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Oral administration of circulating precursors for membrane
phosphatides can promote the synthesis of new brain synapses

Mehmet Canseva,b, Richard J. Wurtmana,*,Toshimasa Sakamotoa, Ismail H. Ulusa,b

aDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
bDepartment of Pharmacology and Clinical Pharmacology, Uludag University School of Medicine, Bursa, Turkey

bstract Although cognitive performance in humans and experimental animals can be improved by
administering omega-3 fatty acid docosahexaenoic acid (DHA), the neurochemical mechanisms
underlying this effect remain uncertain. In general, nutrients or drugs that modify brain function or
behavior do so by affecting synaptic transmission, usually by changing the quantities of particular
neurotransmitters present within synaptic clefts or by acting directly on neurotransmitter receptors
or signal-transduction molecules. We find that DHA also affects synaptic transmission in mamma-
lian brain. Brain cells of gerbils or rats receiving this fatty acid manifest increased levels of
phosphatides and of specific presynaptic or postsynaptic proteins. They also exhibit increased
numbers of dendritic spines on postsynaptic neurons. These actions are markedly enhanced in
animals that have also received the other two circulating precursors for phosphatidylcholine, uridine
(which gives rise to brain uridine diphosphate and cytidine triphosphate) and choline (which gives
rise to phosphocholine). The actions of DHA aere reproduced by eicosapentaenoic acid, another
omega-3 compound, but not by omega-6 fatty acid arachidonic acid. Administration of circulating
phosphatide precursors can also increase neurotransmitter release (acetylcholine, dopamine) and
affect animal behavior. Conceivably, this treatment might have use in patients with the synaptic loss
that characterizes Alzheimer’s disease or other neurodegenerative diseases or occurs after stroke or
brain injury.
© 2008 The Alzheimer’s Association. All rights reserved.
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. Introduction

Although theories abound as to the precise pathologic
echanisms that diminish the numbers of brain synapses in

atients with Alzheimer’s disease, there seems to be little
oubt that these reductions do invariably occur, and that
hey are a major factor causing patients to develop cognitive
isturbances [1]. If it were possible to cause the surviving
eurons in damaged brain regions to make more or larger
ynapses, would this restore neurotransmission, and would
t ameliorate the behavioral symptoms of the disease? It has
ever been possible to test this hypothesis, because no
ethod has been known that reliably increases synaptic
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umber or size. However, now a treatment has been iden-
ified that increases the quantities of synaptic membrane in
2] and the numbers of dendritic spines on [3] hippocampal
ells of normal animals. Although it remains to be deter-
ined whether this treatment also affects synapses in brains

f normal humans, much less patients with Alzheimer’s
isease, the compounds it uses all occur normally in the
lood and apparently are benign. Hence, it might be useful
o determine whether their administration is beneficial to
atients with Alzheimer’s disease.

The circulating compounds involved are three essential
recursors needed to synthesize phosphatidylcholine (PC),
he major phosphatide in neuronal membranes [4], as well
s the other principal phosphatides, ie, the polyunsaturated

mega-3 fatty acid docosahexaenoic acid (DHA), a uridine

ts reserved.
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ource and a choline source. As described below, each of
hese compounds can be limiting in controlling the overall
ate of PC synthesis (because their levels in brain are insuf-
cient to saturate the brain enzymes that catalyze the reac-

ions involved in PC synthesis), and the effects of giving all
hree together tend to be greater than the summed effects of
iving each alone. Uridine might also promote membrane
ynthesis via the activation of P2Y receptors by its fully
hosphorylated product uridine triphosphate (UTP) [5], and
HA’s effects might also involve alternative sites of action

6], including, for example, activation of brain proteins
erving as receptors [7]. Perhaps surprisingly, when the
hree precursors are administered chronically, not only do
rain levels of phosphatides, a lipid moiety, increase but
lso those of certain presynaptic and postsynaptic proteins
2,8], and major structural changes occur, an increase in the
umber of dendritic spines [3].

This article summarizes available information on the
iochemical mechanisms that mediate the effects on synap-
ic membrane of exogenous DHA, uridine, and choline and
n the known consequences of these effects. It also provides
rationale for testing these compounds to treat Alzheimer’s
isease or other diseases characterized by synaptic loss.

. Biosynthesis of membrane phosphatides

All cells use DHA and other fatty acids, uridine, and
holine to form the phosphatide subunits (eg, PC) (Figure 1)
hat, when aggregated, constitute the major components of
heir membranes. PC, the principal such subunit in brain,
hich is synthesized from these precursors by the cytidine
iphosphate (CDP)– choline cycle or Kennedy cycle [9]
Figure 2), also provides the phosphocholine moiety needed
o synthesize sphingomyelin, the other major choline-con-
aining brain phospholipid. The phosphatide phosphati-
ylethanolamine (PE) likewise is synthesized via the
ennedy cycle by using ethanolamine instead of choline,
hereas phosphatidylserine (PS), the third major structural
hosphatide, is produced by exchanging a serine molecule
or the choline in PC or the ethanolamine in PE [4].

The CDP-choline cycle involves three sequential enzy-
atic reactions (Figure 2). In the first, catalyzed by choline

inase (CK), a monophosphate is transferred from adeno-

Fig. 1. Structure of phosphatidylcholine.
ine triphosphate (ATP) to the hydroxyl oxygen of the c
holine, yielding phosphocholine. The second, catalyzed by
TP:phosphocholine cytidylyl transferase (CT), transfers
ytidylyl monophosphate (CMP) from cytidine-5=-triphos-
hate (CTP) to the phosphorus of phosphocholine, yielding
ytidylyldiphosphocholine (also known as CDP-choline or
s citicoline). As discussed below, much of the CTP that the
uman brain uses for this reaction derives from circulating
ridine [10]. The third and last reaction, catalyzed by CDP-
holine:1,2-diacylglycerol choline phosphotransferase
CPT), bonds the phosphocholine of CDP-choline to the
ydroxyl group on the 3-carbon of diacylglycerol (DAG),
ielding the PC. All three PC precursors must be obtained
y brain entirely or in large part from the circulation, and
ecause the PC-synthesizing enzymes that act on all three
ave low affinities for them, blood levels of all three can
ffect the overall rate of PC synthesis [2,11].

Thus, choline administration increases brain phospho-
holine levels in rats [12] and humans [13], because CK’s
ichaelis-Menten constant (Km) for choline (2.6 mmol/L

14]) is much higher than usual brain choline levels (30 to
0 �mol/L) [15–17]. Most commonly the second, CT-cat-
lyzed reaction is most rate-limiting in PC synthesis, either
ecause not all of the CT enzyme is fully activated by being
ttached to a cellular membrane [18] or because local CTP

ig. 2. PC biosynthesis via the Kennedy cycle [17]. In rats, cytidine is the
ajor circulating pyrimidine [95]; in humans [19] and in gerbils [20] the

rimary circulating pyrimidine is uridine. Only small amounts of circulat-
ng cytidine are converted to brain CTP, because the BBB high-affinity
ransporter for pyrimidines (CNT2) has a very low affinity for cytidine
96 –98]; uridine, in contrast, readily enters the brain via CNT2, yielding
TP that can be converted to CTP by CTP synthase [89]. CTP then reacts
ith phosphocholine to form CDP-choline, which combines with DAG,
referentially species containing PUFAs like DHA, EPA, or AA to form
C. Boxes indicate the compounds that are obtained from the circulation.
ynthesis of PE via the Kennedy cycle uses ethanolamine instead of

holine. Reprinted with permission from Cansev and Wurtman [8].
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oncentrations are insufficient to saturate the CT [17]. Thus,
hen brain CTP levels are increased by giving uridine to

nimals [11], CTP’s circulating precursor in human blood
10], PC synthesis is accelerated [11]. The activity of CPT
nd the extent to which this enzyme is saturated with DAG
an also control the overall rate of PC synthesis, as has been
emonstrated in, for example, permeabilized HeLa cells
xposed to glycerol-3-phosphate and acyl-CoA [19] or in
C12 cells extending neurites after exposure to nerve
rowth factor (NGF) [20]. In PC-12 cells, NGF increased
AG levels five-fold, CPT activity by 70%, and the incor-
oration of choline into PC by two-fold. DAG species
ontaining DHA or other polyunsaturated fatty acid (PUFA)
n the middle carbon apparently are preferentially used for
hosphatide synthesis as opposed to triglyceride synthesis
21]. (This does not explain why giving DHA, thereby
resumably increasing, at least transiently, the proportions
f PC molecules that contain this PUFA, would also in-
rease the absolute levels of PC in a cell [Table 1]).

If rodents are given a standard diet supplemented with
holine and uridine (as its monophosphate, UMP) and also
HA by gavage, brain PC synthesis rapidly increases

2,11], and absolute levels of PC per cell (DNA) or per mg
rotein increase substantially (eg, by 40% to 50% after
everal weeks of daily treatment [2]) (Table 1). This treat-
ent also increases the levels of each of the other principal
embrane phosphatides (Table 1), as well as the levels of

articular proteins known to be localized within presynaptic
nd postsynaptic membranes (for example, synapsin-1 [22],
SD-95 [23], and syntaxin-3 [7]), but not a ubiquitously
istributed brain protein, �-tubulin (Figure 3) [2,8]. Treat-
ent with DHA, UMP, and choline also promotes the for-
ation of dendritic spines in adult gerbil hippocampus [3]

see section 6) and improves hippocampus-dependent cog-
itive behaviors in rats reared in a socially deprived envi-
onment [24] (see section 7). Thus, the production and
evels of brain phosphatides and synaptic proteins are found
o depend to a surprising extent on blood levels of PC’s
hree circulating precursors. Providing supplemental UMP
r DHA without the other can also increase brain phos-
hatide levels, but by less than when all three precursors are
resented. (Choline is included in all of the test diets).

In studies designed to affirm that the increases in brain

able 1
ffects of UMP-containing diet and/or DHA on brain phospholipid levels

reatments Total PL PC

ontrol diet � vehicle 351 152
MP diet � vehicle 367 171*
ontrol diet � DHA 392 185*
MP diet � DHA 442*** 220***

NOTE. Data are presented as nmol/mg protein. Reprinted with permiss
* P � .05, ** P � .01, and
*** P � .001 compared with values from Control diet � Vehicle grou
hosphatide levels caused by giving DHA, with or without b
MP, reflect actual increases in phosphatide synthesis (and
ot, for example, inhibition of phosphatide degradation),
rain levels of CDP-choline and CDP-ethanolamine, the
mmediate precursors of PC and PE, also were measured. It
as postulated that if DHA acted by generating more DHA-

ontaining DAG, and if this compound then combined with
ndogenous CDP-choline or CDP-ethanolamine to form ad-
itional PC or PE, then DHA administration would concur-
ently reduce brain CDP-choline or CDP-ethanolamine
hile increasing brain levels of their PC products and PE.
his expectation was confirmed [2]. Among animals receiv-

ng either DHA alone or DHA plus UMP, CDP-choline and
DP-ethanolamine levels decreased significantly, whereas

hose of PC and PE increased (Figure 4).

. Properties of the enzymes that mediate brain
hosphatide synthesis

The ability of each of the three circulating phosphatide
recursors to affect the rate of phosphatide synthesis results
rincipally from the low affinities of these enzymes for their
ubstrates. This unusual property is described below.

.1. Choline kinase

The synthesis of PC (Figure 2) is initiated by the phos-
horylation of choline, in which CK (EC 2.7.1.32) catalyzes
he transfer of a monophosphate group from ATP to the
ydroxyl oxygen of the choline. In some neurons choline is
lso used to synthesize the neurotransmitter acetylcholine
ACh), the enzyme choline acetyltransferase (ChAT) trans-
erring an acetyl group from acetyl-CoA to the hydroxyl
xygen of the choline. Like CK, ChAT has a very low
ffinity for its choline substrate [25,26]. The Km’s of these
nzymes in brain (which describe the choline concentrations
t which the enzymes operate at only half-maximal veloc-
ty) are reportedly 2.6 mmol/L [14] and 540 �mol/L [27],
espectively, whereas brain choline levels are only about 30
o 60 �mol/L [15–17]. Hence, the syntheses of both phos-
hocholine and ACh are highly responsive to treatments
hat raise or lower brain choline levels.

The ability of choline administration to increase brain
hosphocholine levels was first noted in 1982 [12] and its
imilar effect on ACh in 1975 [28,29]. It had previously

PE SM PS PI

65 45 33 21
84* 52 35 31**
78* 56* 39 32**

113*** 73*** 46*** 36***

 Wurtman et al [2].
ion from
een shown that the production of another brain neurotrans-
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itter, serotonin, was increased among animals receiving
hysiologic doses of its circulating precursor, tryptophan
30,31]. This was shown to be because tryptophan hydrox-
lase, the enzyme that determines the overall rate at which
ryptophan is converted to serotonin, has a very low affinity

ig. 3. Effects of AA, DHA, or EPA, alone or in combination with a UMP
a1, a2); synapsin-1 (b1, b2), and syntaxin-3 (c1, c2). CV, control diet � ve
V, UMP-supplemented diet � vehicle; UA, UMP-supplemented diet � A
P � .05; **P � .01; and ***P � .001 compared with CV, and

a
P � .05 co

f variance (ANOVA). *P � .05; **P � .01; and ***P � .001 compared w
a2, b2, and c2) with one-way ANOVA. Reprinted with permission from 
or this substrate. Inasmuch as the affinities for choline of t
K and ChAT, measured in vitro, were also known to be
ow relative to choline availability, it seemed reasonable to
nquire as to whether giving choline could also increase
hosphocholine or ACh synthesis.

Even though brain choline concentrations shared with

mented diet, on levels of the presynaptic or postsynaptic proteins PSD-95
A, control diet � AA; CD, control diet � DHA; CE, control diet � EPA;
, UMP-supplemented diet � DHA; UE, UMP-supplemented diet � EPA.
with CA on the left-sided columns (a1, b1, and c1) with one-way analysis
and

x
P � .05; and

y
P � .01 compared with UA on the right-sided columns

 and Wurtman [8].
-supple
hicle; C
A; UD
mpared
ith UV,
hose of tryptophan the ability to control the rates at which
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he precursor is used to synthesize a neurotransmitter, cho-
ine and tryptophan differed in an important respect: Both
re used by certain neurons for two purposes, tryptophan for
onversion to serotonin and incorporation into proteins and
holine for conversion to ACh and incorporation into phos-
holipids. However, in the case of tryptophan these two
rocesses are segregated into different parts of the neuron,
he nerve terminal and perikaryon, whereas for choline both
an take place within the nerve terminal (because that struc-
ure contains both ChAT and CK). Hence, the acetylation
nd the phosphorylation of choline sometimes compete for
vailable substrate [32,33]. When cholinergic neurons are
orced to fire frequently and maintain the rapid release of
Ch, choline’s incorporation into PC decreases [32], and

he breakdown of membrane PC increases (“autocannibal-
sm”), both processes liberating additional choline for ACh
ynthesis [34 –36]. However, when the utilization of choline
o form PC is increased (by providing supplemental uridine

ig. 4. Effects of DHA on brain CDP-choline or CDP-ethanolamine levels.
roups of 8 gerbils received either a control or a UMP-containing (0.5%)
iet and, by gavage, DHA (300 mg/kg; in a vehicle of 5% gum Arabic
olution) or just its vehicle for 28 days. On the 29th day their brains were
arvested and assayed for (A) CDP-choline or (B) CDP-ethanolamine.

P � .05 and
c
P � .01 when compared with the values for control diet plus

ehicle group;
b
P � .05 when compared with values for UMP diet plus

ehicle group. Reprinted with permission from Wurtman et al [2].
nd an omega-3 fatty acid), ACh synthesis is not dimin- a
shed, probably because so little choline is used for phos-
hatide formation relative to the amount used to produce
Ch [33].

.2. CTP:phosphocholine cytidylyltransferase

CTP:phosphocholine cytidylyltransferase (CT) (EC
.7.7.15) catalyzes the condensation of CTP and phospho-
holine to form CDP-choline (Figure 2). CT is present in
oth the soluble and particulate fractions of the cell [37]; the
ytosolic form is reportedly inactive, and the membrane-
ound form is active [18,38]. Increases in the association of
T with membranes reportedly correlate with increases in
T activity and in the net synthesis of PC in vitro [39 – 41].
ome other lipids (eg, PS) [42] and DAG [39,43] also
timulate the translocation of CT from the cytosol to mem-
ranes in vitro, thereby activating the enzyme [44]. The
hosphorylation state of CT affects its net activity [45], as
oes its substrate saturation with CTP and perhaps with
hosphocholine. The Km’s of CT for CTP and phospho-
holine in brains of laboratory rodents and humans are
eportedly 1 to 1.3 mmol/L and 0.30 to 0.31 mmol/L
17,46], respectively, whereas brain levels of these com-
ounds are only 70 to 110 �mol/L [11,47,48] and 0.32 to
.69 mmol/L [12,16,49], respectively. Hence, brain CT nor-
ally is highly unsaturated with CTP and only about half-

aturated with phosphocholine in vivo, suggesting that its
egrees of substrate saturation, particularly with CTP, exert
mportant limiting roles in PC synthesis. In fact, treatments
hat increase cellular CTP (eg, administration of a uridine or
ytidine source) have been shown to enhance CDP-choline
nd PC synthesis in poliovirus-infected HeLa cells [50],
ndifferentiated PC12 cells [51,52], slices of rat corpus
triatum [53], and gerbil brain in vivo [11].

.3. CDP–choline:1,2-diacylglycerol choline
hosphotransferase

CDP–choline:1,2-diacylglycerol cholinephosphotrans-
erase (CPT) (EC 2.7.8.2) catalyzes the final reaction in the
ennedy cycle; it transfers the phosphocholine moiety from
DP-choline to DAG, thus yielding PC (Figure 2). CPT, an

ntegral membrane protein, is present primarily in the en-
oplasmic reticulum [54]. The enzyme protein has been
olubilized and partially purified from microsomes of rat
iver [55,56], rat brain [57], and hamster liver [58]. A
uman cDNA has been isolated that codes for an enzyme
ith both choline phosphotransferase and ethanolamine-
hosphotransferase (EPT) activities (hCEPT1 [59]), and a
ifferent human cDNA has also been isolated, the product
f which exhibits only choline phosphotransferase–specific
ctivity (hCPT1) [60]. CPT might be a reversible enzyme,
ynthesizing CDP-choline from PC and CMP in microsomal
reparations from liver [61,62] or brain [63– 65].

The choline phosphotransferase reaction also is unsatur-

ted with the enzyme’s substrates. Its Km values for CDP-
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holine and DAG in rat liver are 200 �mol/L and 150
mol/L, respectively [66], whereas the concentrations of

hese compounds in liver are approximately 40 �mol/L [67]
nd 300 �mol/L [68]. (A DAG concentration of at least
,000 �mol/L thus would probably be needed to saturate the
nzyme). Brain CDP-choline and DAG levels are even
ower, ie, about 10 to 30 �mol/L [11,69] and 75 �mol/L
48], respectively. Levels of cellular DAG have been shown
o limit PC synthesis in permeabilized HeLa cells [19],
ultured rat hepatocytes [70], and PC12 cells [11]. None of
hese studies distinguished between the enzyme that acts on
oth choline and ethanolamine (PECT1) and the enzyme
hat acts only on choline (PCT1). A more recent report, with
loning and expression methods, described the Km of hu-
an PECT1 for CDP-choline as being 36 �mol/L [71],
hich would probably still be too high for it to be saturated
ith this substrate in brain. The Km of PCT for its sub-

trates might also be affected by the fatty acid composition
f the DAG molecule [72]; however, no data are available
emonstrating that the fatty acids (eg, DHA) that are most
ble to promote PC synthesis [73] do so because they
electively enhance cellular levels of DAG species that are
referentially bound to or acted on by CPT.

.4. Uptake of uridine into brain and its conversion to
TP and CTP

Because circulating uridine elevates brain CTP levels,
hus modulating DHA’s effects on the formation of synaptic
embrane, the enzymes and uptake proteins that mediate

lood uridine’s effect on brain CTP are discussed here.
Uridine and cytidine are transported across cell mem-

ranes, including the blood-brain barrier (BB), via two
amilies of transport proteins, ie, the Na

�

-independent, low-
ffinity, equilibrative transporters (ENT1 and ENT2) [74]
nd the Na

�

-dependent, high-affinity, concentrative (CNT1,
NT2, and CNT3) [75] nucleoside transporters [76]. The

wo ENT proteins, which transport uridine and cytidine with
imilar affinities, have been cloned from rat [77] and mouse
78]. Inasmuch as their Km values for the pyrimidines are in
he high micromolar range (100 to 800 �mol/L [79]), they
robably mediate BBB pyrimidine uptake only when
lasma levels of uridine and cytidine have been elevated
xperimentally. In contrast, CNT2, which transports both
he pyrimidine uridine and such purines as adenosine, prob-
bly does mediate uridine transport across the BBB under
hysiologic conditions. Km values for the binding of uri-
ine and adenosine to this protein (which has been cloned
rom rat BBB [80]) are in the low micromolar range (9 to 40
mol/L in kidney, intestine, spleen, liver, macrophage, and
onocytes [81]), whereas plasma uridine levels are subsatu-

ating, ie, 0.9 to 3.9 �mol/L in rats [82], 3.1 to 4.9 �mol/L
n humans [82], and around 6.5 �mol/L in gerbils [11].

ytidine has not been thought to be a substrate for CNT2 a
75]; however, recent studies suggested that CNT2 can also
ransport this compound, however, with a much lower af-
nity than that for uridine [83– 85].

It should be noted that although both of the pyrimidines,
ridine and cytidine, are present in the blood of laboratory
ats, human blood contains unmeasurably low quantities of
ytidine [82]; even among individuals consuming a cytidine
ource like oral CDP-choline [10], the cytidine is quantita-
ively deaminated to uridine in the human liver. Hence, in
umans, circulating uridine, and not cytidine, is the precur-
or of the brain CTP used for phosphatide synthesis. Gerbil
lood contains both of the pyrimidines but proportionately
ess cytidine than blood of rats; hence, gerbils are often used
s a model for studying the effects of exogenous uridine
ources on the human brain [86].

Like other circulating compounds, pyrimidines might
lso be taken up into brain via the epithelium of the choroid
lexus (CP) and the ENT1, ENT2, and CNT3 transporters
74,75]; all of these proteins have been found in CP epithe-
ial cells of rats [77,87,88] and rabbits [89,90]. However, the
urface area of BBB is probably 1,000 times that of the CP
pithelium (ie, 21.6 vs 0.021 m

2 

in humans [91]); hence, the
BB is the major locus at which circulating uridine enters

he brain.
Uridine and cytidine are converted to their respective

ucleotides by successive phosphorylations catalyzed by
arious kinases. Uridine-cytidine kinase (UCK) (ATP:uri-
ine 5=-phosphotransferase; EC 2.7.1.48) phosphorylates
ridine and cytidine to form UMP and CMP, respectively
92–94]. UCK activity is regulated by cellular UTP and
TP levels. At relatively low UTP and CTP levels, uridine

aken up into brain cells is phosphorylated, initially by UCK
o form uridine nucleotides. At higher UTP and CTP con-
entrations, UCK’s activity is inhibited, thus suppressing
ridine’s phosphorylation [95]. Several different forms of
CK exist, possibly as isoenzymes [96,97]. Humans have

wo such isoenzymes, UCK1 and UCK2, both of which
ave been cloned [98,99]. UMP-CMP kinase (UMP-
MPK) (ATP:CMP phosphotransferase, EC 2.7.4.14)

100 –102] then converts UMP or CMP to uridine diphos-
hate (UDP) or CDP. These nucleotides in turn are further
hosphorylated to UTP and CTP by nucleoside diphosphate
inases (NDPKs) (nucleoside triphosphate:nucleoside
iphosphate phosphotransferase, EC 2.7.4.6) [103,104].
RNAs for UCK1 [99] and UMP-CMPK [105] have been

escribed in brain [106,107], as has NDPK activity.
Various interconversions between uridine and cytidine

nd between their respective nucleotides are known to occur
n mammalian cells. Cytidine and CMP can be deaminated
o uridine and UMP [108], whereas UTP is aminated to CTP
y CTP synthase (UTP:ammonia ligase [adenosine diphos-
hate–forming], E.C. 6.3.4.2) [109,110]. This enzyme acts
y transferring an amide nitrogen from glutamine to the C-4
osition of UTP, thus forming CTP [111]. CTP synthase

ctivity has been demonstrated in rat brain [112].
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All of the enzymes described above apparently are un-
aturated with their respective nucleoside or nucleotide sub-
trates in brain and other tissues. For example, the Km’s for
ridine and cytidine of UCK prepared from various tissues
aried between 33 to 270 �mol/L [93,94,113,114], and the
m for uridine of recombinant enzyme cloned from mouse
rain was 40 �mol/L [115,116]. Brain uridine and cytidine
evels are about 22 to 46 pmol/mg wet weight [11,117] and
 to 43 pmol/mg wet weight [11,118], respectively. Hence,
he syntheses of UTP and CTP and the subsequent syntheses
f brain PC and PE via the Kennedy pathway depend on
vailable levels of their pyrimidine substrates. Indeed, in-
reasing the supply of uridine or cytidine to neuronal cells,
n vitro [5,52,53] or in vivo [11,86], enhanced the phos-
horylation of uridine and cytidine and elevated levels of
TP, CTP, and CDP-choline.

. Availability of DHA and other PUFAs to brain cells

The omega-3 PUFAs DHA and eicosapentaenoic acid
EPA) and the omega-6 fatty acid arachidonic acid (AA) are
ssential for humans and other animals and thus must be
btained from the diet either as such or as their also essen-
ial precursors, alpha-linolenic acid (ALA) and linoleic acid
LA). Although the processes by which circulating PUFAs
re taken up into the brain and, subsequently, into brain
ells await full characterization, they are thought to include
oth simple diffusion (also termed “flip-flop” [119]) and
rotein-mediated transport [120]. One such transport pro-
ein (B-FATP) [121] has been cloned [122]. DHA, EPA,
nd AA are then transported from the brain’s extracellular
uid into cells and can be activated to their corresponding
oA species (eg, docosahexaenoyl-CoA; eicosapentaenoyl-
oA; arachidonoyl-CoA) and acylated to the sn-2 position
f DAG [123] to form PUFA-rich DAG species [124,125].
HA is acylated by a specific acyl-CoA synthetase, Acsl6

126], which exhibits a low affinity for this substrate Km �
6 �mol/L [127] relative to usual brain DHA levels (1.3 to

able 2
ffects of various PUFAs, given with a control diet, on gerbil brain phos

Total PL PC

ontrol diet � vehicle 322 113
ontrol diet � AA 326 114
ontrol diet � DHA 344 133
ontrol diet � EPA 347 125
MP diet � vehicle‡ 332 131

NOTE. Data are given as means � standard error of the mean. Data
urtman [8].
* P � .05, P � .01, and
† P � .05 compared with control diet � AA group by one-way ANOV
‡ Data from gerbils receiving UMP diet but no PUFA are included to i
*** P � .001 compared with control diet � vehicle group.
.5 �mol/L) [128]. Hence, treatments that raise blood DHA t
evels rapidly increase its uptake into and retention by brain
ells.

EPA can be acylated to DAG by the acyl-CoA synthetase
129], or it can be converted to DHA by brain astrocytes
130], allowing its effects on brain phosphatides and syn-
ptic proteins to be mediated by DHA itself. Exogenously
dministered AA, like DHA, is preferentially incorporated
nto brain phosphatides [131,132], as well as into other
ipids, eg, the plasmalogens [133,134]. AA shares with DHA
he ability to activate syntaxin-3 [7]; however, its oral admin-
stration to laboratory rodents apparently does not promote
ynaptic membrane synthesis or dendritic spine formation.

DHA and AA are major components of brain membrane
hospholipids [135]. Whereas AA is widespread throughout
he brain and is abundant in phosphatidylinositol (PI) and
C, DHA is concentrated in synaptic regions of gray matter
136] and is especially abundant in PE and PS [137]. In
ontrast, EPA is found only in trace amounts in brain phos-
hatides, mostly in PI [138]. No significant differences have
een described between the relative proportions of ingested
mega-3 and omega-6 PUFAs that actually enter the sys-
emic circulation [139,140]. Moreover, the rates at which
adioactively labeled DHA and AA are taken up into brain
nd incorporated into phospholipids after systemic injec-
ions also are similar [131,141]. (To our knowledge, no
tudy has compared the brain uptake of EPA with that of
nother PUFA in rodents or humans; however, exogenously
dministered EPA is known to increase brain EPA levels in
ivo [142]). On the other hand, the half-lives of the omega-3
UFAs in the blood (20 � 5.2 hours for DHA and 67 � 14
ours for EPA [143]) are substantially higher than that for
A (3.8 seconds [144]). Similarly, the half-life of DHA in
rain PC (22.4 � 2.9 hours), but not in PI or PE, is much
onger than that of AA (3.79 � 0.12 hours) [145]. Thus, a
onsiderable proportion of AA might be cleared from
lasma or oxidized before it is used for PC synthesis, or,
nce incorporated into phosphatides, it might be liberated
y hydrolysis (mediated by phospholipase A2 [146]) and

levels

PE PS PI

63 251 15
65 281 16
77* 32*** 18*
76* 32�� 19***,†

701 29* 16

ented as nmol/mg protein. Reprinted with permission from Cansev and

that uridine alone also affects phosphatide levels.
phatide

*

*

are pres

A.
llustrate
hen oxidized.
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It should be noted that the ability of orally administrated
AG, given daily for several weeks, to increase brain phos-
hatide levels does not necessarily imply that, concurrent
ith such increases, the quantities of DHA in the phosphati-
es, relative to the quantities of other fatty acids, also are
ncreased. Indeed, this has not been demonstrated. Conceiv-
bly, DHA-rich DAG is preferentially used for PC synthe-
is, but once the DAG-containing PC is formed, it is rapidly
ydrolyzed to form lyso-PC lacking DHA and then reacy-
ated to PC by addition of a different fatty acid [146].

. Effects of DHA and other PUFAs on synaptic
rotein and phosphatide levels in gerbils

In experiments designed to compare the effects of ad-
inistering each of the three PUFAs, DHA, EPA, or AA, on

rain phosphatide levels, animals received 300 mg/kg daily
y gavage of one of the fatty acids for 4 weeks and con-
umed a choline-containing diet that did or did not also
ontain UMP. Giving DHA without uridine increased PC,

able 3
ffects of various PUFAs, given with a UMP-supplemented diet, on gerb

Total PL PC

MP diet � vehicle 332 131
MP diet � AA 379 132
MP diet � DHA 384* 147**
MP diet � EPA 407*** 148**

NOTE. Data are given as means � standard error of the mean. Data
urtman [8].
* P � .05, † P � .01 and
‡ P � .05 compared with UMP diet � AA group by one-way ANOVA
** P � .01, and
*** P � .001 compared with control diet � vehicle group.

able 4
ffects of giving UMP-supplemented diet (0.5%) and DHA (300 mg/kg)

Cortex Striatum

otal PL
Control diet � vehicle 267 265
UMP diet � DHA 316** 339***

C
Control diet � vehicle 94 100
UMP diet � DHA 122*** 126*

E
Control diet � vehicle 58 60
UMP diet � DHA 80** 85***

S
Control diet � vehicle 24 24
UMP diet � DHA 30*** 29*

I
Control diet � vehicle 10.6 7.6
UMP diet � DHA 13.2** 11.9***

NOTE. Data are presented as nmol/mg protein. Reprinted with permiss
* P � .05, ** P � .01, and

*** P � .001 compared with control diet � vehicle group by using Student t
I, PE, and PS levels significantly by 18%, 20%, 22%, and
8%, respectively (Tables 2 and 3) throughout the brain (eg,
n cortex, striatum, hippocampus, brain stem, and cerebel-
um) (Table 4). Giving EPA also increased brain PE, PS,
nd PI levels significantly by 21%, 24% and 27%, respec-
ively (Tables 2 and 3). In contrast, AA administration
ailed to affect brain levels of any of the phosphatides
Tables 2 and 3) [8].

Consuming the UMP-supplemented diet alone increased
rain PS and PC levels significantly (by 15% and 16%,
espectively) (Tables 2 and 3) compared with those in con-
rol gerbils. Among gerbils receiving both UMP and DHA,
rain PC, PE, PS, and PI levels rose significantly by 12%,
6%, 34%, and 38%, respectively (Tables 2 and 3). Simi-
arly, among gerbils receiving both UMP and EPA, brain
C, PE, PS, and PI levels rose significantly by 13%, 30%,
1%, and 56%, respectively (Tables 2 and 3). In contrast,
iving UMP with AA failed to increase levels of any brain
hosphatide above those found in gerbils receiving UMP
lone (Tables 2 and 3). Total brain phospholipid levels were

phosphatide levels

PE PS PI

70 29 16
81 31 20
88** 39** 22**
91*** 41**,‡ 25***

ented as nmol/mg protein. Reprinted with permission from Cansev and

phatide levels in different gerbil brain regions

Hippocampus Brain Stem Cerebellum

264 450 270
314** 521** 317**

102 114 98
117*** 139*** 111***

61 117 64
81*** 156*** 85***

24 30 24
28*** 35*** 29**

8.8 9.3 10.4
11*** 11.8* 11.5*

 Cansev and Wurtman [8].
il brain

*,†
,†

are pres

.

on phos

ion from
test.
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lso elevated significantly by 16% and 23% after treatment
ith UMP plus DHA or with UMP plus EPA, respectively

Tables 2 and 3), but not by treatment with UMP plus AA
8]. Essentially similar results were obtained whether data
ere expressed per �g DNA or per mg protein (data not

hown).
Giving the gerbils DHA or EPA alone significantly in-

reased brain levels of the postsynaptic density protein
SD-95 by 24% or 28% (Figure 3a1). When this treatment
as combined with dietary UMP, the observed increases in
SD-95 were 29% or 33% greater than those found after
MP-supplementation alone (Figure 3a). AA failed to af-

ect brain PSD-95 levels, either when given alone or in
ombination with the UMP-supplemented diet (Figure 3a).
imilar to PSD-95, levels of synapsin-1, a presynaptic ve-
icular protein, were significantly increased by 31% or 27%,
espectively, by DHA or EPA treatment alone (Figure 3b1)
r by 33% or 36% when the PUFA was combined with
MP (Figure 3b2). Again, AA failed to affect brain synap-

in-1 levels when given alone or concurrent with a UMP-
upplemented diet (Figure 3b).

Also similarly to PSD-95 and synapsin-1, brain levels of
yntaxin-3, a plasma membrane soluble N-ethylmaleimide
ensitive factor attachment protein receptor (SNARE) pro-
ein that reportedly mediates the stimulation by PUFAs of
eurite outgrowth [7] and exocytosis [147] in cultured cells,
ere significantly increased in animals receiving DHA or
PA by 29% or 19%, respectively (Figure 3c1), whether or
ot they also received UMP, but AA was without effect if
iven alone or in combination with UMP (Figure 3c).

None of the PUFAs, given alone or with UMP, changed
rain levels of the structural protein �-tubulin, perhaps
eflecting its ubiquity in brain; hence, �-tubulin was used as
he loading control for Western blot assays of synaptic
roteins (Figure 3d).

The mechanism that allows the omega-3 fatty acids DHA
nd EPA, but not the omega-6 fatty acid AA, to increase
ynaptic membrane is unclear. Exogenously administered
A, like DHA, is preferentially incorporated into brain
hosphatides [131,132], as well as into other brain lipids
eg, the plasmalogens [133,134]), and AA shares with DHA
he ability to activate syntaxin-3 in vitro [7].

Mechanisms that could underlie the differential effects of
mega-3 and omega-6 PUFAs on membrane synthesis
ight include, among others, different efficacies for their

ptakes into brain or their acylation, different half-lives in
he circulation, different affinities for enzymes that control
heir incorporation into DAG and phosphatides (apparently
ot the case [8]), differences in the rates at which the
UFAs are removed from phosphatides by deacylation, the
ifferential activation of genes encoding proteins needed for
embrane synthesis [148], or the tendency of AA to be

ncorporated into phospholipids by the acylation of 1-acyl-
-lyso-sn-glycerophospholipids, not via the Kennedy cycle

149]. o
. Effects of DHA and other PUFA on dendritic spine
ormation and synaptogenesis

Dendritic spines are small membranous protrusions ex-
ending from postsynaptic dendrites in neurons, most of
hich form synapses with presynaptic axon terminals. The
endritic spines compartmentalize postsynaptic responses,
nd their numbers are thought to reflect the numbers of
xcitatory synapses within regions of the central nervous
ystem [150 –152]. Oral supplementation with DHA to adult
erbils increases the number of dendritic spines in the hip-
ocampus, particularly if the animals are also supplemented
ith UMP [3] (Figure 5). This treatment also increases the

evels of membrane phosphatides and of various presynaptic
nd postsynaptic proteins [2]. Oral DHA might thus in-
rease the number of brain synapses, particularly when
o-administered with UMP.

Gerbils that received daily doses of DHA for 4 weeks
100 or 300 mg/kg by gavage) exhibited increased dendritic
pine density (ie, the number of spines per length of den-
rite) in CA1 pyramidal neurons (Figure 6); the increases
ere 12% (P � .04) with the 100 mg/kg/day dose and 18%

P � .001) with the 300 mg/kg/day dose. These effects were
mplified when gerbils received both DHA (300 mg/kg/day
y gavage) and UMP (0.5% via the standard choline-con-
aining diet) for 4 weeks; DHA supplementation alone in-
reased spine density by 19% (P � .004; Figure 5), and
dministration of both precursors did so by 36% or approx-
mately double the increase produced by DHA alone (P �
008) (Figure 5). (Giving UMP alone did not affect dendritic
pine density significantly [Figure 5]; however, it did in-
rease spine density when all dendritic protrusions were
ncluded for statistical analysis, including the filopodia,
hich are precursor forms of dendritic spines). The effect
n dendritic spine density of giving both DHA and UMP
as already apparent after 1 week of treatment (P � .02)

nd continued for as long as animals were treated (4 weeks)
Figure 5). DHA plus UMP did not affect the length or
idth of individual dendritic spines, only their number.
In the above experiments the increases in hippocampal

hospholipids after DHA alone were PC, 8%; PE, 26%; PS,
5%; and PI, 29% (all P � .05 except for PC) and after
HA plus UMP were PC, 28%; PE, 59%; PS, 160%; and
I, 100% (all P � .001 vs their controls). Comparable

ncreases were noted in the presynaptic and postsynaptic
roteins examined in the contralateral hippocampus of the
ame animals. Expression levels of PSD-95 [153] and
luR-1 [154,155] are known to be highly associated with

he growth of dendritic spines and also with the intensity of
he physiologic responses of the postsynaptic neurons. Syn-
psin-1, on the other hand, is expressed in presynaptic
erminals and apparently anchors synaptic vesicles to the
ctin cytoskeleton for exocytosis or synaptogenesis [156,157].
he increases in PSD-95, synapsin-1, and GluR-1 (a subunit

f the glutamatergic AMPA receptor) after treatment with
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ig. 5. Effects of DHA, alone or in combination with a UMP-supplemented diet, on dendritic spine formation in adult gerbil hippocampus. Animals received
MP (0.5%), DHA (300 mg/kg), or both daily for 4 weeks; control gerbils received neither. (a) Apical dendrites of CA1 pyramidal neurons. (b) Animals

upplemented with DHA exhibited a significant increase in spine density (by 19%, *P � .004 vs Control); those receiving both DHA and UMP exhibited
greater increase (by 36%, **P � .001 vs Control or by 17%, P � .008 vs DHA). n � 20 � 25 neurons from 4 animals per group. One-way ANOVA

ollowed by Tukey test. (c) Effect of DHA plus UMP on spine density was apparent by 1 week after the start of the treatment. The treated groups received
oth UMP (0.5%) and DHA (300 mg/kg) daily for 1, 2, 3, or 4 weeks; the control groups were given only a regular diet. n � 12 � 20 neurons from 2 animals

er group. Two-way ANOVA followed by Tukey test. *P � .02; **P � .001. Reprinted with permission from Sakamoto et al [159].
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HA alone were 42%, 37%, and 29% (all P � .05),
hereas the increases after treatment with DHA plus UMP
ere by 44%, 57%, and 37%, respectively (all P � .01).
reatment with DHA or with DHA plus UMP also elevated
rain levels of actin, a cytoskeletal protein that can directly
egulate the morphology of dendritic spines and that is
mplicated in such manifestations of synaptic plasticity as
ong-term potentiation and depression [150 –152,155,158].
ctin levels increased by 60% after DHA and by 88% in

nimals receiving DHA plus UMP [159].
In contrast, levels of �-tubulin, a cytoskeletal protein that

s not specifically localized within synaptic structures, were
naffected by the treatments [2].

Oral supplementation with AA failed to affect dendritic
pine density in the CA1 region of the adult gerbil hip-
ocampus, even though, like DHA, AA does affect synaptic
lasticity in cultured neurons [160 –162]. AA also failed to
ffect hippocampal levels of phosphatides or of synaptic
roteins [159].

The mechanisms through which DHA, with or without
ridine, increases dendritic spine formation might also in-
olve presynaptic processes. Results from various model

ig. 6. Effects of oral supplementation with various doses of DHA on
endritic spine density in adult gerbil hippocampus. Animals were supple-
ented with 0, 50, 100, or 300 mg/kg of DHA daily for 4 weeks. (a) Apical

endrites of CA1 pyramidal neurons. (b) Animals supplemented with 100
r 300 mg/kg/day showed increased spine density, a 12 % increase after the
00 mg/kg/day dose (*P � .04) and an 18% increase after the 300
g/kg/day dose (**P � .001 vs 0 mg/kg/day). n � 16 � 20 neurons from

 animals per group. Reprinted with permission from Sakamoto et al [159].
ystems indicate that both DHA [7,163,164] and uridine w
5,165,166] can promote axonal growth and exocytosis in
ultured cells. DHA can activate the SNARE protein syn-
axin-3 [7], whereas uridine through UTP can activate P2Y
eceptors [5], which are expressed in hippocampal neurons
167] and are implicated in presynaptic induction of long-
erm potentiation [168]. Formation of dendritic spines and
ynaptogenesis in mammalian brains can be induced or
nitiated by presynaptic neurons, and this process might
nvolve calcium [150 –152,169]. The increases in spine den-
ity with DHA and UMP treatment (Figure 5) might thus
esult from potentiation of presynaptic or postsynaptic
echanisms.

. Effects of uridine on neurotransmitter release and
f UMP plus DHA on behavior

Consumption by rats of a diet containing uridine (as
MP) and choline can increase dopamine (DA) and ACh

evels in and—as assessed with in vivo microdialysis—their
elease from corpus striatum neurons. Apparently no data
re available on the effects on neurotransmitter production
r release of giving DHA alone or with the other two
hosphatide precursors. Dietary supplementation of aged
ale Fischer 344 rats with 2.5% UMP for 6 weeks, ad

ibitum, increased the release of striatal DA that was
voked by potassium-induced depolarization from 283% �
% in control rats to 341% � 21% in those receiving the
MP (P � .05) [165]. In general, each animal’s DA release

orrelated with its striatal DA content, measured postmor-
em. The levels of neurofilament-70 and neurofilament-M
roteins, two markers of neurite outgrowth, were also in-
reased after UMP treatment to 182% � 25% of control
evels for neurofilament-70 (P � .05) and to 221% � 34%
P � .01) for neurofilament-M [165].

In a similar microdialysis study, ACh release, basally as
ell as after administration of atropine (a muscarinic antag-
nist that blocks inhibitory presynaptic cholinergic recep-
ors), was found to be enhanced after UMP consumption.
mong aged animals consuming a UMP-containing diet

2.5%, w/w) for 1 or 6 weeks, baseline ACh levels in striatal
icrodialysates rose from 73 to 148 fmol/min after 1
eek of treatment (P � .05) and to 197 fmol/min after 6
eeks (P � .05) [166]. Dietary UMP (0.5%, 1 week) also

mplified the increase in ACh release caused by giving
tropine (10 �mol/L via the artificial cerebrospinal fluid);
tropine alone increased ACh concentrations from 81 to 386
mol/min in control rats and from 127 to 680 fmol/min in
hose consuming UMP (P � .05). Young rats eating the
MP-containing diet exhibited similar responses. These data

uggest that giving a uridine source might enhance some
holinergic functions, perhaps by increasing the amount of
ynaptic membrane or the quantities of ACh stored in syn-
ptic vesicles.

Additional evidence that treatment with UMP alone or

ith UMP plus DHA can affect brain neurotransmission
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omes from a few behavioral studies [24,170]. Among so-
ially impoverished rats, DHA (300 mg/kg by gavage) or
HA plus dietary UMP (0.5%) treatment for 4 weeks re-
ersed the deficits in hippocampal-dependent learning and
emory performance [24] (Figure 7). Chronic dietary ad-
inistration of UMP (0.1%) alone for 3 months also ame-

iorated this impairment among the impoverished rats [170].

. Conclusions

Brain phosphatide synthesis requires three circulating
ompounds: DHA, uridine, and choline. Oral administration
f these phosphatide precursors to experimental animals
ncreases the levels of phosphatides and synaptic proteins in
he brain and per brain cell, as well as the numbers of
endritic spines on hippocampal neurons. AA fails to re-
roduce these effects of DHA. If similar increases occur in
uman brain, giving these compounds to patients with dis-
ases like Alzheimer’s disease that cause the loss of brain
ynapses could be beneficial.
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