly dependent unless the coefficients are all zero. However in the latter case, again by Lemma (2.2), $H(X)$ and $\nabla H(X)$ are linearly dependent; which of course means that $H(X), \nabla H(X)$, $J(X)$ are linearly dependent.

Submanifolds with P2-PNS have been classified. The subclass of those submanifolds with P2-PNS for which $\nabla H \equiv 0$, that is, that have parallel second fundamental form have been shown to coincide with the class of extrinsically symmetric submanifolds which were classified by Ferus. We will call these s-submanifolds. We have shown in another paper that the other manifolds with P2-PNS must be hypersurfaces.

In the classification theorem we give below we separate manifolds into three types.
Definition 2.4. Submanifolds are
(i) of type $\mathrm{AW}(1)$ if they satisfy $J \equiv 0$;
(ii) of type $\mathrm{AW}(2)$ if they satisfy $\|\nabla H\|^{2} J \equiv\langle J, \nabla H\rangle \nabla H$;
(iii) of type AW(3) if they satisfy $\|H\|^{2} J=\langle J, H\rangle H$.

We have not investigated yet the geometrical consequences of these conditions. Note however that (ii) is the condition for ∇H and J to be linearly dependent and (iii) is the condition for H and J to be linearly dependent, so if any one of these three conditions hold M will have P3-PNS.

Note also that for a submanifold with P2-PNS either $\nabla H \equiv 0$, when it is an s-submanifold and it is automatically of type AW(2) or by the theorem in [1] it is a hypersurface and so automatically of type AW(2) and of type AW(3).
3. Product submanifolds with P3-PNS. Now consider the case when $M=M_{1} \times M_{2}$ is a product submanifold. That is, there exist isometric embeddings $f_{1}: M_{1} \rightarrow \mathbb{R}^{m_{1}+d_{1}}$ and $f_{2}: M_{2} \rightarrow \mathbb{R}^{m_{2}+d_{2}}$; we put $m=m_{1}+m_{2}, d=d_{1}+d_{2}$ so that $\mathbb{R}^{m+k} \equiv \mathbb{R}^{m_{1}+d_{1}} \times \mathbb{R}^{m_{2}+d_{2}}$ and then

$$
f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)
$$

defines the embedding $f: M \rightarrow \mathbb{R}^{m+d}$ which we will take to be the inclusion map. With this abuse of notation we can write, for any $x \in M, x=\left(x_{1}, x_{2}\right)$

$$
\left.\begin{array}{r}
T_{x}(M)=T_{x_{1}}(M) \oplus T_{x_{2}}(M) \tag{3.1}\\
N_{x}(M)=N_{x_{1}}(M) \oplus N_{x_{2}}(M)
\end{array}\right\}
$$

We cite here, in a slightly modified form, a theorem due to Deprez and Verheyen for submanifolds with P2-PNS. The main purpose of this paper is to generalise this theorem.

THEOREM. Let $M=M_{1} \times M_{2}$ be a product submanifold of \mathbb{R}^{m+d} where $M_{1} \subset \mathbb{R}^{m_{1}+d_{1}}$, $M_{2} \subset \mathbb{R}^{m_{2}+d_{2}}$. Then $M_{1} \times M_{2}$ has P2-PNS if and only if M_{1} and M_{2} are s-submanifolds or one of them is totally geodesic and the other is either an s-submanifold or a hypersurface.

Proof. In [4] it is proved that $M_{1} \times M_{2}$ has P2-PNS if and only if either both M_{1} and M_{2} have parallel second fundamental form, or one of them is totally geodesic and the other has P2-PNS. However, Ferus [5] has shown that submanifolds with parallel second fundamental form are s-submanifolds and we have shown that if a manifold has P2-PNS, it either has parallel second fundamental form (and hence is an s-submanifold) or it is a hypersurface [1].

Classification Theorem. Let $M=M_{1} \times M_{2}$ be a product submanifold of \mathbb{R}^{m+d} where $M_{1} \subset \mathbb{R}^{m_{1}+d_{1}}, M_{2} \subset \mathbb{R}^{m_{2}+d_{2}}$. Then $M_{1} \times M_{2}$ has P3-PNS if and only if, up to an interchange of M_{1} and M_{2}, one of the following is true:
I. M_{1} is totally geodesic and M_{2} has P3-PNS;
II. (a) M_{1} is an s-submanifold of type $\mathrm{AW}(1)$ and M_{2} is a submanifold of type $\mathrm{AW}(2)$;
(b) M_{1} is a submanifold of type AW(1) with P2-PNS and M_{2} is a submanifold of type AW(1);
III. M_{1} is an s-submanifold of type $\mathrm{AW}(3)$ and M_{2} has P2-PNS;
IV. M_{1} and M_{2} are both submanifolds of type AW(3) with P2-PNS.

Proof. Let h_{1} and h_{2} be the second fundamental forms of M_{1} and M_{2}. We define H_{1}, $H_{2}, \nabla H_{1}, \nabla H_{2}, J_{1}, J_{2}$ analogously for M_{1} and M_{2} in terms of h_{1}, h_{2} and their covariant derivatives. Then if $X \in T_{x}(M)$, where $x=\left(x_{1}, x_{2}\right)$, we can write $X=X_{1} \oplus X_{2}$, where $X_{1} \in T_{x_{1}}\left(M_{1}\right), X_{2} \in T_{x_{2}}\left(M_{2}\right)$ and it is easy to see that

$$
\begin{gathered}
H(X)=H_{1}\left(X_{1}\right) \oplus H_{2}\left(X_{2}\right), \\
\nabla H(X)=\nabla H_{1}\left(X_{1}\right) \oplus \nabla H_{2}\left(X_{2}\right)
\end{gathered}
$$

and

$$
J(X)=J_{1}\left(X_{1}\right) \oplus J_{2}\left(X_{2}\right)
$$

We will express this by saying that

$$
\begin{gathered}
H=H_{1}+H_{2}, \\
\nabla H=\nabla H_{1}+\nabla H_{2}
\end{gathered}
$$

and

$$
J=J_{1}+J_{2}
$$

For convenience let us use a shorter notation for the coefficients in Theorem 2.3 and put

$$
\begin{aligned}
\alpha & =\left\langle J,\left\{\|\nabla H\|^{2} H-\langle H, \nabla H\rangle \nabla H\right\}\right\rangle, \\
\beta & =\left\langle I,\left\{\|H\|^{2} \nabla H-\langle H, \nabla H\rangle H\right\}\right\rangle, \\
\delta & =\|H\|^{2}\|\nabla H\|^{2}-\langle H, \nabla H\rangle^{2} .
\end{aligned}
$$

We define $\alpha_{1}, \beta_{1}, \delta_{1}$ and $\alpha_{2}, \beta_{2}, \delta_{2}$ similarly for M_{1} and M_{2}. Then we can write

$$
\begin{aligned}
\alpha= & \left\langle J_{1}+J_{2}, H_{1}+H_{2}\right\rangle\left\|\nabla H_{1}+\nabla H_{2}\right\|^{2}-\left\langle J_{1}+J_{2}, \nabla H_{1}+\nabla H_{2}\right\rangle\left\langle H_{1}+H_{2}, \nabla H_{1}+\nabla H_{2}\right\rangle \\
= & \left\langle J_{1}, H_{1}\right\rangle\left\|\nabla H_{1}\right\|^{2}-\left\langle J_{1}, \nabla H_{1}\right\rangle\left\langle H_{1}, \nabla H_{1}\right\rangle \\
& +\left\langle J_{2}, H_{2}\right\rangle\left\|\nabla H_{2}\right\|^{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle\left\langle H_{2}, \nabla H_{2}\right\rangle \\
& +\left\langle J_{1}, H_{1}\right\rangle\left\|\nabla H_{2}\right\|^{2}-\left\langle J_{1}, \nabla H_{1}\right\rangle\left\langle H_{2}, \nabla H_{2}\right\rangle \\
& +\left\langle J_{2}, H_{2}\right\rangle\left\|\nabla H_{1}\right\|^{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle\left\langle H_{1}, \nabla H_{1}\right\rangle \\
= & \alpha_{1}+\alpha_{2}+\left\langle J_{1}, H_{1}\right\rangle\left\|\nabla H_{2}\right\|^{2}-\left\langle J_{1}, \nabla H_{1}\right\rangle\left\langle H_{2}, \nabla H_{2}\right\rangle \\
& +\left\langle J_{2}, H_{2}\right\rangle\left\|\nabla H_{1}\right\|^{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle\left\langle H_{1}, \nabla H_{1}\right\rangle
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\beta= & \left\langle J_{1}+J_{2}, \nabla H_{1}+\nabla H_{2}\right\rangle\left\|H_{1}+H_{2}\right\|^{2}-\left\langle J_{1}+J_{2}, H_{1}+H_{2}\right\rangle\left\langle\nabla H_{1}+\nabla H_{2}, H_{1}+H_{2}\right\rangle \\
= & \left\langle J_{1}, \nabla H_{1}\right\rangle\left\|H_{1}\right\|^{2}-\left\langle J_{1}, H_{1}\right\rangle\left\langle\nabla H_{1}, H_{1}\right\rangle \\
& +\left\langle J_{2}, \nabla H_{2}\right\rangle\left\|H_{2}\right\|^{2}-\left\langle J_{2}, H_{2}\right\rangle\left\langle\nabla H_{2}, H_{2}\right\rangle \\
& +\left\langle J_{2}, \nabla H_{2}\right\rangle\left\|H_{1}\right\|^{2}-\left\langle J_{2}, H_{2}\right\rangle\left\langle\nabla H_{1}, H_{1}\right\rangle \\
& +\left\langle J_{1}, \nabla H_{1}\right\rangle\left\|H_{2}\right\|^{2}-\left\langle J_{1}, H_{1}\right\rangle\left\langle\nabla H_{2}, H_{2}\right\rangle \\
= & \beta_{1}+\beta_{2}+\left\langle J_{2}, \nabla H_{2}\right\rangle\left\|H_{1}\right\|^{2}-\left\langle J_{2}, H_{2}\right\rangle\left\langle\nabla H_{1}, H_{1}\right\rangle \\
& +\left\langle J_{1}, \nabla H_{1}\right\rangle\left\|H_{2}\right\|^{2}-\left\langle J_{1}, H_{1}\right\rangle\left\langle\nabla H_{2}, H_{2}\right\rangle
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\delta= & \left\|H_{1}+H_{2}\right\|^{2}\left\|\nabla H_{1}+\nabla H_{2}\right\|^{2}-\left\langle H_{1}+H_{2}, \nabla H_{1}+\nabla H_{2}\right\rangle\left\langle H_{1}+H_{2}, \nabla H_{1}+\nabla H_{2}\right\rangle \\
= & \left\|H_{1}\right\|^{2}\left\|\nabla H_{1}\right\|^{2}-\left\langle H_{1}, \nabla H_{1}\right\rangle\left\langle H_{1}, \nabla H_{1}\right\rangle \\
& +\left\|H_{2}\right\|^{2}\left\|\nabla H_{2}\right\|^{2}-\left\langle H_{2}, \nabla H_{2}\right\rangle\left\langle H_{2}, \nabla H_{2}\right\rangle \\
& +\left\|H_{1}\right\|^{2}\left\|\nabla H_{2}\right\|^{2}-\left\langle H_{1}, \nabla H_{1}\right\rangle\left\langle H_{2}, \nabla H_{2}\right\rangle \\
& +\left\|H_{2}\right\|^{2}\left\|\nabla H_{1}\right\|^{2}-\left\langle H_{2}, \nabla H_{2}\right\rangle\left\langle H_{1}, \nabla H_{1}\right\rangle \\
= & \delta_{1}+\delta_{2}+\left\|H_{1}\right\|^{2}\left\|\nabla H_{2}\right\|^{2}-2\left\langle H_{1}, \nabla H_{1}\right\rangle\left\langle H_{2}, \nabla H_{2}\right\rangle+\left\|H_{2}\right\|^{2}\left\|\nabla H_{1}\right\|^{2} .
\end{aligned}
$$

Now M has P3-PNS if and only if for all $X_{1} \in T\left(M_{1}\right), X_{2} \in T\left(M_{2}\right)$

$$
\begin{aligned}
& \alpha\left(X_{1}+X_{2}\right) H\left(X_{1}+X_{2}\right)+\beta\left(X_{1}+X_{2}\right) \nabla H\left(X_{1}+X_{2}\right) \\
& \quad=\delta\left(X_{1}+X_{2}\right) J\left(X_{1}+X_{2}\right)
\end{aligned}
$$

From the above equations we have

$$
\begin{aligned}
\alpha H+\beta \nabla H+\delta J \equiv & \alpha_{1} H_{1}+\beta_{1} \nabla H_{1}-\delta_{1} J_{1} \\
& +\alpha_{2} H_{2}+\beta_{2} \nabla H_{2}-\delta_{2} J_{2} \\
& +\alpha_{1} H_{2}+\beta_{1} \nabla H_{2}-\delta_{1} J_{2} \\
& +\alpha_{2} H_{1}+\beta_{2} \nabla H_{1}-\delta_{2} J_{1} \\
& +\left\langle J_{1}, \nabla H_{1}\right\rangle\left\{\left\|H_{2}\right\|^{2} \nabla H_{2}-\left\langle H_{2}, \nabla H_{2}\right\rangle H_{2}\right\} \\
& +\left\langle J_{2}, \nabla H_{2}\right\rangle\left\{\left\|H_{1}\right\|^{2} \nabla H_{1}-\left\langle H_{1}, \nabla H_{1}\right\rangle H_{1}\right\} \\
& +\left\langle J_{2}, H_{2}\right\rangle\left\{\left\|\nabla H_{1}\right\|^{2} H_{1}-\left\langle H_{1}, \nabla H_{1}\right\rangle \nabla H_{1}\right\} \\
& -\left\langle J_{1}, H_{1}\right\rangle\left\{\left\|\nabla H_{2}\right\|^{2} H_{2}-\left\langle H_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\} \\
& -\left\|\nabla H_{1}\right\|^{2}\left\{\left\|H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, H_{2}\right\rangle H_{2}\right\} \\
& -\left\|\nabla H_{2}\right\|^{2}\left\{\left\|H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, H_{1}\right\rangle H_{1}\right\} \\
& +\left\langle H_{1}, \nabla H_{1}\right\rangle\left\{2\left\langle H_{2}, \nabla H_{2}\right\rangle J_{2}-\left\langle J_{2}, H_{2}\right\rangle \nabla H_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle H_{2}\right\} \\
& +\left\langle H_{2}, \nabla H_{2}\right\rangle\left\{2\left\langle H_{1}, \nabla H_{1}\right\rangle J_{1}-\left\langle J_{1}, H_{1}\right\rangle \nabla H_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle H_{1}\right\} \\
& -\left\|H_{1}\right\|^{2}\left\{\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\} \\
& -\left\|H_{2}\right\|^{2}\left\{\left\|\nabla H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle \nabla H_{1}\right\}=0 .
\end{aligned}
$$

If we fix $x \in M$, then $\alpha_{1}, \beta_{1}, \delta_{1}$ are polynomials on $T_{x_{1}}\left(M_{1}\right)$ and $\alpha_{2}, \beta_{2}, \delta_{2}$ are polynomials on $T_{x_{2}}\left(M_{2}\right)$ where $x=\left(x_{1}, x_{2}\right)$. Similarly $H_{1}, \nabla H_{1}, J_{1}$ are polynomial maps from $T_{x_{1}}\left(M_{1}\right)$ to $N_{x_{1}}\left(M_{1}\right)$ and $H_{2}, \nabla H_{2}, J_{2}$ are polynomial maps from $T_{x_{2}}\left(M_{2}\right)$ to $N_{x_{2}}\left(M_{2}\right)$. So if we look at the above equation and think about the degrees of the terms as polynomials in X_{1} (or X_{2}), and then pick out terms of the same degree in $X_{i}, i=1,2$, we get the following:
(a) $\alpha_{1} H_{1}+\beta_{1} \nabla H_{1} \equiv \delta_{1} J_{1}, \quad \alpha_{2} H_{2}+\beta_{2} \nabla H_{2} \equiv \delta_{2} J_{2}$,
(b) $\alpha_{1} H_{2} \equiv 0, \quad \alpha_{2} H_{1} \equiv 0$,
(c) $\beta_{1} \nabla H_{2} \equiv 0, \quad \beta_{2} \nabla H_{1} \equiv 0$,
(d) $\delta_{1} J_{2} \equiv 0, \quad \delta_{2} J_{1} \equiv 0$,
(e) $\left\langle J_{1}, \nabla H_{1}\right\rangle\left\langle\left\|H_{2}\right\|^{2} \nabla H_{2}-\left\langle H_{2}, \nabla H_{2}\right\rangle H_{2}\right\} \equiv 0$,
$\left\langle J_{2}, \nabla H_{2}\right\rangle\left\langle\left\|H_{1}\right\|^{2} \nabla H_{1}-\left\langle H_{1}, \nabla H_{1}\right\rangle H_{1}\right\} \equiv 0$,
(f) $\left\langle J_{1}, H_{1}\right\rangle\left\{\left\|\nabla H_{2}\right\|^{2} H_{2}-\left\langle H_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\}-\left\|\nabla H_{1}\right\|^{2}\left\{\left\|H_{2}\right\|^{2} J_{2}-\left\langle H_{2}, J_{2}\right\rangle H_{2}\right\} \equiv 0$,
$\left\langle J_{2}, H_{2}\right\rangle\left\{\left\|\nabla H_{1}\right\|^{2} H_{1}-\left\langle H_{1}, \nabla H_{1}\right\rangle \nabla H_{1}\right\}-\left\|\nabla H_{2}\right\|^{2}\left\{\left\|H_{1}\right\|^{2} J_{1}-\left\langle H_{1}, J_{1}\right\rangle H_{1}\right\} \equiv 0$,
(g) $\left\langle H_{1}, \nabla H_{1}\right\rangle\left\{2\left\langle H_{2}, \nabla H_{2}\right\rangle J_{2}-\left\langle J_{2}, H_{2}\right\rangle \nabla H_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle H_{2}\right\} \equiv 0$,
$\left\langle H_{2}, \nabla H_{2}\right\rangle\left\{2\left\langle H_{1}, \nabla H_{1}\right\rangle J_{1}-\left\langle J_{1}, H_{1}\right\rangle \nabla H_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle H_{1}\right\} \equiv 0$,
(h) $\left\|H_{1}\right\|^{2}\left\{\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\} \equiv 0$,
$\left\|H_{2}\right\|^{2}\left\{\left\|\nabla H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle \nabla H_{1}\right\} \equiv 0$.
We have also borne in mind that $H_{1}, \nabla H_{1}, J_{1}$ have values in $N\left(M_{1}\right)$ and $H_{2}, \nabla H_{2}, J_{2}$ have values in $N\left(M_{2}\right)$ so that the terms of degree 10 actually give (d) and (h).

Now (a) means that both M_{1} and M_{2} have P3-PNS. Then from (b) we see that at each point $\left(x_{1}, x_{2}\right) \in M_{1} \times M_{2}=M$ we have either $\alpha_{1}=0$ or $H_{2}=0$. But α_{1} depends only on x_{1} and not on x_{2}. So if $\alpha_{1} \neq 0$ at x_{1} we must have $H_{2} \equiv 0$ for all $x_{2} \in M_{2}$. Thus either $\alpha_{1} \equiv 0$ or $H_{2} \equiv 0$. A similar argument applies to (c) and (d). Thus we distinguish the following cases:

Case I: $\quad H_{1} \equiv 0$ or $H_{2} \equiv 0$;
Case II: $\alpha_{1} \equiv 0$ and $\alpha_{2} \equiv 0$ and either $J_{1} \equiv 0$ or $J_{2} \equiv 0$;
Case III: $\alpha_{1}, \alpha_{2}, \delta_{1}, \delta_{2}$ are all identically zero and either $\nabla H_{1} \equiv 0$ or $\nabla H_{2} \equiv 0$;
Case IV: $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \delta_{1}, \delta_{2}$ are all identically zero. Note that $\delta_{i} \equiv 0$ implies that $\alpha_{i} \equiv 0$ and $\beta_{i} \equiv 0$.

Let us consider these in turn.
Case I. Suppose $H_{1} \equiv 0$. This implies that the second fundamental form on M_{1} is identically zero. Thus M_{1} is totally geodesic and $\alpha_{1}, \beta_{1}, \delta_{1}, H_{1}, \nabla H_{1}, J_{1}$ are all identically zero. Thus conditions (b) to (h) are automatically satisfied. Thus in this case M_{1} is totally geodesic and M_{2} has P3-PNS and this is sufficient to ensure that $M_{1} \times M_{2}$ has P3-PNS.

Case II. Suppose that $J_{1} \equiv 0$. This implies that $\beta_{1} \equiv 0$. Note also that $\nabla H_{1} \equiv 0$ implies $\delta_{1} \equiv 0$. We use (c) to distinguish the subcases.

Case II(a): $\alpha_{1}, \alpha_{2}, J_{1}, \nabla H_{1}$ are identically zero.
Case II(b): $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, J_{1}$, are identically zero.
Case II(c): $\alpha_{1}, \alpha_{2}, J_{1}, \nabla H_{2}$ are identically zero.
Case II(a). In this case the only condition which remains to be satisfied is

$$
\left\|H_{1}\right\|^{2}\left\{\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\} \equiv 0
$$

since $\nabla H_{1} \equiv 0$ implies $\beta_{1} \equiv 0$ and $\delta_{1} \equiv 0$. Thus we either have Case I or

$$
\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{1}, \nabla H_{2}\right\rangle \nabla H_{2} \equiv 0
$$

which implies that $\alpha_{2} \equiv 0 . M_{1}$ is an s-submanifold of type AW(1) and M_{2} is a type AW(2) submanifold. This is sufficient to ensure that $M_{1} \times M_{2}$ has P3-PNS.

Case $I I(b)$. Note first of all that for any submanifold $M, \alpha=\beta=0$ implies that either $\delta=0$ or $\langle J, H\rangle=\langle J, \nabla H\rangle=0$. This is because if $\delta \neq 0$, then ∇H and H are linearly independent and $\|H\|^{2}\|\nabla H\|^{2}-\langle H, \nabla H\rangle>0$. Hence $\|H\|^{2} \nabla H-\langle H, \nabla H\rangle H$ and $\|\nabla H\|^{2} H-\langle H, \nabla H\rangle \nabla H$ are also linearly independent. But $\alpha=\beta=0$ says that J is perpendicular to both of these vectors and hence to the plane spanned by H and ∇H. Hence $\langle J, H\rangle=\langle J, \nabla H\rangle=0$.

Now in our case $\delta_{1} J_{2} \equiv 0$, so either $\delta_{1} \equiv 0$ or $J_{2} \equiv 0$. But if $\delta_{1} \equiv 0$, then one of the remaining conditions to be satisfied is

$$
\left\|\nabla H_{1}\right\|^{2}\left\{\left\|H_{2}\right\|^{2} J_{2}-\left\langle H_{2}, J_{2}\right\rangle H_{2}\right\} \equiv 0
$$

Here $\nabla H_{1} \equiv 0$ gives us the Case II(a) and because $\alpha_{2}=\beta_{2}=0$, then either $\delta_{2}=0$, which gives Case IV, or by the above

$$
\left\langle J_{2}, H_{2}\right\rangle=\left\langle J_{2}, \nabla H_{2}\right\rangle=0 .
$$

So $\|H\|^{2} J_{2}=0$. But $H_{2}=0$ gives the Case I and $J_{2}=0$ says M_{2} has the property $\mathrm{AW}(1)$. So in this case M_{1} is a submanifold with P2-PNS satisfying the condition $\mathrm{AW}(1)$ and M_{2} is a submanifold with P3-PNS satisfying the condition AW(1). This is sufficient to ensure that $M_{1} \times M_{2}$ has P3-PNS.

Case $I I(c)$. Note that $\nabla H_{2} \equiv 0$ implies that $\beta_{2} \equiv 0$ and $\delta_{2} \equiv 0$ and $J_{1} \equiv 0$ implies
$\beta_{1} \equiv 0$. We must have $\delta_{1} J_{2} \equiv 0$. So either $\delta_{1} \equiv 0$ or $J_{2} \equiv 0$. But if $\delta_{1} \equiv 0$, we have Case IV, which we consider later. If we suppose $J_{2} \equiv 0$, then we have Case II(a) (but with M_{1} and M_{2} interchanged). So this gives nothing new.

Case III. Suppose that $\nabla H_{1} \equiv 0$ and $\alpha_{1}, \alpha_{2}, \delta_{1}, \delta_{2}$ are all identically zero. Then $\nabla H_{1} \equiv 0$ implies that $\alpha_{1} \equiv 0$ and $\beta_{1} \equiv 0$. The only conditions that have to be satisfied are

$$
\begin{aligned}
& \left\|\nabla H_{2}\right\|^{2}\left\{\left\|H_{1}\right\|^{2} J_{1}-\left\langle H_{1}, J_{1}\right\rangle H_{1}\right\} \equiv 0 \\
& \left\|H_{1}\right\|^{2}\left\{\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, H_{2}\right\rangle H_{2}\right\} \equiv 0
\end{aligned}
$$

Thus we either have Case I or $\left.\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\} \equiv 0$ which implies $\alpha_{2} \equiv 0$ and $\beta_{2} \equiv 0$. Thus in this case M_{1} is an s-submanifold of type $\mathrm{AW}(3)$ and M_{2} is a submanifold of type AW(2) with P2-PNS. This is sufficient for $M_{1} \times M_{2}$ to have P3-PNS.

Case IV. The conditions that remain to be satisfied are
(f)

$$
\begin{aligned}
& \left\|\nabla \mathrm{H}_{1}\right\|^{2}\left\{\left\|H_{2}\right\|^{2} J_{2}-\left\langle H_{2}, J_{2}\right\rangle H_{2}\right\} \equiv 0, \\
& \left\|\nabla H_{2}\right\|^{2}\left\{\left\|H_{1}\right\|^{2} J_{1}-\left\langle H_{1}, J_{1}\right\rangle H_{1}\right\} \equiv 0,
\end{aligned}
$$

(g) $\left\langle H_{1}, \nabla H_{1}\right\rangle\left\{2\left\langle H_{2}, \nabla H_{2}\right\rangle J_{2}-\left\langle J_{2}, H_{2}\right\rangle \nabla H_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle H_{2}\right\} \equiv 0$, $\left\langle H_{2}, \nabla H_{2}\right\rangle\left\{2\left\langle H_{1}, \nabla H_{1}\right\rangle J_{1}-\left\langle J_{1}, H_{1}\right\rangle \nabla H_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle H_{1}\right\} \equiv 0$,
(h) $\left\|H_{1}\right\|^{2}\left\{\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle \nabla H_{2}\right\} \equiv 0$,
$\left\|H_{2}\right\|^{2}\left\{\left\|\nabla H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle \equiv 0\right.$.
Thus either we have Case I or Case III or

$$
\begin{gathered}
\left\|H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, H_{1}\right\rangle H_{1} \equiv 0 \\
\left\|H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, H_{2}\right\rangle H_{2} \equiv 0 \\
\left\|\nabla H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle \nabla H_{1} \equiv 0 \\
\left\|\nabla H_{2}\right\|^{2} J_{2}-\left\langle J_{2}, \nabla H_{2}\right\rangle \nabla H_{2} \equiv 0
\end{gathered}
$$

That is, both M_{1} and M_{2} are of type AW(2) and AW(3). But we already are assuming that $\delta_{1} \equiv 0$ and $\delta_{2} \equiv 0$, so they also have P2-PNS and

$$
\left\|\nabla H_{1}\right\|^{2} H_{1} \equiv\left\langle H_{1}, \nabla H_{1}\right\rangle \nabla H_{1} .
$$

Substituting for $\left\|\nabla H_{1}\right\|^{2} H_{1}$ this gives

$$
\begin{aligned}
& \left\|\nabla H_{1}\right\|^{2}\left\{2\left\langle H_{1}, \nabla H_{1}\right\rangle J_{1}-\left\langle J_{1}, H_{1}\right\rangle \nabla H_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle H_{1}\right\} \\
& \quad=2\left\langle H_{1}, \nabla H_{1}\right\rangle\left\langle\left\|\nabla H_{1}\right\|^{2}\left\{\left\|\nabla H_{1}\right\|^{2} J_{1}-\left\langle J_{1}, \nabla H_{1}\right\rangle \nabla H_{1}\right\} \equiv 0\right.
\end{aligned}
$$

with a similar result for $H_{2}, \nabla H_{2}, J_{2}$. Thus the conditions (h) together with $\delta_{1} \equiv 0, \delta_{2} \equiv 0$ in this case imply the condition (g).

Thus, noting that submanifolds with P2-PNS are automatically of type AW(2), we see that in this case M_{1} and M_{2} are both type AW(3) submanifolds with P2-PNS and this is sufficient to ensure that $M_{1} \times M_{2}$ has P3-PNS.

Since we have now exhausted all possibilities this completes the proof of the theorem.

REFERENCES

1. K. Arslan and A. West, Non-spherical submanifolds with pointwise 2-planar normal sections. Bull. London Math. Soc. (to appear).
2. B.-Y. Chen, Geometry of Submanifolds, (Dekker, 1973).
3. B. Y. Chen, Differential geometry of submanifolds with planar normal sections, Ann. Math. Pure Appl., 130 (1982), 59-66.
4. J. Deprez and P. Verstraelen, Immersions with circular normal sections and normal sections of product immersions Geom. Dedicata 20 (1986), 335-344.
5. D. Ferrus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93.
6. S. J. Li, Isotropic submanifolds with pointwise 3-planar normal sections, Boll. Un. Mat. Ital. (7) 1-B (1987), 373-385.
7. S. J. Li, Spherical submanifolds with pointwise 3 or 4 -planar normal sections, Yokohama Math. J. 35 (1987), 21-31.
8. D. Moore, Isometric immersions of Riemannian products, J. Diff. Geom. 5 (1971), 159-168.

Uludağ Universitesi;
Fen-Edebiyat Fakültesi, Matematik Bölümü, Görürle Kampüsü, Bursa, Turkey.

Department of Pure Mathematics, The University of Leeds, Leeds, LS2 9JT, England.

[^0]: ${ }^{1}$ The first author is supported by Uludag University in Turkey.

