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1. Introduction 

The dynamic response of bridges under moving loads has 
been investigated for more than a century. The dynamic 
behavior of bridges has gained widespread attention with 
the influence of the railway transport. The pioneering stud-
ies in this area have started studying the effect of a constant 
force moving at uniform velocity on a straight beam. Dy-
namic stresses in a simply supported beam, under mov-
ing constant force were first solved by Kriloff (1905), then 
Timoshenko (1927). Interesting analyses were also pre-
sented by Idnurm (2006) and Grigorjeva et al. (2006).  
Hillerborg (1948) used Fourier’s analysis and Biggs et al. 
(1959) the Inglis’s technique (Inglis 1934). The problem is 
reviewed in detail by Timoshenko (1911) and Kolousek 
(1956a, b, 1967). 

Stanišić and Hardin (1969) determined the dynamic 
behavior of a simply supported beam carrying a moving 
mass, which is interesting enough, but their method is not 
easily applicable to different boundary conditions.

Esmailzadeh and Ghorashi (1992) investigated the 
behavior of a beam carrying moving point mass, in which 

Esmailzadeh and Ghorashi (1995) have studied the trans-
verse vibration of simply supported beams under moving 
mass load. The uniform mass load was assumed to be par-
tially distributed on the beam.

The dynamic response of simple frames subjected to 
loads has been studied by Karaolides and Kounadis (1983), 

Fertis (1987). Reis et al. (2008) investigated the dynamic 
analysis of a bridge supported with many feet under mov-
ing load. Inclusion of supports into the analysis divides 
the region of solution into many parts and brings about 
many conditions of continuity to be satisfied by the solu-
tion. Therefore, using Dirac’s delta distribution functions, 
the singular forces must be written as equivalent distrib-
uted ones. This procedure allows us to solve the present 
problem together with the inclusion of inertial effect of the 
moving mass analytically. 

In all the above studies, standard dynamic analyses 
were performed and the effects of centripetal and Coriolis 
forces associated with the mass of the moving load, trans-
verse motion of the flexurally vibrating system were ne-
glected. Neglecting the effects of the rotatory inertia of the 
mass, Michaltsos and Kounadis (2001) took these effects 
into account for a light unsupported straight bridge under 
a moving heavy load, and have shown that important dif-
ferences in the vibration of the beam might occur. Matsa-
gar and Jangid (2005) studied the viscoelastic damper con-
nected to adjacent structures involving seismic isolation.

Reis et al. (2008) also investigated dynamic analysis 
of finite damped beams of small curvature under a moving 
constant force. This study is a more realistic model of this 
study. The moving load is not a constant force in reality. 
In this case, the effects of centripetal forces and Coriolis 
forces, curvature become much more important for the 
behavior of the bridge and must be inserted into the analy-
sis. The present study is devoted to these effects.
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the inertial effect of the mass is considered. In a later paper, 
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2. Analysis

The system under consideration is shown in Fig. 1. In the 
analysis, the following assumptions are adopted:

a. Initial curvature and damping property of the 
bridge are taken into account.

b. Euler-Bernoulli beam theory is valid. Small defor-
mations are considered. The bridge is of constant 
cross-section and constant mass per unit length 
(m).

c. The force moves at a constant velocity v.
d. The bridge is slightly curved. It is assumed that the 

initial curve can be expanded into Fourier series.
e. The analysis is carried out for a simply supported 

beam.
f. Horizontal displacements are neglected. 
g. Inertial, centrifugal and Coriolis effects of the 

moving mass M is inserted into the formulation.

Under these assumptions, the governing partial dif-
ferential equation takes on the form

 

 (1)

or

  (2)

for small deformations. Here, δ(x-a) is the Dirac’s delta 
function. Since the transverse displacement y is a function 
of x and time t, the transverse acceleration aM  should be 
written as 

  (3)

where . The 
second and third terms on the right side of Eq (3) corre-
spond to the centrifugal and Coriolis accelerations. Insert-
ing Eq (3) into Eq (2) yields

  (4)

or 

  (5)

Boundary conditions of the hinged-hinged beam are 
given as

   (6)

It is convenient to assume an expansion for the de-
flection  y(x,t)  in term of the combination of the linear 
free-oscillation modes, Xn = sin(knx), n = 1, 2, … , which 
are those of hinged-hinged beam in this case. Thus,

  (7)

In the same manner, the initial shape of the bridge is 
also expanded into Fourier sinus series as

  (8)

In the present study, to exemplify the theory, let the  
initial curve of the form

  (9)

be assumed. Thus, An0’s read as 

  (10)

Recall that the boundary conditions, given by Eq (6), 
are automatically satisfied by the forms of Eqs (7) and (8).

Substituting Eq (7) and Eq (8) into Eq (5) yields 

  (11)

Multiplying both sides of Eq (11) by Xk ( k ≠ n ) and 
integrating from 0 to L lead to

  (12)
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Fig. 1. Slightly curved bridge under a moving mass load
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Here, Xn(a) is the value of Xn(x) at the point x = a. The fre-
quency ωn, a, is given by 

  (13)

In order to solve Eq (12), a technique developed by 
Kounadis (1992) will be used. This method has also been 
used in a different paper (Michaltsos, Kounadis 2001). In 
fact, this method is a different version of Picard’s method 
applied to non-linear ordinary differential equations in 
which the non-linearity takes place on the right-hand side 
of the equation.

First, the homogenous part of Eq (12) must be solved, 
describing the damping ratio ζ as 

  (14)

The homogenous part of  Eq (12)  can be written in 
the form of 

  (15)

The characteristic Eq (15) has the form

  (16)

from which one obtains

  (17)

It is clear that, depending upon value of ζ, three cas-
es are valid. In the case of damping ratio, greater than 1, 
the discriminant is positive, resulting in a pair of distinct 
roots. Thus, the solution of Eq (15) has the form

  (18)

which represents a non-oscillatory response. b1, b2 are 
constant, yet to be determined. In the case, where 0<ζ<1, 
discriminant is negative, resulting in a complex conjugate 
pair of roots. The solution of the homogenous part is then 
given by

  (19)

where  is the damped natural frequency in 
the unforced case. In the undamped case ζ = 0, the tran-
sient solution is given by

  (20)

Now, keeping only the first two terms on the right hand of 
the Eq (12), one obtains the solution of the non-homoge-
neous equation

  (21)

The proper solution for Eq (21) can be sought in the 
form

  (22)

Here, Kr, An and Bn are undetermined constants. Inserting 
this form into Eq (21), yields

  (23)

Thus, the general solution to Eq (21) for 0 < ζ < 1 takes 
the form

  (24)

Before replacing Eq (24) by Eq (12), recalling that Xn = 
sin(knx), Eq (12) is written as 

  (25)

where the forcing term Fn(t) is given by

 (26)

Here

  (27)

  (28)

  (29)

The solution to Eq (25 ) is expressed  by Duhamel’s 
integral

  (30)

provided that initial conditions are zero: an(t) = 0, an(t) = 0; 
h(t–τ) is the response to Dirac’s delta function δ(t), and is 
given by



146 M. Reis, Y. Pala. Dynamic Response of a Slightly Curved Bridges Under Moving Mass Loads

 . (31)

Substituting the Eq (31) into (30) gives

  (32)

Since the present problem involves non-zero initial con-
ditions an(0) = An0, an(0) = 0 n = 1, 2, … , the solution of 
the homogenous part subjected to non-zero initial condi-
tions into Eq (32) must be included. This solution is simply 
given by

  , (33)

where

  (34) 

As a result, the general solution of Eq (25), subjected to 
non-zero conditions, are obtained as

  (35)

3. Results and discussion

Eq (35) has been solved by means of a program written 
in Matlab for various values of variables. The first 4 terms 
for n and k have been taken in the calculations. Depend-
ing upon the number of n and k, the solution time may 
become too long. In order to see the overall picture, trans-
versal deflection versus t (time) has been plotted for a spe-
cific example: L = 10 m, b = 0.2 m (width), h = 0.2 m (he-
ight), m = 100 kg/m, c = 1000 Ns/m, E = 2.07.1011 N/m2, 
A0 = (-0,1-0-0,1) m (amplitude of the curvature, Fig. 2) and 
for the moving mass: M = 1000 kg, v = (10-25-50) m/s. 

To see the effects of curvature of the bridge and ve-

locity of the moving mass on the dynamic response of the 
bridge, the Figs 3, 4 have been plotted. 

It is obvious, that in Fig. 3 initial curvature affects 
the response of the bridge. While a moving mass en-
ters the bridge (if the bridge is concave), the mid-point 
of the bridge goes down faster; but if the bridge is con-
vex, first the mid-point goes a little up for a very short 
time. It is interesting, when the time increases, the dif-
ference between the concave, straight and convex bridg-
es decrease (Fig. 3). Another interesting result seen in  
Fig. 3, when the bridge is concave: the maximum deflec-
tion of mid-point is higher than with a straight and convex 
bridge. But at high velocities bigger deflections occur in 
convex bridges. So, velocity has an important effect on the 
response of the bridge. The effect of curvature decreases at 
lower velocity of the moving mass, as seen in Fig. 3a.

 
Fig. 2. Convex, straight and concave bridges

 

Fig. 3. Variation of the deflection at mid-point of the bridge 
under moving mass load (centripetal and Coriolis effects 
involved) with respect to time t:  
a – v = 10 m/s; b – v = 25 m/s; c – v = 50 m/s
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One of the main objectives of the present work is to 
show and compare the effects of constant force (Mg), iner-
tial forces, centripetal and Coriolis forces on the vibration 
of the beam in case of straight and slightly curved bridge 
(convex bridge). The deflection y-y0 as a function of time t 
at the mid-point (x = 5m) is plotted in Figs 4a, 4b and 4c. It 
is clearly seen that as the velocity is increased, the effects of 
inertial, centripetal and Coriolis forces become more ap-
parent (Figs 4b, 4c).

4. Conclusions

In this study, the dynamic behavior of the slightly curved 
bridge under the moving mass loads have been investigat-
ed. The effects of inertial, centripetal and Coriolis forces 
together with the curvature have been taken into account. 
As also pointed by other writers, the problem under the 
present conditions is very difficult and requires special-
ized methods for an analytical solution. The solution has 
been obtained using the method proposed in Michaltsos, 
Kounadis 2001; Reis et al. 2008.  This method is not a new 
one, but an extension of the method of successive approxi-
mations. While applying the method to the present prob-
lem, it has been noticed that it required too much time 
for increasing values of n. However, this might create a 
convergence problem. In order to obtain sensitive results, 
the number of steps in calculating the value of Duhamel’s 
integral must be increased in parallel to the increase in 
the value of n.

For the special values of the variables, the theory has 
been exemplified and the effects of the variables have been 
shown. The present calculations have revealed that the ex-
cessive vibration of the bridge can be controlled by inten-
tionally giving a small curvature to the beam.

It has been  observed in the calculations that the  
inertial forces, centripetal forces and Coriolis forces are 
very effective on the transverse vibration depending on 
the speed of the mass, and the curvature of the beam. Both 
terms must be involved in the analysis for the high-speed 
motion of the mass. 

Without making much change in the present anal-
ysis, the method can be extended to the case of several 
moving mass loads.  Using the present analysis, sprung 
mass model can also be analyzed.  However, such an anal-
ysis would yield a system of coupled non-linear differen-
tial equations. When the forms of differential equations, 
especially when the type given by Eq (12) is considered, 
one should expect that the problem will be very difficult 
to analyze in case of a curved and damped bridge car-
rying sprung mass loads.  In this case, purely numerical 
techniques rather than approximate analytical methods 
should be used, and the convergence of the solution must 
be carefully observed.
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