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ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM

KENMOTSU MANIFOLDS ONTO RIEMANNIAN MANIFOLDS

A. BERI, I. KÜPELI ERKEN, AND C. MURATHAN

Abstract. The purpose of this paper is to study anti-invariant Riemannian sub-
mersions from Kenmotsu manifolds onto Riemannian manifolds. Several fundamental
results in this respect are proved. The integrability of the distributions and the geom-
etry of foliations are investigated. We proved that there do not exist (anti-invariant)
Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds such
that characteristic vector field ξ is a vertical vector field. We gave a method to get
horizontally conformal submersion examples from warped product manifolds onto
Riemannian manifolds. Furthermore, we presented an example of anti-invariant Rie-
mannian submersions in the case where the characteristic vector field ξ is a horizontal
vector field and an anti-invariant horizontally conformal submersion such that ξ is a
vertical vector field.

1. Introduction

Riemannian submersions between Riemannian manifolds were studied by O’Neill [16]
and Gray [9]. Riemannian submersions have several applications in mathematical physics.
Indeed, Riemannian submersions have their applications in the Yang-Mills theory ([4],
[27]), Kaluza-Klein theory ([5], [10]), supergravity and superstring theories ([11], [28]),
etc. Later such submersions were considered between manifolds with differentiable struc-
tures, see [8]. Furthermore, we have the following submersions: semi-Riemannian sub-
mersion and Lorentzian submersion [8], Riemannian submersion [9], slant submersion ([7],
[23]), almost Hermitian submersion [26], contact-complex submersion [13], quaternionic
submersion [12], almost h-slant submersion and h-slant submersion [19], semi-invariant
submersion [25], h-semi-invariant submersion [20], etc.

Comparing with the huge literature in Riemannian submersions, it seems that there
are necessary new studies in anti-invariant Riemannian submersions; an interesting paper
connecting these fields is [22]. Şahin [22] introduced anti-invariant Riemannian submer-
sions from almost Hermitian manifolds onto Riemannian manifolds. Later, he suggested
to investigate anti-invariant Riemannian submersions from almost contact metric mani-
folds onto Riemannian manifolds [24]. The present work is another step in this direction,
more precisely from the point of view of anti-invariant Riemannian submersions from
Kenmotsu manifolds. Our work is structured as follows: Section 2 is focused on basic
facts for Riemannian submersions and Kenmotsu manifolds. The third section is con-
cerned with definition of anti-invariant Riemannian submersions from Kenmotsu man-
ifolds onto Riemannian manifolds. We investigate the integrability of the distributions
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and the geometry of foliations. We proved that there do not exist (anti-invariant) Rie-
mannian submersions from Kenmotsu manifolds onto Riemannian manifolds such that
characteristic vector field ξ is vertical vector field. The last section is devoted to an
example of anti-invariant Riemannian submersions in the case where the characteristic
vector field ξ is a horizontal vector field and an anti-invariant horizontally conformal
submersion such that ξ is a vertical vector field.

2. Preliminaries

In this section we recall several notions and results which will be needed throughout
the paper.

LetM be an (2m+1)-dimensional connected differentiable manifold [3] endowed with
an almost contact metric structure (φ, ξ, η, g) consisting of a (1, 1)-tensor field φ,a vector
field ξ, a 1-form η and a compatible Riemannian metric g satisfying

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1,(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

g(φX, Y ) + g(X,φY ) = 0, η(X) = g(X, ξ),(2.3)

for all vector fields X,Y ∈ χ(M).
An almost contact metric manifold M is said to be a Kenmotsu manifold [14] if it

satisfies

(2.4) (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,

where ∇ is Levi-Civita connection of the Riemannian metric g. From the above equation
it follows that

∇Xξ = X − η(X)ξ,(2.5)

(∇Xη)Y = g(X,Y )− η(X)η(Y ).(2.6)

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of φ equals −2dη ⊗ ξ)
but not Sasakian. Moreover, it is also not compact since from equation (2.5) we get
divξ = 2m. Finally, the fundamental 2-form Φ is defined by Φ(X,Y ) = g(X,φY ). In
[14], Kenmotsu showed:

(a) that locally a Kenmotsu manifold is a warped product I×f N of an interval I and
a Kaehler manifold N with warping function f(t) = set, where s is a nonzero constant.

(b) that a Kenmotsu manifold of constant φ-sectional curvature is a space of constant
curvature −1 and so it is locally hyperbolic space.

Now we will give a well known example which is Kenmotsu manifold on R
5 by using

(a).

Example 1. We consider M = {(x1, x2, y1, y2, z) ∈ R
5 : z 6= 0}. Let η be a 1-form

defined by

η = dz.

The characteristic vector field ξ is given by ∂
∂z

and its Riemannian metric g in and tensor
field φ are given by

g = e2z
2

∑

i=1

((dxi)
2 + (dyi)

2) + (dz)2, φ =













0 0 −1 0 0
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
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This gives a Kenmotsu structure on M . The vector fields E1 = e−z ∂
∂y1

, E2 = e−z ∂
∂y2

,

E3 = e−z ∂
∂x1

, E4 = e−z ∂
∂x2

and E5 = ξ form a φ-basis for the Kenmotsu structure. On

the other hand, it can be shown that M(φ, ξ, η, g) is a Kenmotsu manifold.

Let (M, gM ) be an m-dimensional Riemannian manifold and let (N, gN ) be an n-
dimensional Riemannian manifold. A Riemannian submersion is a smooth map F :
M → N which is onto and satisfying the following axioms:
S1. F has maximal rank.
S2. The differential F∗ preserves the lenghts of horizontal vectors.
The fundamental tensors of a submersion were defined by O’Neill ([16],[17]). They are

(1, 2)-tensors on M , given by the following formulas:

T (E,F ) = TEF = H∇VEVF + V∇VEHF,(2.7)

A(E,F ) = AEF = V∇HEHF +H∇HEVF,(2.8)

for any vector fields E and F on M. Here ∇ denotes the Levi-Civita connection of gM .
These tensors are called integrability tensors for the Riemannian submersions. Note that
we denote the projection morphism on the distributions kerF∗ and (kerF∗)⊥ by V and
H, respectively.

If the second condition S2. can be changed as F∗ restricted to horizontal distribution
of F is a conformal mapping, we get horizontally conformal submersion definition [18].
In this case the second condition can be written in a following way:

(2.9) gM (X,Y ) = e2λ(p)gN(F∗X,F∗Y ), ∀p ∈M, ∀X,Y ∈ Γ((kerF∗)
⊥), ∃λ ∈ C∞(M).

The warped productM =M1×fM2 of two Riemannian manifolds (M1,g1) and (M2,g2),
is the Cartesian product manifold M1 ×M2, endowed with the warped product metric
g = g1 + fg2, where f is a positive function on M1. More precisely, the Riemannian
metric g on M1 ×f M2 is defined for pairs of vector fields X,Y on M1 ×M2 by

g(X,Y ) = g1(π1∗(X), π1∗(Y )) + f2(π1(.))g2(π2∗(X), π2∗(Y )),

where π1 : M1 ×M2 → M1; (p, q) → p and π2 : M1 ×M2 → M2; (p, q) → q are the
canonical projections. We recall that this projections are submersions. If f is not a con-
stant function of value 1, one can prove that second projection is a conformal submersion
whose vertical and horizontal spaces at any point (p, q) are respectively identified with
TpM1, TqM2.

Let L(M1) and L(M2) be the set of lifts of vector fields on M1 and M2 to M1 ×f M2

respectively. We use the same notation for a vector field and for its lift. We denote the
Levi-Civita connection of the warped product metric tensor of g by ∇.

Proposition 1. [17]M =M1×f M2 be a warped Riemannian product manifold with the
warping function f on M1. If X1, Y1 ∈ L(M1) and X2, Y2 ∈ L(M2), then

(i)∇X1Y1 is the lift of ∇1
X1
Y1,

(ii)∇X1X2 = ∇X2X1 = (X1f/f)X2,
(iii) nor ∇X2Y2 = −(g(X2, Y2)/f)gradf ,
(iv) tan ∇X2Y2 ∈ L(M2) is the lift of ∇2

X2
Y2,

where ∇1 and ∇2 are Riemannian connections on M1 and M2, respectively.

Now we will introduce the following proposition ([6],pp.86) for the Subsection 3.2.

Proposition 2. If φ is a submersion of N onto N1 and if ψ:N1 → N2 is a differentiable
function, then the rank of ψ ◦ φ at p is equal to the rank of ψ at φ(p).
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The following lemmas are well known from ([16],[17]):

Lemma 1. For any U,W vertical and X,Y horizontal vector fields, the tensor fields T
and A satisfy

i)TUW = TWU,(2.10)

ii)AXY = −AYX =
1

2
V [X,Y ] .(2.11)

It is easy to see that T is vertical, TE = TVE , and A is horizontal, A = AHE .
For each q ∈ N, F−1(q) is an (m−n)-dimensional submanifold ofM . The submanifolds

F−1(q) are called fibers. A vector field on M is called vertical if it is always tangent to
fibers. A vector field on M is called horizontal if it is always orthogonal to fibers. A
vector field X on M is called basic if X is horizontal and F -related to a vector field X∗
on N, i. e., F∗Xp = X∗F (p) for all p ∈M.

Lemma 2. Let F : (M, gM ) → (N, gN ) be a Riemannian submersion. If X, Y are basic
vector fields on M , then

i) gM (X,Y ) = gN(X∗, Y∗) ◦ F,
ii) H[X,Y ] is basic and F -related to [X∗, Y∗],

iii)H(∇XY ) is a basic vector field corresponding to∇∗

X∗
Y∗ where∇∗ is the connection

on N.
iv) for any vertical vector field V , [X,V ] is vertical.
Moreover, if X is basic and U is vertical, then H(∇UX) = H(∇XU) = AXU. On the

other hand, from (2.7) and (2.8) we have

∇VW = TVW + ∇̂VW,(2.12)

∇VX = H∇VX + TVX,(2.13)

∇XV = AXV + V∇XV,(2.14)

∇XY = H∇XY +AXY,(2.15)

for X,Y ∈ Γ((kerF∗)⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW.
Notice that T acts on the fibres as the second fundamental form of the submersion

and restricted to vertical vector fields and it can be easily seen that T = 0 is equivalent
to the condition that the fibres are totally geodesic. A Riemannian submersion is called
a Riemannian submersion with totally geodesic fibers if T vanishes identically. Let
U1, ..., Um−n be an orthonormal frame of Γ(kerF∗). Then the horizontal vector field H

= 1
m−n

m−n
∑

j=1

TUj
Uj is called the mean curvature vector field of the fiber. If H = 0, then

the Riemannian submersion is said to be minimal. A Riemannian submersion is called a
Riemannian submersion with totally umbilical fibers if

(2.16) TUW = gM (U,W )H,

for U,W ∈ Γ(kerF∗). For any E ∈ Γ(TM), TE and AE are skew-symmetric operators
on (Γ(TM), gM ) reversing the horizontal and the vertical distributions. By Lemma 1,
horizontal distribution H is integrable if and only if A =0. For any D,E,G ∈ Γ(TM),
one has

(2.17) g(TDE,G) + g(TDG,E) = 0

and

(2.18) g(ADE,G) + g(ADG,E) = 0.
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Finally, we recall the notion of harmonic maps between Riemannian manifolds. Let
(M, gM ) and (N, gN ) be Riemannian manifolds and supposed that ϕ : M → N is a
smooth map between them. Then the differential ϕ∗ of ϕ can be viewed as a section
of the bundle Hom(TM,ϕ−1TN) → M, where ϕ−1TN is the pullback bundle which
has fibres (ϕ−1TN)p = Tϕ(p)N, p ∈M. Hom(TM,ϕ−1TN) has a connection ∇ induced

from the Levi-Civita connection ∇M and the pullback connection. Then the second
fundamental form of ϕ is given by

(2.19) (∇ϕ∗)(X,Y ) = ∇ϕ
Xϕ∗(Y )− ϕ∗(∇M

X Y ),

for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the second
fundamental form is symmetric. If ϕ is a Riemannian submersion, it can be easily proved
that

(2.20) (∇ϕ∗)(X,Y ) = 0,

for X,Y ∈ Γ((kerF∗)⊥). A smooth map ϕ : (M, gM ) → (N, gN ) is said to be harmonic
if trace(∇ϕ∗) = 0. On the other hand, the tension field of ϕ is the section τ(ϕ) of
Γ(ϕ−1TN) defined by

(2.21) τ(ϕ) = divϕ∗ =

m
∑

i=1

(∇ϕ∗)(ei, ei),

where {e1, ..., em} is the orthonormal frame on M . Then it follows that ϕ is harmonic if
and only if τ (ϕ) = 0, (for details, see [2]).

Let g be a Riemannian metric tensor on the manifold M =M1×M2 and assume that
the canonical foliations DM1 and DM2 intersect perpendicularly everywhere. Then g is
the metric tensor of a usual product of Riemannian manifolds if and only if DM1 and
DM2 are totally geodesic foliations [21].

3. Anti-invariant Riemannian submersions

In this section, we are going to define anti-invariant Riemannian submersions from
Kenmotsu manifolds and investigate the geometry of such submersions.

Definition 1. Let M(φ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) a Riemann-
ian manifold. A Riemannian submersion F : M(φ, ξ, η, gM ) → (N, gN ) is called an
anti-invariant Riemannian submersion if kerF∗ is anti-invariant with respect to φ, i.e.
φ(kerF∗) ⊆ (kerF∗)⊥.

Let F : M(φ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian submersion from
a Kenmotsu manifold M(φ, ξ, η, gM ) to a Riemannian manifold (N, gN ). First of all,
from Definition 1, we have φ(kerF∗)⊥ ∩ (kerF∗) 6= {0} . We denote the complementary
orthogonal distribution to φ(kerF∗) in (kerF∗)⊥ by µ. Then we have

(3.1) (kerF∗)
⊥ = φ kerF∗ ⊕ µ.

3.1. Anti-invariant Riemannian submersions admitting horizontal structure

vector field. In this subsection, we will study anti-invariant Riemannian submersions
from a Kenmotsu manifold onto a Riemannian manifold such that the characteristic
vector field ξ is a horizontal vector field. Using (3.1), we have µ = φµ ⊕ {ξ}. For any
horizontal vector field X we put

(3.2) φX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ).
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Now we suppose that V is vertical and X is horizontal vector field. Using above
relation and (2.2), we obtain

(3.3) gM (CX, φV ) = 0.

By virtue of (2.2) and (3.2), we get

gM (CX, φU) = gM (φX −BX,φU)(3.4)

= gM (X,U)− η(X)η(U)− gM (BX,φU).

Since φU ∈ Γ((kerF∗)⊥) and ξ ∈ Γ(kerF∗)⊥, (3.4) implies (3.3). From this last relation
we have gN (F∗φV, F∗CX) = 0 which implies that

(3.5) TN = F∗(φ(kerF∗))⊕ F∗(µ).

The proof of the following result is the same as Theorem 10 of [15], therefore we omit its
proof.

Theorem 1. Let M(φ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and
(N, gN ) a Riemannian manifold of dimension n. Let F : M(φ, ξ, η, gM ) → (N, gN ) be
an anti-invariant Riemannian submersion such that (kerF∗)⊥ = φ kerF∗ ⊕ {ξ}.Then
m+ 1 = n.

Remark 1. We note that Example 2 satisfies Theorem 1.

Lemma 3. Let F be an anti-invariant Riemannian submersion from a Kenmotsu man-
ifold M(φ, ξ, η, gM ) to a Riemannian manifold (N, gN). Then we have

(3.6) AXξ = 0,

(3.7) TUξ = U,

(3.8) gM (∇Y CX, φU) = −gM (CX, φAY U),

for X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(kerF∗).

Proof. Using (2.15) and (2.5), we have (3.6). Using (2.13) and (2.5), we obtain (3.7).
Now using (3.3), we get

gM (∇Y CX, φU) = −gM(CX,∇Y φU),

for X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(kerF∗). Then (2.14) and (2.4) imply that

gM (∇Y CX, φU) = −gM (CX, φAY U)− gM (CX, φ(V∇Y U)).

Since φ(V∇Y U) ∈ Γ((kerF∗)⊥), we obtain (3.8). �

We now study the integrability of the distribution (kerF∗)⊥ and then we investigate
the geometry of leaves of kerF∗ and (kerF∗)⊥.

Theorem 2. Let F be an anti-invariant Riemannian submersion from a Kenmotsu man-
ifold M(φ, ξ, η, gM ) to a Riemannian manifold (N, gN). Then the following assertions
are equivalent to each other:

i) (kerF∗)⊥ is integrable,
ii) gN ((∇F∗)(Y,BX), F∗φV ) = gN((∇F∗)(X,BX), F∗φV )

+gM (CY, φAXV )− gM (CX, φAY V ),
iii) gM (AXBY −AY BX,φV ) = gM (CY, φAXV )− gM (CX, φAY V )
for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).
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Proof. From (2.2) and (2.4), one easily obtains

gM ([X,Y ] , V ) = gM (∇XY, V )− gM (∇YX,V )

= gM (∇XφY, φV )− gM (∇Y φX, φV ).

for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).Then from (3.2), we have

gM ([X,Y ] , V ) = gM (∇XBY, φV ) + gM (∇XCY, φV )− gM (∇Y BX,φV )

−gM(∇Y CX, φV ).

Taking into account that F is a Riemannian submersion and using (2.8), (2.14) and (3.8),
we obtain

gM ([X,Y ] , V ) = gN (F∗∇XBY, F∗φV )− gM (CY, φAXV )

−gN(F∗∇YBX,F∗φV ) + gM (CX, φAY V ).

Thus, from (2.19) we have

gM ([X,Y ] , V ) = gN(−(∇F∗)(X,BY ) + (∇F∗)(Y,BX), F∗φV )

+gM (CX, φAY V )− gM (CY, φAXV )

which proves (i) ⇔ (ii). On the other hand using (2.19), we get

(∇F∗)(Y,BX)− (∇F∗)(X,BY ) = −F∗(∇Y BX −∇XBY ).

Then (2.14) implies that

(∇F∗)(Y,BX)− (∇F∗)(X,BY ) = −F∗(AY BX −AXBY ).

From (2.8) it follows that AY BX − AXBY ∈ Γ((kerF∗)⊥), this shows that (ii) ⇔
(iii). �

Remark 2. We assume that (kerF∗)⊥ = φ kerF∗ ⊕{ξ}. Using (3.2) one can prove that
CX = 0 for X ∈ Γ((kerF∗)⊥).

Hence we can give the following corollary.

Corollary 1. Let M(φ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and
(N, gN ) a Riemannian manifold of dimension n. Let F :M(φ, ξ, η, gM ) → (N, gN ) be an
anti-invariant Riemannian submersion such that (kerF∗)⊥ = φ kerF∗ ⊕ {ξ}. Then the
following assertions are equivalent to each other:
i) (kerF∗)⊥ is integrable,
ii) (∇F∗)(X,φY ) = (∇F∗)(φX, Y ), for X ∈ Γ((kerF∗)⊥) and X,Y ∈ Γ((kerF∗)⊥),
iii) AXφY = AY φX.

Theorem 3. Let M(φ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and
(N, gN ) a Riemannian manifold of dimension n. Let F :M(φ, ξ, η, gM ) → (N, gN ) be an
anti-invariant Riemannian submersion. Then the following assertions are equivalent to
each other:

i) (kerF∗)⊥ defines a totally geodesic foliation on M,
ii) gM (AXBY, φV ) = gM (CY, φAXV ),
iii) gN ((∇F∗)(X,φY ), F∗φV ) = −gM (CY, φAXV ),
for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).
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Proof. From (2.2) and (2.4), we obtain

gM (∇XY, V ) = gM (∇XφY, φV ),

for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).By virtue of (3.2), we get

gM (∇XY, V ) = gM (∇XBY +∇XCY, φV ).

Using (2.14) and (3.8), we have

gM (∇XY, V ) = gM (AXBY + V∇XBY, φV )− gM (CY, φAXV ).

The last equation shows (i) ⇔ (ii).
For X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗),

(3.9) gM (AXBY, φV ) = gM (CY, φAXV )

Since differential F∗ preserves the lenghts of horizontal vectors the relation (3.9) forms

(3.10) gM (CY, φAXV ) = gN (F∗AXBY, F∗φV )

By using (2.14) and (2.19) in (3.10), we obtain

gM (CY, φAXV ) = gN(−(∇F∗)(X,φY ), F∗φV )

which tells that (ii) ⇔ (iii). �

Corollary 2. Let F : M(φ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian sub-
mersion such that (kerF∗)⊥ = φ kerF∗⊕{ξ}, where M(φ, ξ, η, gM ) is a Kenmotsu mani-
fold and (N, gN ) is a Riemannian manifold. Then the following assertions are equivalent
to each other:

i) (kerF∗)⊥ defines a totally geodesic foliation on M,
ii) AXφY = 0,
iii) (∇F∗)(X,φY ) = 0 for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).

The following result is a consequence from (2.12) and (3.7).

Theorem 4. Let F be an anti-invariant Riemannian submersion from a Kenmotsu
manifold M(φ, ξ, η, gM ) to a Riemannian manifold (N, gN ). Then (kerF∗) does not
define a totally geodesic foliation on M.

Using Theorem 4, one can give the following result.

Theorem 5. Let F : M(φ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian sub-
mersion where M(φ, ξ, η, gM ) is a Kenmotsu manifold and (N, gN ) is a Riemannian
manifold. Then F is not a totally geodesic map.

Remark 3. Now we suppose that {e1, ..., em} is a local orthonormal frame of Γ(kerF∗).

From the well known equation H = 1
m

m
∑

i=1

Teiei ,(2.12) and (2.17) we have

mg(H, ξ) = g(Te1e1, ξ) + g(Te2e2, ξ) + · · ·+ g(Temem, ξ)

= −g(Te1ξ, e1)− g(Te2ξ, e2)− · · · − g(Temξ, em)

= −g(e1, e1)− g(e2, e2)− · · · − g(em, em)

= −m
We get g(H, ξ) = −1. So kerF∗ has not minimal fibres.

By virtue of Remark 3, we have the following theorem.
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Theorem 6. Let F : M(φ, ξ, η, gM ) → (N, gN ) be an anti-invariant Riemannian sub-
mersion where M(φ, ξ, η, gM ) is a Kenmotsu manifold and (N, gN ) is a Riemannian
manifold. Then F is not harmonic.

3.2. Anti-invariant Riemannian submersions admitting vertical structure vec-

tor field. In this subsection, we will prove that there do not exist (anti-invariant) Rie-
mannian submersions from Kenmotsu manifolds onto Riemannian manifolds such that
characteristic vector field ξ is a vertical vector field. Moreover, we will give a method
to get horizontally conformal submersion examples from warped product manifolds onto
Riemannian manifolds.

It is easy to see that µ is an invariant distribution of (kerF∗)⊥, under the endomor-
phism φ. Thus, for X ∈ Γ((kerF∗)⊥), we have

(3.11) φX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ). On the other hand, since F∗((kerF∗)⊥) = TN
and F is a Riemannian submersion, using (3.11) we derive gN(F∗φV, F∗CX) = 0, for
every X ∈ Γ((kerF∗))⊥ and V ∈ Γ(kerF∗), which implies that

(3.12) TN = F∗(φ(kerF∗))⊕ F∗(µ).

Theorem 7. Let (Mm+1 = I ×f L
m, gM = dt2 + f2gL) be a warped product manifold

of an interval I and a Riemannian manifold L. If F : (Mm+1, gM ) → (Nn, gN) is a
Riemannian submersion with vertical vector field ∂

∂t
= ∂t then warped product manifold

is a Riemannian product manifold.

Proof. Let σ = (t, x1, x2, ..., xm) be a coordinate system forM at p ∈M and y1, y2, ..., yn
be a coordinate system for N at F (p). Since ∂t is a vertical vector field, we have

0 = F∗(∂t)p =

n
∑

i=1

∂(yi ◦ F )
∂t

(p)
∂

∂yi
|F (p) .

So the component functions yi ◦ F = fi of F do not contain t parameter. Namely,

F : I ×f L→ N, (t, x) → F (t, x) = (f1(x), ..., fn(x)),

where x = (x1, x2, ..., xm) and also (kerF∗)⊥ |(t,x)⊆ T(t,x)({t} × L) ∼= TxL at point

p = (t, x) ∈ M . That is, if X̃ ∈ (kerF∗)⊥, there is a vector field X ∈ Γ(TN) such that

the lift of X to I ×L is the vector field X̃ , π2∗(X̃p) = Xπ2(p) for all p ∈M . For the sake
of the simplify we use the same notation for a vector field and for its lift.

Using Proposition 1 (ii), we obtain

(3.13) ∇X∂t =
f ′

f
X

for X ∈ Γ((kerF∗)⊥). From (2.14) and (3.13) we have

(3.14) AX∂t =
f ′

f
X

for X ∈ Γ((kerF∗)⊥).
By applying (2.11), (2.18) and (3.14), we find

gM (AXY, ∂t) = −f
′

f
gM (X,Y ) = −f

′

f
gM (Y,X) = gM (AYX, ∂t) = −gM (AXY, ∂t)
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for X,Y ∈ Γ((kerF∗)⊥). Thus, we obtain

(3.15) gM (AXY, ∂t) = −f
′

f
gM (X,Y ) = 0.

It follows from (3.15) that f ′ = 0 . Hence warping function f must be constant. There-
fore, up to a change of scale, M is a Riemannian product manifold. �

Theorem 8. Let M(φ, ξ, η, gM ) be a Kenmotsu manifold of dimension 2m + 1 and
(N, gN ) is a Riemannian manifold of dimension n. There does not exist a Riemannian
submersion F : M(φ, ξ, η, gM ) → (N, gN ) such that characteristic vector field ξ is a
vertical vector field.

Proof. From [14] we know that locally a Kenmotsu manifold is a warped product I ×f L
of an interval I and a Kaehler manifold L with metric gM = dt2 + f2gL and warping
function f(t) = set, where s is a positive constant. Let ξ = ∂

∂t
= ∂t be a vertical vector

field. It follows from Theorem 7 , M is a Riemannian product manifold. Since f(t) = set

is not constant , M can not be a Riemannian product manifold. This is a contradiction
which completes the proof of theorem. �

Theorem 9. Let M =M1×fM2 be a warped product manifold with metric g = g1+f
2g2

, π2 : M1 ×M2 → M2 second canonical projection and (M3, g3) Riemannian manifold.
If f1 is a Riemannian submerison from M2 onto M3 then f2 = f1 ◦ π2 : M → M3 is a
horizontally conformal submersion.

Proof. Since f1 is a Riemannian submersion, rank f1 = dimM3. Using Proposition 2, we
have rank f2|(p,q) = rank f1 |f1(q)= dimM3 for any point (p, q) ∈M. Consequently f2 is a
submersion. Since π2 is a natural horizontally conformal submersion for a warped product
manifold, we get kerπ2∗|(p,q) = T(p,q)M1 ≡ T(p,q)(M1 × {q}) ∼= TpM1. So ker f2∗|(p,q)

∼=
TpM1 × ker f1∗q and (ker f2∗)⊥|(p,q) = {p} × (ker f1∗)⊥|q

∼= (ker f1∗)⊥|q. Hence,

g(X,Y ) = f2(p)g2(π2∗(X), π2∗(Y ))

= f2(p)g3(f1∗(π2∗(X)), f1∗(π2∗(Y ))

= f2(p)g3(f2∗(X), f2∗(Y ))

for X,Y ∈ Γ((ker f2∗)⊥). So we get the requested result. �

Remark 4. Theorem 9 gives a chance to produce horizontally conformal submersion
examples.

4. Examples

We now give some examples for anti-invariant submersion and anti-invariant horizon-
tally conformal submersions from Kenmotsu manifolds.

Example 2. Let M be a Kenmotsu manifold as in Example 1. Let N be R×ez R
2 The

Riemannian metric tensor field gN is defined by gN = e2z(du ⊗ du+ dv ⊗ dv) + dz ⊗ dz
on N .

Let F : M → N be a map defined by F (x1, x2, y1, y2, t) = (x1+y2√
2
, x2+y1√

2
, z). Then, a

simple calculation gives

kerF∗ = span{V1 =
1√
2
(E2 − E3), V2 =

1√
2
(E1 − E4)}
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and

(kerF∗)
⊥ = span{H1 =

1√
2
(E1 + E4), H2 =

1√
2
(E2 + E3), H3 = E5 = ξ}.

Then it is easy to see that F is a Riemannian submersion. Moreover, φV1 = −H1,
φV2 = −H2 imply that φ(kerF∗) ⊂ (kerF∗)⊥ = φ(kerF∗) ⊕ {ξ}. Thus F is an anti-
invariant Riemannian submersion such that ξ is a horizontal vector field.

Example 3. Let M be a Kenmotsu manifold as in Example 1 and N be R
2. The

Riemannian metric tensor field gN is defined by gN = e2z(du ⊗ du+ dv ⊗ dv) on N .
Let F : M → N be a map defined by F (x1, x2, y1, y2, z) = (x1+y2√

2
, x2+y1√

2
). Then, by

direct calculations we have

kerF∗ = span{V1 =
1√
2
(E3 − E2), V2 =

1√
2
(E4 − E1), V3 = E5 = ξ =

∂

∂z
}

and

(kerF∗)
⊥ = span{H1 =

1√
2
(E3 + E2), H2 =

1√
2
(E4 + E1)}.

Then it is easy to see that F is a horizontally conformal submersion. Moreover, φV1 =
H2, φV2 = H1, φV3 = 0 imply that φ(kerF∗) = (kerF∗)⊥. As a result, F is an anti-
invariant horizontally conformal submersion such that ξ is a vertical vector field.

Remark 5. Recently Akyol M.A. and Şahin B. [1] studied conformal anti-invariant sub-
mersions from almost Hermitian manifolds onto Riemannian manifolds. So it will be
worth the study area which is anti-invariant (horizontally) conformal submersion from
almost contact metric manifolds onto Riemannian manifolds.
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