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ON THE EXISTENCE OF PROPER NEARLY KENMOTSU

MANIFOLDS

I. KÜPELI ERKEN, PIOTR DACKO, AND C. MURATHAN

Abstract. This is an expository paper, which provides a first approach to nearly
Kenmotsu manifolds. The purpose of this paper is to focus on nearly Kenmotsu
manifolds and get some new results from it. We prove that for a nearly Kenmotsu
manifold is locally isometric to warped product of real line and nearly Kähler mani-
fold. Finally, we prove that there exist no nearly Kenmotsu hypersurface M

2n+1 of
nearly Kähler manifold N

2n+2. It is shown that a normal nearly Kenmotsu manifold
is Kenmotsu manifold.

1. Introduction

Nearly Kaehler manifolds were defined by Gray [7]. He carry on study of Nearly
Kaehler manifolds [8], [9]. Nearly Sasakian manifolds were introduced by Blair, Show-
ers and Yano in [2]. Afterwards, Olszak studied nearly Sasakian manifolds in [11]. He
gave properties of 5-dimensional nearly Sasakian non-Sasakian manifolds. Parallel to
the study of [11], Endo studied nearly cosymplectic manifolds [6]. Recently, Cappelletti
Montano and Dileo study Nearly Sasakian Geometry [4]. While much of the similarity
between nearly Sasakian manifolds and nearly cosymplectic manifolds are emphasized,
and properties of these manifolds are investigated, nearly Kenmotsu manifolds are ig-
nored. The notion of nearly Kenmotsu manifold was introduced in [14]. In the present
paper, we want to fill this gap in the study of nearly Kenmotsu manifolds. In literature
we did not fall in with proper nearly Kenmotsu manifold examples. So one can ask the
following question. Do there exist proper nearly Kenmotsu manifolds? In this paper we
give a positive answer to the question for dimension > 5. In this study we gave certain
properties of such manifolds. Our work is structured as follows: In Section 2, we report
some basic information about nearly Kenmotsu manifolds. In the next section, we give
some curvature identies about nearly Kenmotsu manifolds and we prove that for a nearly
Kenmotsu manifold, H = 0 and the distribution D is completely integrable. In the last
section, we show that a normal nearly Kenmotsu manifold is Kenmotsu manifold and
there exist no nearly Kenmotsu hypersurface M2n+1 of nearly Kaehler manifold N2n+2.

2. Preliminaries

In this paper all objects are to be considered as C∞-class, manifolds are assumed to
be connected. We accept the following convention that X,Y, Z,W . . ., will denote vector
fields, if it is not otherwise stated.

Let M be a (2n+ 1)-dimensional differentiable manifold and φ is a (1, 1) tensor field,
ξ is a vector field, η is a one-form, g Riemannina metric on M . Then (φ, ξ, η, g) is called

2010 Mathematics Subject Classification. 53C25, 53C55, 53D15.
Key words and phrases. Almost Contact Metric Manifold, Kenmotsu Manifold, Nearly Kenmotsu

Manifold.

1

http://arxiv.org/abs/1505.05462v1
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an almost contact metric structure on M , if

φ2 = −Id+ η ⊗ ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ).

and M is said to be an almost contact metric manifold if it is endowed with an almost
contact metric structure [1], [16]. For such manifold

η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0,(2.1)

g(X,φY ) + g(Y, φX) = 0,(2.2)

tensor field Φ(X,Y ) = g(X,φY ), is customary called fundamental form. In this paper
we will refer to ξ, as Reeb vector field and η, as Reeb form. By [φ, φ] we denote Nijenhuis
torsion tensor of φ, by definition

(2.3) [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[X,φ, Y ]− φ[X,φY ],

where [X,Y ] denotes the Lie bracket of vector fields.
An almost contact metric manifold (M,φ, ξ, η) is called nearly Kenmotsu manifold

[14], if

(2.4) (∇Xφ)Y + (∇Y φ)X = −η(Y )φX − η(X)φY,

where ∇ is the Levi-Civita connection of g. Moreover, if M satisfies

(2.5) (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,

then it is called Kenmotsu manifold [10]. Every Kenmotsu manifold is a nearly Kenmotsu
manifold but the converse is not true, which in fact will be proved in this paper. If M
is nearly Kenmotsu but non Kenmotsu we will call manifold is proper nearly Kenmotsu
manifold.

Let M be nearly Kenmotsu manifold. We define (1, 1)-tensor field H , by dη(X,Y ) =
g(HX,Y ). Later on we will show that H = 0.

Proposition 1. For a nearly Kenmotsu manifold we have

g(∇Xξ, Y ) + g(X,∇Y ξ) = 2g(φX, φY ), ∇Xξ = −φ2X +HX,(2.6)

∇ξφ = φH, φH +Hφ = 0, Hξ = 0, ∇ξξ = 0.(2.7)

Proof. By (2.4), (∇ξφ)ξ = φ∇ξξ = 0, hence ∇ξξ = 0, and ∇ξη = 0. Now, g(φX, φY ) =
g(X,Y )− η(X)η(Y ), yields

0 = g((∇ξφ)X,φY ) + g((∇ξφ)Y, φX) = −g((∇Xφ)ξ, φY )− g((∇Y φ)ξ, φX)

−2g(φX, φY ) = g(∇Xξ, Y ) + g(∇Y ξ,X)− 2g(φX, φY ).

With help of definition of H , ∇Xξ = −φ2X +HX . By φξ = 0, and η(φX) = 0

0 = (∇Xφ)ξ + φ∇Xξ = −(∇ξφ)X + φHX,(2.8)

0 = η((∇Xφ)Y ) + η((∇Y φ)X) = −g((∇Xφ)ξ, Y )− g((∇Y φ)ξ,X)(2.9)

= g((∇ξφ)X,Y ) + g((∇ξφ)Y,X) = g(φHX, Y ) + g(φHY,X)

= g((φH +Hφ)X,Y ).

�
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Proposition 2. The fundamental form satisfies

3dΦ(X,Y, Z) = −3g((∇Xφ)Y, Z)− η(Y )g(φX,Z) + η(Z)g(φX, Y )(2.10)

− 2η(X)g(φY, Z).

dΦ(X,Y, Z)− η(Z)(∇ξΦ)(X,Y ) =
1

4
g([φ, φ](X,Y ), φZ) + 2(η ∧Φ)(X,Y, Z).(2.11)

Proof. From identities

3dΦ(X,Y, Z) = (∇XΦ)(Y, Z) + (∇Y Φ)(Z,X) + (∇ZΦ)(X,Y ),(2.12)

[φ, φ](X,Y ) = −φ(∇Xφ)Y + φ(∇Y φ)X + (∇φXφ)Y − (∇φY φ)X.(2.13)

we obtain

(2.14) 3dΦ(X,Y, Z) = −g((∇Xφ)Y, Z)− g((∇Zφ)X,Y ) + g((∇Y φ)X,Z)

= −3g((∇Xφ)Y, Z)− 2η(X)g(φY, Z) + η(Y )g(φZ,X)− η(Z)g(φY,X),

(2.15)
1

2
[φ, φ](X,Y ) = −φ(∇Xφ)Y + φ(∇Y φ)X + η(Y )X − η(X)Y.

Hence

6dΦ(X,Y, Z) = −3g((∇Xφ)Y−(∇Y φ)X,Z)+η(Y )g(φX,Z)−η(X)g(φY, Z)+2η(Z)g(φX, Y )

=
3

2
g([φ, φ](X,Y ), φZ) + 4η(X)g(Y, φZ) + 4η(Y )g(Z, φX) + 4η(Z)g(X,φY )+

6η(Z)(∇ξΦ)(X,Y ) =
3

2
g([φ, φ], φZ) + 12(η ∧ Φ)(X,Y, Z) + 6η(Z)(∇ξΦ)(X,Y ).

�

3. Structure of nearly Kenmotsu Manifolds

In this section, we will proof curvature relations for nearly Kenmotsu manifold. Let
R be Riemann curvature operator

R(X,Y )Z = (∇2
X,Y Z)− (∇2

Y,XZ) = [∇X ,∇Y ]Z −∇[X,Y ]Z,

by the same letter we denote corresponding (0, 4)-tensor

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

Theorem 1. Let (M,φ, ξ, η, g) be nearly Kenmotsu manifold. We have following curva-

ture relations

R(φX, Y, Z,W ) +R(X,φY, Z,W ) +R(X,Y, φZ,W ) +R(X,Y, Z, φW ) = 0,(3.1)

R(φX, φY, Z,W ) = R(X,Y, φZ, φW ),(3.2)

R(φX, φY, φZ, φW ) = R(X,Y, Z,W )− η(X)R(ξ, Y, Z,W ) + η(Y )R(ξ,X, Z,W ).(3.3)

Proof. Let T be (1, 3)-tensor defined by (cf. (2.4))

(3.4) (∇2
X,Y φ)Z + (∇2

X,Zφ)Y = T (X,Y, Z),

clearly T (X,Y, Z) = T (X,Z, Y ). For simplicity T will also denote corresponding (0, 4)-
tensor

T (X,Y, Z,W ) = g(T (X,Y, Z),W ).

From the Ricci identity,

0 = R(X,Y, Z, φW )−R(X,Y,W, φZ)− g((∇2
X,Y φ)Z,W ) + g((∇2

Y,Xφ)Z,W )



4 I. KÜPELI ERKEN, PIOTR DACKO, AND C. MURATHAN

eq. (3.4), and the first Bianchi identity, we find

R(X,Y, Z, φW ) = R(X,Y,W, φZ) + g((∇2
X,Y φ)Z,W − g((∇2

Y,Xφ)Z,W )(3.5)

= R(X,Y,W, φZ)− g((∇2
X,Zφ)Y,W ) + g((∇2

Y,Zφ)X,W )+

T (X,Z, Y,W )− T (Y, Z,X,W ),

R(X,Y, Z, φW ) = R(X,Z, Y, φW )−R(Y, Z,X, φW ) = R(X,Z, Y, φW )(3.6)

−R(Y, Z,W, φX)− g((∇2
Y,Zφ)(X,W ) + g((∇2

Z,Y φ)X,W ),

comparing right hand sides of these equations, we obtain

R(X,Z, Y, φW )−R(Y, Z,W, φX)−R(X,Y,W, φZ) + g((∇2
Z,Y φ)X,W )+(3.7)

g((∇2
X,Zφ)Y,W ) + T (Y, Z,X,W )− T (X,Z, Y,W ) = 2g((∇2

Y,Zφ)X,W ),

we note, that

g((∇2
Z,Y φ)X,W ) + g((∇2

X,Zφ)Y,W ) = R(X,Z, Y, φW )(3.8)

−R(X,Z,W, φY ) + T (Z,X, Y,W ),

g((∇2
Y,Zφ)X,W ) = g((∇2

Y,Wφ)Z,X)− T (Y,W,Z,X),(3.9)

which being taken into account in (3.7), follow

2R(X,Z, Y, φW )−R(X,Y,W, φZ)−R(Y, Z,W, φX)−R(X,Z,W, φY )+(3.10)

T (Y, Z,X,W ) + T (Z,X, Y,W )− T (X,Y, Z,W )+

2T (Y,W,Z,X) = 2g((∇2
Y,Wφ)Z,X).

By straightforward computations

(3.11) T (Y, Z,X,W ) + T (Z,X, Y,W )− T (X,Y, Z,W ) + 2T (Y,W,Z,X) =

C(X,Y, Z,W ) + 2g(φY,W )g(HX,Z) + 2g(φX,Z)g(HY,W )+

2g(φX,W )g(HY,Z) + 2g(φZ,W )g(HX,Y )+

2g(φZ,X)g(Y, φ2W ) + η(X)η(Y )g(φZ,W )− η(Z)η(Y )g(φX,W ),

where

C(X,Y, Z,W ) = −η(Y )g((∇Zφ)X,W ) + η(Y )g((∇Xφ)Z,W )(3.12)

− 2η(W )g((∇Y φ)Z,X).

The anti-symmetrization of (3.10), in Y and W , and the first Bianchi identity, follow

3R(φX,Z, Y,W ) + 3R(X,φZ, Y,W ) + 3R(X,Z, φY,W ) + 3R(X,Z, Y, φW )+

4g(φY,W )g(HX,Z) + 4g(φX,Z)g(HY,W ) + 2g(φX,W )g(HY,Z)

− 2g(φX, Y )g(HW,Z) + 2g(φZ,W )g(HX,Y )− 2g(φZ, Y )g(HX,W ) = 0,

now (3.1) will be proved, if H = 0. We shall focus on the proof that H = 0.
For X = ξ (Hξ = φξ = 0) we obtain

R(ξ, φZ, Y,W ) +R(ξ, Z, φY,W ) +R(ξ, Z, Y, φW ) = 0,(3.13)

−R(ξ, Z, φY,W )−R(ξ, φZ, Y,W ) + η(Y )R(ξ, φZ, ξ,W )+(3.14)

R(ξ, φZ, φY, φW ) = 0,

hence

(3.15) R(ξ, Z, Y, φW ) +R(ξ, φZ, φY, φW ) + η(Y )R(ξ, φZ, ξ,W ) = 0,
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and

−R(ξ, Z, φY,W ) +R(ξ, φZ, Y,W ) = η(W )R(ξ, Z, ξ, φY )(3.16)

− η(W )R(ξ, φZ, ξ, Y ) + η(Y )R(ξ, φZ, ξ,W ),

by the last equation, we can simplify (3.13), to

3R(ξ, φZ, Y,W ) = 2η(Y )R(ξ, φZ, ξ,W ) + 2η(W )R(ξ, Z, ξ, φY )(3.17)

− η(W )R(ξ, φZ, ξ, Y )− η(Y )R(ξ, Z, ξ,W ).

R(ξ, Z, φY, φW ) = 0.(3.18)

For ∇ξ = −φ2 +H ,

R(Y, Z, ξ,X) = −g(∇Y φ
2)X,Z) + g(∇Zφ

2)X,Y )(3.19)

− g((∇Y H)X,Z) + g((∇ZH)X,Y ),

taking cycling sum, by Bianchi identity

g((∇ZH)X,Y ) + g((∇XH)Y, Z)− g((∇Y H)X,Z) = 0,

hence

R(Y, Z, ξ,X) = −g((∇Y φ
2)X,Z) + g((∇Zφ

2)X,Y )− g(∇XH)Y, Z)(3.20)

= η(Y )g(X,Z)− η(Z)g(X,Y ) + η(Y )g(X,HZ)− η(Z)g(X,HY )

−2η(X)g(Z,HY )− g((∇XH)Y, Z),

0 = R(ξ,X, φY, φZ) = −2η(X)g(HφY, φZ)− g((∇XH)φY, φZ)(3.21)

= 2η(X)g(HY,Z)− g((∇XH)φY, φZ).

Let take local unit eigenvector field Y , η(Y ) = 0, H2Y = λY , note that H2φY = −λφY ,
as φH +Hφ = 0, then

0 = R(ξ,X, φY, φHY ) = 2λη(X)− g((∇XH)φY, φHY ) = 2λη(X)(3.22)

−
1

2
((∇XH2)φY, φY ) = 2λη(X) +

1

2
dλ(X),

so dλ = −4λη, as X is arbitrary, in consequence λ = 0 or dη = 0, and H = 0 .
To proof (3.2), let denote the left hand side of (3.1) by Rl, then

0 = Rl(φX, Y, Z,W ) +Rl(X,φY, Z,W )−Rl(X,Y, φZ,W )(3.23)

−Rl(X,Y, Z, φW ) = 2R(φX, φY, Z,W )− 2R(X,Y, φZ, φW ),

now (3.3) is immediate. �

Proposition 3. For nearly Kenmotsu manifold we have

(∇φXφ)φY + (∇Xφ)Y − 2g(φX, Y )ξ + η(Y )φX = 0.(3.24)

Proof. By φ2 = −Id+ η ⊗ ξ,

g((∇Xφ)φY, Z) = g((∇Xφ)Y, φZ) + η(Z)g(X,Y )+(3.25)

η(Y )g(X,Z)− 2η(X)η(Y )η(Z),

taking into account (2.4), we obtain

g((∇φXφ)Y, Z) = g((∇Xφ)Y, φZ) + 2η(Y )g(X,Z)(3.26)

− η(Z)g(X,Y )− η(X)η(Y )η(Z),

the last above identities, together follow (3.24). �
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Proposition 4. For nearly Kenmotsu manifold, we have the following relations

(3.27) R(ξ,X, Y, Z) = η(Y )g(X,Z)− η(Z)g(X,Y ),

(3.28) Ric(φY, φZ) = Ric(Y, Z) + 2nη(Y )η(Z),

(3.29) Ric(Z, φY ) +Ric(φZ, Y ) = 0,

where Ric indicates the Ricci tensor and Q is the Ricci operator, Ric(X,Y ) = g(QX, Y ).

Proof. Eq. (3.27) is direct consequence of ∇ξ = −φ2, cf. (3.19).
Let (E0 = ξ, E1, . . . , En, En+1, . . . , E2n), dimM = 2n+1, denote orthonormal φ-frame,

φEi = Ei+n, φEi+n = −Ei, i = 1, . . . , n, then by (3.3),

Ric(X,Y ) =

n∑

i=1

(R(Ei, X, Y,Ei) +R(Ei+n, X, Y,Ei+n)) +R(ξ,X, Y, ξ)(3.30)

= Ric(φX, φY ) + η(X)Ric(ξ, Y )−R(ξ, φX, φY, ξ) +R(ξ,X, Y, ξ)

= Ric(φX, φY ) + η(X)R(ξ, Y ) = Ric(φX, φY ) + Ric(ξ, ξ)η(X)η(Y ),(3.31)

now by (3.27), Ric(ξ, ξ) = −2n, and the last identity is now direct consequence of
(3.28). �

Once we know that dη = 0 we are able to describe completely local structure of nearly
Kenmotsu manifold.

Theorem 2. Let (M,φ, ξ, η, g) be a nearly Kenmotsu manifold. Then

a) The distribution D = ker η is completely integrable, and maximall integral sub-

manifolds of D are totally umbilical hypersurfaces,

b) Maximall integral submanifolds naturally inherits nearly Kähler structure,

c) Nearly Kenmotsu manifold is locally isometric to warped product of real line and

nearly Kähler manifold.

Proof. ⇒ a) As Reeb form is closed, it is clear that D = ker η is completely integrable. If

M̃ , denote maximal integral submanifold of D, particularly dimM̃ = 2n, then restriction
ξ|M̃ is normal vector field, and with respect to such choice of normal, Weingarten map

is A : X̃ 7→ ∇X̃ξ = −X , hence M̄ is umbilical.

⇒ b) Let J be (1, 1) tensor field on M̃ defined by JX̃ = φX̃. This definition is correct,
as D is φ-invariant. It is direct that J is almost complex structure. We verify

(∇̃X̃J)X̃ = ∇̃X̃JX̃ − J∇̃X̃X̃ = (∇X̃φ)(X̃) = 0,

as η(X̃) = 0, and M̃ is totally umbilical.
⇒ c) We can choose coordinate neighborhood U = I × U ′, where I = (−ǫ, ǫ) is non-
empty interval, and U ′ ⊂ R

2n is a disk, For any point p ∈ U , p = (t, x1, . . . , x2n) = (t, p′),
coordinate t, can be defined in the way that η = dt, ξ = ∂

∂t
. If we set ĝ = dt2 on I,

then π : p 7→ t is Riemannian submersion, with fibers π−1(t) = t × U ′. We find that
O’Neill tensors A, and T 0 vanish, hence (U, g) is warped product (I × U ′2 + f2h), as
metric h we may take h = ι∗0g, ι0 : p′ 7→ 0×U ′. As mean vector field N = −2nξ, we have
π∗(N) = −2n ln |f |π∗(ξ), hence d ln |f |/dt = 1, f2 = Ce2t, and C = 1, by our choice of
h. �

Remark 1. In [5], Dileo and Pastore proved special almost Kenmotsu manifold is locally

isometric to warped product of real line and almost Kaehler manifold.
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4. Some theorems about nearly Kenmotsu manifolds

In this section we will show that normal and nearly Kenmostu manifolds of constant
sectional curvature are Kenmotsu. Moreover, nearly Kenmotsu manifold can be never
realized as hypersurface of nearly Kähler manifold.

Theorem 3. Normal nearly Kenmotsu manifold is Kenmotsu.

Proof. We know that dη = 0, hence nearly Kenmotsu manifold is normal iff N = 0. But
in view of the Proposition 2, in the case N = 0, we have

dΦ = 2η ∧Φ,

which means that M is almost Kenmotsu. Now we use the fact that normal almost
Kenmotsu manifold is Kenmotsu. �

The almost Hermitian manifold (N, J,G) is called nearly Kähler if (∇̄XJ)Y+ (∇̄Y J)X =
0, ∇̄ denotes the Levi-Civita connection of G, (see for more details [7], [9]). Simplest
facts about nearly Kähler manifolds: If N is Hermitian or locally flat then is Kähler, any
four-dimensional nearly Kähler manifold is necessarily Kähler.

Y. Tashiro [15] proved that Riemannian hypersurface (M, g) ⊂ (N,G), inherits almost
contact metric structure (φ, ξ, η, g), where (φ, ξ, η) are defined by

(4.1) JX = φX + η(X)N, JN = −ξ,

where N is normal vector field.

Theorem 4. There is no nearly Kenmotsu hypersurface, in nearly Kähler manifold.

Proof. Let A = −∇̄N , be Weingarten map, and ∇ denote Levi-Civita connection on M .
From (∇̄XJ)Y + (∇̄Y J)X = 0, Gauss-Weingarten equations follow

(∇Xφ)Y + (∇Y φ)X − η(Y )AX − η(X)AY + 2h(X,Y )ξ = 0,(4.2)

g(Y,∇Xξ) + g(X,∇Y ξ) = −h(Y, φX)− h(X,φY ),(4.3)

if M is nearly Kenmotsu, then

−η(Y )φX − η(X)φY = η(Y )AX + η(X)AY − 2h(X,Y )ξ,(4.4)

h(X,Y ) = h(ξ, ξ)η(X)η(Y ).(4.5)

In consequence g(∇Xξ, Y ) + g(∇Y ξ,X) = 0, which contradicts with Proposition 1. �

Theorem 5. [9] Let M be a nearly Kaehler manifold with dim M ≤ 4.Then M is

Kaehlerian.

Using Theorem 5 we can give following corollary.

Corollary 1. There is not exist proper nearly Kenmotsu manifolds for dimension 3 and

5.
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