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Background: Activated phosphoinositide 3-kinase d syndrome
(APDS) 2 (p110d-activating mutations causing senescent T cells,
lymphadenopathy, and immunodeficiency [PASLI]–R1), a
recently described primary immunodeficiency, results from
autosomal dominant mutations in PIK3R1, the gene encoding
the regulatory subunit (p85a, p55a, and p50a) of class IA
phosphoinositide 3-kinases.
Objectives: We sought to review the clinical, immunologic, and
histopathologic phenotypes of APDS2 in a genetically defined
international patient cohort.
Methods: The medical and biological records of 36 patients with
genetically diagnosed APDS2 were collected and reviewed.
Results: Mutations within splice acceptor and donor sites of
exon 11 of the PIK3R1 gene lead to APDS2. Recurrent upper
respiratory tract infections (100%), pneumonitis (71%), and
chronic lymphoproliferation (89%, including adenopathy
[75%], splenomegaly [43%], and upper respiratory tract
lymphoid hyperplasia [48%]) were the most common features.
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Growth retardation was frequently noticed (45%). Other
complications were mild neurodevelopmental delay (31%);
malignant diseases (28%), most of them being B-cell
lymphomas; autoimmunity (17%); bronchiectasis (18%); and
chronic diarrhea (24%). Decreased serum IgA and IgG levels
(87%), increased IgM levels (58%), B-cell lymphopenia (88%)
associated with an increased frequency of transitional B cells
(93%), and decreased numbers of naive CD4 and naive CD8
cells but increased numbers of CD8 effector/memory T cells
were predominant immunologic features. The majority of
patients (89%) received immunoglobulin replacement; 3
patients were treated with rituximab, and 6 were treated with
rapamycin initiated after diagnosis of APDS2. Five patients died
from APDS2-related complications.
Conclusion: APDS2 is a combined immunodeficiency with a
variable clinical phenotype. Complications are frequent,
such as severe bacterial and viral infections,
lymphoproliferation, and lymphoma similar to APDS1/PASLI-
Department of Pediatrics, Tokyo Medical and Dental University; qOncological Prac-

tice Oldenburg/Delmenhorst, Oldenburg; rthe Institute of Cellular Medicine, Paediat-

ric Immunology Department, Great North Children’s Hospital, Newcastle upon Tyne;
sthe Department of Immunology, School of Medicine, Trinity College Dublin, St

James’s Hospital, Dublin; tthe Department of Pediatric Immunology and Infectious

Diseases, Our Lady’s Children’s Hospital Crumlin, Dublin; uthe Department ofMolec-

ular Medicine, Sapienza University of Rome; vthe Department of Pediatric, Hôpital
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Abbreviations used

APDS: Activated phosphoinositide 3-kinase d syndrome

CHL: Classical Hodgkin lymphoma

CMV: Cytomegalovirus

DLBCL: Diffuse large B-cell lymphoma

ENT: Ear, nose, and throat

HIGM: Hyper-IgM

HSCT: Hematopoietic stem cell transplantation

PASLI: p110d-Activating mutations causing senescent T cells,

lymphadenopathy, and immunodeficiency

PI3K: Phosphoinositide 3-kinase
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CD. Immunoglobulin replacement therapy, rapamycin, and,
likely in the near future, selective phosphoinositide 3-kinase
d inhibitors are possible treatment options. (J Allergy Clin
Immunol 2016;138:210-8.)

Key words: Primary immunodeficiency, phosphoinositide 3-kinase,
p85a, p110d, activated phosphoinositide 3-kinase d syndrome,
p110d-activating mutations causing senescent T cells, lymphadenop-
athy, and immunodeficiency, hyper-IgM, adenopathy, immunodefi-
ciency, antibody deficiency

Activated phosphoinositide 3-kinase d syndrome (APDS) 2,
also called p110d-activating mutations causing senescent T cells,
lymphadenopathy, and immunodeficiency (PASLI-R1 [MIM#
616005]), is a primary immunodeficiency resulting from
autosomal dominant mutations in PIK3R1, the gene encoding
the regulatory subunit (p85a, p55a, and p50a) of class IA
phosphoinositide 3 kinases (PI3Ks).1,2 Class IA PI3K molecules
are composed of a p110 catalytic subunit (p110a, p110b, or
p110d) and a regulatory subunit (p85a, p55a, p50a, p85b, or
p55g) that regulates the stability, cellular localization, and
function of p110. The function of class IA PI3Ks is to convert
phosphatidylinositol 4,5-bisphosphate into phosphatidylinositol
3,4,5-trisphosphate, an important phospholipid secondary
messenger. Each of the catalytic subunits can bind to any of the
regulatory subunits.3 Expression of the p110d catalytic subunit
is restricted mainly to leukocytes, whereas p110a and p110b
are ubiquitously expressed. The widely expressed p85a regulato-
ry subunit is the predominant regulatory subunit in lymphocytes.
Mutations in a splice donor site of PIK3R1 have been shown to
cause APDS2 as a result of skipping of exon 11 (coding exon
10), encoding amino acids 434 to 475 of p85a. Splicing from
exon 10 to exon 12 is in frame and therefore results in a shortened
p85a protein; the p55a and p50a isoforms are similarly affected.
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The shortened p85a protein is dominantly responsible for
hyperactivated PI3Kd signaling in T and B lymphocytes.1,2

The main clinical and biological findings in the 13 published
patients with APDS2 reported thus far were recurrent respiratory
tract infections, lymphoproliferation, and antibody defi-
ciency.1,2,4,5 APDS2 resembles APDS1, which is also named
PASLI-CD (MIM# 615513), a primary immunodeficiency caused
by autosomal dominant gain-of-function mutations in PIK3CD,
the gene encoding the catalytic subunit p110d, leading to
hyperactivated PI3Kd signaling in lymphocytes.6-8

In this study we reviewed the clinical, immunologic, and
histopathologic features of APDS2 in a genetically defined
international cohort of 36 patients.
METHODS
Genomic DNA from patients presenting with genetically undefined

primary antibody deficiency was screened for mutations at the splice sites

of exon 11 (coding exon 10) of the PIK3R1 gene by using whole-exome

sequencing or targeted Sanger sequencing. Medical and biological records
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FIG 1. Overall survival and lymphoma-free living of patients with APDS2.A,Overall survival of patients with

APDS2 from the cohort. B, Cumulative risk of lymphoma according to age. The time of lymphoma-free life in

patients with APDS2 is depicted.
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of 36 patients with genetically diagnosed APDS2 were retrospectively

collected and compared by using a questionnaire. Patients treated for lym-

phoma, receiving rituximab, or both were excluded from the immunologic

analysis. The study was performed in accordance with the precepts of the

Declaration of Helsinki and local ethical requirements.

RESULTS

Patients’ characteristics
In this retrospective analysis 36 patients with APDS2 (15 male

patients) from 31 unrelated families were included, 8 of whom
were reported previously.1,2 Five patients died at the age of 12
(P10), 27 (P5 and P28), 30 (P11), and 36 (P20a) years,
respectively (Fig 1). Alive patients had a median age of 18 years
(range, 3-56 years) at the time of the medical report.

Genetics of heterozygous splice site mutations in

PIK3R1
The previously described G to A, G to C, and G to T nucleotide

substitutions at the11 position of the donor splice site of PIK3R1
were identified in 42%, 29%, and 13% of the patients,
respectively (Fig 2). In 4 (13%) patients novel mutations affecting
the 12 position of this donor splice site were identified, a T to
A mutation (2 patients), a T to G substitution, and a TG
deletion. In addition, a novel mutation, a G to C nucleotide sub-
stitution at the 21 position of the splice acceptor site of exon
11 of the PIK3R1 gene was identified (Fig 2). Exon skipping of
exon 11 encoding amino acids 434 to 475 of p85a was demon-
strated by using mRNA analysis for all novel mutations (see
Fig E1 in this article’s Online Repository at www.jacionline.org).

Ten patients were familial cases (5 families), but the large
majority of patients were sporadic cases. Analysis of DNA from
parents was only available for 8 patients from sporadic cases and
revealed de novo mutations.
Clinical presentation
Infectious complications. Clinical manifestations of the 36

patients are shown in Fig 3. All presented with early-onset
recurrent ear, nose, and throat (ENT) or bronchopulmonary
infections (median onset, 1.7 years of age; range, first month of
life to 10 years of age). Upper respiratory tract (otitis media
and sinusitis) and lower respiratory tract (bronchitis and
pneumonitis) infections were present in 100% and 77% of
patients, respectively. Mild bronchial wall thickening on chest
computed tomographic scans and bronchiectasis were noticed
in 2 (6%) and 6 patients (18%), respectively, and bronchiectasis
was diagnosed at a median age of 13 years (range, 4-33 years).
The most common bacterial respiratory organisms identified
were Haemophilus influenzae and Streptococcus pneumoniae.
Chronic conjunctivitis reported in 7 patients progressed in 1
patient to Staphylococcus aureus–related periorbital cellulitis
(P5b) and in 2 patients to chronic blepharitis (P16 and P27a).
Invasive bacterial infections were rare, being reported only in 2
cases, 1 patient who presented with Pseudomonas aeruginosa
septicemia (P20a) and a 12-year-old boy (P10) who had
peritonitis related to infectious perforation of the small intestine,
leading to septic shock and death. This boy had chronic
gastroenteritis associated with Campylobacter jejuni, Salmonella
typhimurium, and Clostridium difficile infections. Chronic
cutaneomucosal candidiasis was observed in 3 patients (P5,
P25, and P28). Of 17 patients who received BCG vaccination, 2
(P21 and P26) presented with persistent local skin lesions at the
vaccination site. Persistent detection of virus was reported in
36% of patients, with cytomegalovirus (CMV) and EBV the
most common. Disseminated lymphadenitis associated with
CMV infection was reported in 2 patients, and asymptomatic
chronic CMV viremia was detected in 6 (17%) patients. Chronic
EBV viremia was detected in 8 (22%) patients and reported in 4
patients in combination with EBV-associated lymphoprolifera-
tive disease and in 4 patients as asymptomatic chronic EBV
viremia. Severe varicella zoster virus infections requiring
hospitalization occurred in 2 patients (P21 and P26). One patient
had hydrocephalus after measles meningitis (P22). Two patients
presented with localized molluscum contagiosum (P17 and
P27a) and 1 patient presented with warts (P22), indicating pox
virus and papilloma virus infections, respectively. Chronic viral
hepatitis was reported in 3 patients, as related to either hepatitis
B (P11, P20a) or C (P5) infection. Except chronic Giardia
intestinalis in 1 patient (P5) and ocular toxoplasmosis in another
(P20a), no other parasitic infections were reported in our patient
cohort.
Lymphoproliferation. Thirty-two (89%) of 36 patients had

persistent (>6 months) benign lymphoproliferation either as
chronic lymphadenopathy, splenomegaly, or ENT or gut
infiltration (Fig 3). Lymphadenopathy and splenomegaly typi-
cally began in childhood. Lymphadenopathies mentioned in

http://www.jacionline.org


FIG 2. Confirmed heterozygous mutations in the PIK3R1 gene of patients

with APDS2. Frequency and number of patients carrying indicated muta-

tions are presented. Mutations present in several patients from 1 family

were counted as 1 mutation.
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FIG 3. Main clinical characteristics of the APDS2 cohort. Shown is the

percentage of patients who presented with the indicated clinical features.
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75% of the patients were variable in size, frommild (1-3 cm) in 18
(50%) of 36 patients to large in 9 (25%) patients (3-5 cm, n 5 7;
>5 cm, n5 2) (Fig 4). Fifteen (43%) patients had splenomegaly of
variable size (Figs 3 and 4). Hepatomegaly developed in 8 (22%)
patients. Nodular lymphoid infiltration of the gut was reported in
8 (24%) patients andwas associatedwith chronic diarrhea, malab-
sorption, or both. Severity of ENT infiltration was variable,
ranging from ENT chronic lymphoid hyperplasia without the
need for surgical interventions in 3 (11%) patients to adenoidec-
tomies, tonsillectomy, or both in 7 (26%) patients to multiple
surgical resections in 3 patients. One 6-year-old patient required
multiple surgical interventions, includingmaxillary antrostomies,
multiple adenoidectomies, tonsillectomies, and reductions of
basilingual tonsils. The patient subsequently had postoperative
pharyngeal stenosis, requiring 3 endoscopic dilations, which
were inefficient, leading to tracheotomy.
Tonsil biopsy specimens from P1 and P2 were available. As

shown in Fig 5 and Fig E2 in this article’s Online Repository at
www.jacionline.org (both presented identical abnormalities
compared with age-matched control subjects): prominent T-cell
hyperplasia and small B-cell follicles were noticed. Germinal
centers were small and ill-defined, with very few IgD1 mantle
cells. Large B cells in the interfollicular area were numerous,
and IgM1 cells, which are usually localized in germinal centers,
were scattered within the T-cell zone. In addition, an important
hyperplasia of PD11 T cells was present both in germinal center
and in extrafollicular areas. The frequency of scattered EBV1

cells, CMV1 cells, or both present in the patients’ biopsy
specimens were comparable with those observed in control
biopsy specimens and not consistent with EBV-driven
pathologies, CMV-driven pathologies, or both.
Lymphoma. Ten (28%) patients had malignant diseases

(Fig 1, B, and Table I) at a median age of onset of 23 years (range,
6-40 years). The cumulative risk of lymphoid malignancy at the
age of 40 years was calculated as 78% (Fig 1, B). Classical
Hodgkin lymphoma (CHL) was diagnosed in 5 (14%) patients.
Diffuse large B-cell lymphoma (DLBCL) was diagnosed in 4
(11%) patients, and marginal zone B-cell lymphoma was
diagnosed in 2 (6%) patients. Three patients had multiple
lymphomas. One patient (P12) first had a nodular sclerosis
CHL at the age of 14 years that was treated with chemotherapy
and at the age of 27 years had a DLBCL that was treated with
intensive chemotherapy and autologous hematopoietic stem cell
transplantation (HSCT). Another patient (P20a) had 2 cases of
EBV1 nodular sclerosis CHL at 14 and 35 years of age and a
marginal zone B-cell lymphoma at 19 years of age. Her brother
(P20b) presented alsowith CHLwhen hewas 8 years old. Overall,
4 patients died of lymphoma at the ages of 27 (P5 and P28;
DLBCL), 30 (P11; CHL), and 36 (P20a; CHL) years,
respectively. Chronic lymphocytic leukemia developed in 1
patient (P27a) at 40 years of age. No other malignancy has been
reported, except a papillary neoplasm in both breasts in a female
patient.
Autoimmunity and immune dysregulation. Six (17%)

patients had autoimmune complications. Two patients had
thrombocytopenic purpura during childhood. One patient
had autoimmune hemolytic anemia after chemotherapy for
lymphoma, and 1 patient had Evans syndrome associated with
chronic lymphocytic leukemia. Insulin-dependent diabetes was
diagnosed in 1 patient. Two patients had chronic arthritis, and 1
had autoimmune hepatitis. In addition, 3 patients presented with
chronic eczema.
Immunologic features
The patients’ main immunologic characteristics are summa-

rized in Fig 6, A-H (immunologic data for individual patients are
provided in Tables E1 to E4 in this article’s Online Repository at
www.jacionline.org). The majority of patients presented with
decreased serum IgG and IgA levels before onset of immunoglob-
ulin replacement therapy (87%). Increased IgM levels were
observed in most (58%) but not all patients because 26%
presented with normal levels and 16% presented with decreased
levels before any treatment. IgM levels decreased in 5 patients
and increased in 2 patients over 2 to 12 years after onset of
immunoglobulin replacement therapy. One patient (P3a) had
increased IgG and IgM but decreased IgA levels; 1 (P28) had
low IgA but normal IgG and IgM levels; and 1 (P4a) had increased
IgA, decreased IgG, and normal IgM levels.
The majority of patients (88%) presented with B-cell lympho-

penia worsening within 1 to 19 years (Fig 6, D, and see Fig E3
in this article’s Online Repository at www.jacionline.org).
Transitional B cells were increased in frequency in 14 (93%) of
15 patients who had a suitable number of CD191 cells for anal-
ysis. Total CD3 T-cell counts were normal in 74% of patients
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A Clinical features of APDS2 patients 
Patient % 1 2 3 a 3b 4 a 4b 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20a 20b 21 22 23a 23b 24 25 26 27a 27b 28 29 30 31
Age at medical report (yrs) 18* 13 7 37 5 56 19 27 26 20 6 11 12 30 35 19 16 34 9 11 14 18 36 26 7 34 18 44 18 8 4 46 16 27 10 3 22
Upper respiratory infections 100
Pneumonia 71
Bronchiectasis 18
Autoimmunity 17
Chronic diarrhea 24
Adenopathy 75
Splenomegaly 43
Malignant disease 28
Neurodevelopmental delay 31
Growth retardation 45
Dead 14

B Biological features  
Patient % 1 2 3 a 3b 4 a 4b 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20a 20b 21 22 23a 23b 24 25 26 27a 27b 28 29 30 31
Increased IgM 58
Decreased IgA/IgG 87
EBV chronic replication 22
CMV chronic replication 17
Inverted ratio CD4/CD8 82

C variability of lymphoproliferation 
Patient 1 2 3 a 3b 4 a 4b 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20a 20b 21 22 23a 23b 24 25 26 27a 27b 28 29 30 31
ENT  lymphoid hyperplasia 
Splenomegaly
Adenopathy

FIG 4. Main clinical complications and biological features of patients with APDS2. A, Clinical features of pa-

tients with APDS2. B, Biological features. *Median age at medical report of alive patients: red, affected; light

yellow, unaffected; boxeswith a diagonal, unknown.C,Variability of lymphoproliferation: light yellow, unaf-

fected; boxeswith a diagonal, unknown; dark yellow, ENT chronic lymphoid hyperplasia without the need of

surgical interventions, lymphadenopathies with lymph node sizes from 1 to 3 cm; orange, adenoidectomies

and/or tonsillectomy, lymph node sizes from 3 to 5 cm; red, multiple surgical resections, lymph node sizes

larger than 5 cm. Splenomegaly was graded by its size: light yellow, not present, dark yellow, up to half dis-

tance between the costal margin and umbilicus; dark orange, up to the umbilicus; red, above the umbilicus.
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(see Fig E4 in this article’s Online Repository at www.jacionline.
org), CD4 T-cell counts were normal in 67% of patients, and CD8
T-cell counts were increased in 52% of patients and remained sta-
ble over time. An inverted CD4/CD8 ratio (<1.0) was found in
82% of patients. When extended naive/memory T-cell phenotype
analysis was performed, the increased CD8 T-cell numbers
appeared to result from the expanded CD8 T-cell population
with an effector/memory phenotype. Nearly all patients analyzed
presented with a low number of naive CD4 T cells
(CD311CD45RA1/CD41 cells; 71% of patients) and naive
CD8 T cells (CCR71CD45RA1/CD81; 100% of patients),
worsening over time (Fig 6, F and H, and see Fig E5 in this
article’s Online Repository at www.jacionline.org).
Nonimmunologic features
Growth impairment (22 SDs of height) was found in 14 (45%)

of 31 patients, a feature not always related to chronic diarrhea
because it was absent in 9 of them. Height and weight were
similarly affected because bodymass indexwaswithin the normal
range in all but 2 patients (minimum,22.8 SD; maximum, 13.3
SD; median,20.7 SD). Microcephaly was reported in 2 patients.
Neurodevelopmental delay presenting as mild cognitive
impairment or learning disabilities was reported in 9 (31%)
patients. For 1 patient, extensibility of the joints and increased
glucose levels in the blood were also reported. Liver cysts and
polycystic kidneys were reported in 1 patient each.
Treatment
Twenty-two patients received various antibiotic prophylaxis

(trimethoprim/sulfamethoxazole or azithromycin). The majority
of patients (89%) received immunoglobulin replacement therapy
(median age at onset of treatment, 5 years; range, 1-35 years).
Five patients were treated with steroids because of autoimmune
cytopenia (n5 2) or lymphoproliferation (n5 3). Three patients
were treated with rituximab to treat lymphoproliferation (n 5 2)
or autoimmune hemolytic anemia (n 5 1). Three patients were
splenectomized, 2 for autoimmune cytopenia and 1 as a
diagnostic procedure of massive splenomegaly. Immunosuppres-
sive drugs for digestive tract disease were given in 3 patients in
different combination (azathioprine, mycophenolate mofetil,
methotrexate, and infliximab). Episodes of lymphomas were
treated conventionally with chemotherapy associated in some
cases with radiotherapy and in 3 patients with autologous
HSCT. Allogeneic HSCT from an HLA-matched (10/10)
unrelated donor was performed in 1 patient (P27b) because of
molecular diagnosis, recurrent infections, and family history. The
conditioning regimen consisted of 42 g/m2 treosulfan, 150 mg/m2

fludarabine, and alemtuzumab. Five months after HSCT, the
patient was alive and well, with 100% donor chimerism and no
sign of GVHD. Since the diagnosis of APDS2, 6 patients were
started on rapamycin treatment. The time of follow-up after onset
of rapamycin treatment was too short to evaluate treatment
efficacy for 4 patients. Two patients with APDS2 were doing
well on rapamycin treatment. For both patients, significant
reduction of lymphoproliferation was reported.
DISCUSSION
Our retrospective analysis comparing clinical features of

patients withAPDS2/PASLI-R1 indicated a highly heterogeneous
clinical phenotype with recurrent ENT and bronchopulmonary
infections during early childhood as the most common clinical
manifestation. Chronic benign lymphoproliferative complica-
tions with various degrees of severity manifesting as

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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FIG 6. Immunologic features of patients with APDS2. A-D, IgG (Fig 6, A), IgA (Fig 6, B), and IgM levels (Fig 6,

C) and B-cell numbers (Fig 6, D) of patients with APDS2 before onset of immunoglobulin replacement or

other therapies. E-H, CD4 (Fig 6, E), CD4-naive (Fig 6, F), CD8 (Fig 6, G), and CD8-naive (Fig 6, H) T-cell
subsets of patients with APDS2. Fig 6, E and G, indicate before onset of immunoglobulin replacement or

other therapies and Fig 6, F and H, indicate the last evaluation. Solid line, Lower reference value; dashed
line, upper reference value.

TABLE I. Malignant diseases

Patient ID Age (y) at PID diagnosis Age (y) at onset of cancer Type of cancer Dead/alive

P5 4 25 DLBCL Dead

P11 22 30 CHL Dead

P12 Infancy 14/27 CHL/DLBCL Alive

P19 9 6/11 DLBCL/MALT Alive

P20a 36 14/19/35 CHL/MZL/CHL Dead

P20b 8 8 CHL Alive

P22 6 30 Breast papillary neoplasm Alive

P23b Infancy 37 CHL Alive

P27a 31 40 CLL Alive

P28 5 22 DLBCL Dead

CHL, Classical Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; MALT, mucosa-associated lymphoid tissue lymphoma; MZL, marginal zone B-cell lymphoma; PID,

primary immunodeficiency.
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adenopathies, splenomegaly, or hepatomegaly were observed.
Persistent EBV and/or CMV viremia was detected in several
patients, indicating impaired control of viral infections.
Predominant biological parameters included hyper-IgM (HIGM)
features, B-cell lymphopenia associated with increased frequency
of transitional B cells, decreased naive CD4 and CD8 T-cell
numbers, and increased cell number and frequency of CD8
effector/memory T cells. B-cell lymphoma, especially CHL,
DLBCL, and marginal zone B-cell lymphoma, was frequently
reported in our cohort, indicating the oncogenic character of these
PIK3R1 splice site mutations. Noninfectious and immunologic
FIG 5. Histologic features of tonsil biopsy specimens

A9-E9, Control subject. All pictures are at the same m

zone. B-cell follicles are small (Fig 5, A: follicles define

CD20 staining Fig 5, A) compared with the control valu

prominent CD31 T-cell hyperplasia (Fig 5, B and B9, a
staining underlines the important hyperplasia of

(Fig 5, C) compared with control cells (Fig 5, C9). Germi

which are usually localized in the germinal center (Fig

D). Only a few residual IgD1 mantle cell zone cells are

E9).

=

manifestations noted in our APDS2 cohort were growth
retardation and mild neurodevelopmental delay.
Overall, our work underscores the conclusion that APDS2

shares similarities with APDS1. Both syndromes include a
predominant antibody deficiency frequently presenting as a
hyper-IgM–like syndrome associated with progressive B- and
naive T-cell lymphopenia and massive lymphoproliferation. The
phenotypic heterogeneity of patients with APDS2, similar to that
observed in patients with APDS1, might be related to the patient’s
history of infections, environmental factors, and/or the presence
of modifier genes.
from patients with APDS2. A-E, Patient with APDS2.

agnification (310). GC, Germinal center; MZ, mantle

d by circles, B, C, D), with a few CD201 B cells (inset

es (inset CD20 staining Fig 5, A9) and associated with

nti-CD3 staining) compared with control values. PD1

germinal center and extrafollicular PD11 T cells

nal centers are ill-defined (Fig 5, A-C), and IgM1 cells,

5, D9, control), are scattered in the T-cell zone (Fig 5,

present (Fig 5, E) compared with control cells (Fig 5,
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However, in contrast to APDS1 (Coulter et al, unpublished
data), histologic analysis revealed a reduced germinal center size
in the 2 available tonsil biopsy specimens. Although we cannot
exclude that this observation could be due to the heterogeneous
spectrum of the disease because only a limited number of biopsy
specimens were available, it might suggest that deletion of exon
11 of the PIK3R1 gene affects not only p110d but also other
catalytic subunits of class IA PI3Ks.
Increased or normal IgM levels together with decreased IgG

and IgA serum levels and B-cell lymphopenia associated with
increased frequency of transitional B cells were frequently
observed in patients with APDS2 and can be explained by an
intrinsic B-cell defect leading to enhanced differentiation of B
lymphocytes from patients with APDS2 into short-lived
IgM-producing plasmablasts, as reported for phosphatase and
tensin homolog (Pten)–deficient murine B cells.9 Our histologic
analysis identifying numerous large IgM1 B cells located in the
interfollicular area further supports this hypothesis. Moreover,
our histologic analysis indicated that hyperactive PI3K signaling
interferes with the germinal center structure, likely inhibiting
immunoglobulin class-switch recombination. Impaired immuno-
globulin class-switch recombination as a cause of disturbed
germinal center architecture was indeed recently described in a
murine model analyzing hyperactive PI3K signaling in germinal
center B lymphocytes.10 The B-cell lymphopenia in the blood of
patients with APDS2 could be explained by disturbed migration
because B cells are proliferating in the lymph nodes, as indicated
by our histologic analysis.
The major complication of patients with APDS2, as well as

those with APDS1, is development of B-cell lymphoma (9/36
[25%]).8,11 Predisposition of APDS2 (as for APDS1) to B-cell
lymphomagenesis could be due to several immunologic
abnormalities, such as a defective T cell–mediated immune
surveillance, uncontrolled B-cell activation and proliferation, or
both. Because the histopathologic analysis indicated an important
hyperplasia of PD11 T cells, aberrant follicular helper T cell
function could be considered an additional factor for promoting
survival of neoplastic B cells, as previously suggested for
follicular helper T cells present within the microenvironment of
nodular lymphocyte predominant Hodgkin lymphoma and
follicular lymphoma.12 Oncogenic potential ofPIK3R1mutations
has been previously suggested by the presence of somatic
mutations in PIK3R1 in patients with Burkitt lymphomas13 and
those with endometrioid and colon cancers,14 affecting amino
acid residues 437 to 475 encoded by exon 11 (coding exon 10)
of the PIK3R1 gene. Moreover, in the Catalogue of Somatic
Mutations in Cancer project, mutations affecting the11 position
(G to A and G to T) and 12 position (T to C and T to G) at the
same splice acceptor site of the PIK3R1 gene found mutated in
patients with APDS2 have been recently annotated, a strong
argument in favor of the oncogenic character of these APDS2
splice site mutations. These somatic mutations were found in
patients with carcinoma located in the ovary, large intestine,
and stomach and malignant melanoma underlining the possible
oncogenic potential of those mutations not only for B-cell
lymphoma but for other cell types, suggesting an impairment of
the PIK3R1 gene–encoded regulatory subunits not only on
p110d (PI3Kd) activity. Growth impairment, joint extensibility,
and increased glucose levels in the blood reported for 1 patient
might reflect deregulated p110a (and/or p110b) activity. More
research will be needed to characterize the possible effects of
the mutant p85aD434-475 protein on different catalytic p110
subunits in other cells (nonlymphoid lineage cells), which could
be hidden by the predominant immunologic phenotype.
Of note, heterozygous nonsynonymous germline mutations

located especially within the C-terminal part of p85a (down-
stream of amino acid 475) result in a rare autosomal dominant
multisystem disease called SHORT syndrome described to be due
to loss of PI3K activity.15-17 Patients with SHORT syndrome
present with short stature; hyperextensibility of joints, hernia
(inguinal), or both; ocular depression; Rieger anomaly; and
teething delay.
Allogeneic HSCT for APDS2was recently reported for 1 case.5

Herein we describe a second successful case similar to the 8 of 11
successful cases of allogeneic HSCT for APDS1 (Coulter et al,
unpublished data). Thus allogeneic HSCT appears to be a
treatment option for those with severe APDS2, especially in light
of the increased risk of lymphoma development (Fig 1, B, and
Table I), although no prognostic marker for lymphoma
development has been identified thus far.
Most patients have received immunoglobulin replacement

therapy since infancy to reduce the infection incidence. Since
the diagnosis of APDS2, 6 patients were started on long-term
rapamycin treatment based on knowledge that the serine/threo-
nine kinase mammalian target of rapamycin is activated by PI3K
signaling, and rapamycin treatment was reported to be beneficial
in patients with APDS1 (personal observation).7 For 2 patients
with APDS2 in our cohort, rapamycin treatment was beneficial.
For 1 patient, treatment led to disappearance of chronic
conjunctivitis and normalization of tonsil size, and for the other
patient, treatment led to reduced lymph node, liver, and spleen
size; however, the effect of this treatment on lymphocyte cell
numbers and antibody titers over a longer time period has to be
investigated further. Evaluation of the efficacy of rapamycin treat-
ment on the other patients with APDS2 in our cohort was not
possible because of the short treatment period. Although
continuous rapamycin treatment might turn out to be very
beneficial for patients with APDS2, it bears the risk of unwanted
side effects outside the immune system.18 Because the
hyperactivated PI3K signaling in APDS2 lymphocytes is
mediated by the catalytic p110d subunit,1,2 treatment with
p110d-specific inhibitor could offer a new treatment with possibly
higher efficiency and less unwanted side effects.
Overall, our study indicates that the splice donor and

splice acceptor sites of exon 11 (coding exon 10) of the
PIK3R1 gene should be sequenced in patients with sporadic or
autosomal dominant primary immunodeficiencies associated
with lymphadenopathies, growth retardation, antibody deficiency
(especially HIGM), B-cell lymphopenia with an increased
percentage of transitional B cells, and naive CD4 and CD8
T-cell lymphopenia.
Finally, our study also indicates the need for further

prospective, large-cohort studies of APDS2 to identify clinical
or laboratory biomarkers that predict disease severity and to
document the effect of different treatment options.
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Clinical implications: APDS2/PASLI-R1 should be screened in
patients with sporadic or autosomal dominant primary immu-
nodeficiencies associated with lymphadenopathies, growth
retardation, high IgM levels (HIGM-like syndrome), and B-
cell lymphopenia with an increased percentage of transitional
B cells and decreased naive T-cell counts.
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Exon skipping

FIG E1. Novel splice acceptor and splice donor mutation at exon 11 (coding

exon 10) of the PIK3R1 gene can lead to exon skipping. A, RT-PCRs with

primers flanking exon 11 of the PIK3R1 gene with RNA extracted from

patients (P19, PBLs; P8, fibroblasts; P10, T-cell blasts) and healthy subjects

(control 1-3, PBLs; control 4, fibroblasts; control 5, T-cell blasts). P19 has a

de novo mutation at the splice acceptor site (GRCh38; NM181523.2; C.1300

21 position; G to C). P8 has a de novo mutation at the splice donor site

(GRCh38; NM181523.2; C.1425 12 position T to G). P10 has a 2-nt deletion

at the splice donor site (GRCh38; NM181523.2; C.1425 12,3 position; TG

deletion). B, Sequencing chromatogram showing skipping of exon 11

(coding exon 10). Sequencing was performed with PCR products amplified

from cDNA from P28. P28 has a de novo mutation at the splice donor site

(GRCh38; NM181523.2; C.1425 12 position T to A).
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FIG E2. Large B cells in the interfollicular area are in cycle. Tonsil histology of patients with APDS2 showed

numerous Ki671 cells outside the positive germinal center (A; 310 magnification) in comparison with a

control (A9; 310 magnification). Double staining (B; CD20: brown; Ki67: red; 340 magnification) showed

that large B cells in the interfollicular area were in cycle.
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FIG E3. B-cell counts over time. Each symbol represents a patient with

APDS2. Solid line, Lower reference value.
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FIG E4. CD3 T-cell counts before onset of any therapies. Solid line, Lower

reference value; dashed line, upper reference value.
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FIG E5. Development of naive T cells over time. Numbers of naive CD4 (A) and naive CD8 (B) T cells are

shown. Each symbol represents a patient with APDS2. Solid line, Lower reference value.
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TABLE E1. B-lymphocyte subsets and immunoglobulin serum levels at initial assessment

Patient ID Age (y) IgG (g/L) IgA (g/L) IgM (g/L) CD191 (/mL) CD191/CD211 CD2411 (%) CD191/CD381 IgM1 (%) Memory B cells (%) Switched memory B cells (%) MZB cells (%)

P1 1 2.2 0.23 3.3 11

P2 2.5 0.07 0.06 3.67 162 26 8 25 45

P3a 34 22 0.05 2.26

P3b 2.5 0 0 2.89 224 8 41

P4a NA

P4b 5.5 3.64 <0.07 1.66 144

P5 4 1.2 0 0 0

P6 6 0.2 0.03 1.5 20

P7 NA

P8 5.1 1.4 0.07 2.7 120 11 5 6

P9 3.8 0.33 0.07 6.6 60 37 26 11

P10 1.3 0.2 0.1 1.44 192

P11 NA

P12 NA

P13 12 5.64 0.09 2.38

P14 6 4.6 0.1 1.05 277

P15 24 1.75 0.254 8.87 48

P16 9 2.8 0 >2.8 100

P17 10.5 4.5 0.06 9.35 233

P18 4.5 3.68 0.1 4.68

P19 17 3.37 0 2.19 2.5 5.1

P20a NA

P20b 8 3.5 0 0.15

P21 7 0.16 0.25 1.15

P22 NA

P23a NA

P23b NA

P24 NA

P25 4.9 0.24 0.01 0.14 0.52

P26 4.6 5.79 1.81 5.42 149 15.24 2.3 1.3 0.2

P27a 31.6 5.09 0.06 2.62 250

P27b 3 0.1 0.06 10

P28 5.2 9.34 0.06 0.55 180

P29 5 0.9 0.07 1.16 228 65.8 0.8 0.5 0.3

P30 1 2.38 0.04 3.06 107 70.1 9.2 3.9

P31 18 4.7 0.1 2.3 55 14 0.0

NA, Not applicable.

J
A
L
L
E
R
G
Y
C
L
IN

IM
M
U
N
O
L

J
U
L
Y
2
0
1
6

2
1
8
.e
6

E
L
K
A
IM

E
T
A
L



TABLE E2. B-lymphocyte subsets and immunoglobulin serum levels at later assessment

Patient ID Age (y) IgG (g/L) IgA (g/L) IgM (g/L) CD191 (/mL) CD19/CD211 CD2411 (%) CD191/CD3811 IgM11 (%)

Memory

B cells (%)

Switched memory

B cells (%) MZB cells (%)

Treatment

with rituximab

P1 12 16.97§ 0.11 1.91 108 11 12 22 13 2 7.5 y after rituximab

P2 5.5 14.6§ 0.05 1.73 105 39 39 8 3 2

P3a 34.6 22§ 0.05 2.26 119 11 64.5 42 34

P3b 4 8.28§ 0.05 4.81 120 33 31 9 6 2

P4a 55 5.3 4.27 1.43 64 2 39 22 17

P4b 18.5 0.3 0.04 10.63 58 5 50 45 13

P5 26* 5§ 0 0 0

P6 25 9.27§ 0.04 0.04 10

P7 22 38 14

P8 6 6.84§ 95 23 14 7 4

P9 11 9.06§ 0.07 2.81 30 21 12 9

P10 NA

P11 25 0.03 0.05 0.42

P12 NA

P13 18 10.08§ 0.05 5 81 50.8 25.5 18.6 6.9

P14 16.5 5.68§ 0.1 0.1 74

P15 NA
P16 9.5 5.97§ 0 0.77 54 9.2 42 27 19 9.1

P17 11 8.7§ 0.06 10.5 160 19.2 45.7 8.5 3.1 4.2

P18 13 11.26§ 0.05 1.85 19 20 18 93

P19 27� 9.23 2.5 50 33.3

P20a NA

P20b 26� 5.8§ 0 0.16 0

P21 7.2 0.16 0.25 1.15 64 40 37 0.6 0.6 3

P22 33.7� 15.11§ 0.05 16.46 122

P23a 16 9.5§ 0 0 0 1 y after rituximab

P23b NA

P24 14 13.8

P25 6.1 4.45§ 0.13 0.003

P26 4.6 5.79 1.81 5.42 149 15.24 2.29 1.3 0.2

P27a 44.4� 10.3§ 0.06 0.19 1

P27b 15 7§ 0.06 0.05 32 15 2 12

P28 25* 16.3§ 0.06 0.42 33 68 28 9.8 13.7 2 y after rituximab

P29 9 13§ 0.06 0.63 40.5 1.9 4.3

P30 2.2 9.23 2.5 50 33.33

P31 NA

NA, Not applicable.

*Less than 2 years after chemotherapy.

�More than 10 years after chemotherapy for lymphoma.

�Receiving immunosuppressive drugs.

§Receiving immunoglobulin replacement.
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TABLE E3. T-lymphocyte subsets at initial assessment

Patient

ID

Age

(y)

CD31

(/mL)

CD41

(/mL)

CD81

(/mL)

CD161CD561

(/mL)

P1 1

P2 2.5 1512 432 576 126

P3a 34 1394 833 476

P3b 2.5 2688 928 1600 224

P4a NA

P4b 5.5 1878 771 953 285

P5 4 400 100 300 100

P6 6 2500 1000 1400 350

P7 15.5 2035 496 1251

P8 5.1 2160 730 1020 350

P9 3.8 2210 660 1320 120

P10 1.3 4363 2349 1630 288

P11 NA

P12 NA

P13 12

P14 6 1793 861 780 633

P15 24 2560 482 1850 134

P16 9 2350 870 1330 190

P17 10.5 2100 470 1363 2350

P18 4.5 1900 779 741

P19 17

P20a 36

P20b NA

P21 NA

P22 6

P23a 16 2661 2233 942 430

P23b NA

P24 NA

P25 4.9 1144 195 789 115

P26 4.6 5357 1243 3868 764

P27a 31.6 1200 880 550 210

P27b NA

P28 5.2 1580 730 950 200

P29 5 2187 696 1439 285

P30 1 2769 781 1687 835

P31 18 1800 400 1380 320

NA, Not applicable.
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TABLE E4. T-lymphocyte subsets at later assessment

Age (y) CD31 (/mL) CD41 (/mL)

Naive CD4 CD311

CD45RA/CD41 (%)

Naive CD4 CD311

CD45RA/CD41(/mL) CD81 (/mL)

Naive CD8 CCR71

CD45RA1/CD81 (%)

Naive CD8 CCR71

CD45RA1/CD81 (/mL)

CD161

CD561 (/mL) Senescent T cell (%)

12 1,440 540 7 38 702 1 7 19.5

5.5 957 330 20 66 341 14 48 55 16

34.6 1,394 833 4 33 476 4 19 187 16.3

4 3,432 780 2,457 25 156 8.89

55 764 420 24 103 337 356

18.5 2,107 617 7 42 1,330 5 63 138

26* 280 20 0 0 260 20

25 1,940 770 1,140 240

22 1,714 452 5 23 1,036 4 41 132 23.4

6 11,558 513 17 87 760 2 15 228 21.3

11 1,440 530 22 140 750 30

NA

25 650 1,400

NA

18 704 200 8.5 17 415 1,031

16.5 2,067 886 1,187 14

NA

9.5 2,155 488 3.2 12 1,384 56

11 2,930 530 4.7 25 2,390 1,650

13 2,040 1,032 30 310 888 7 62 312 26.4

NA

36� 3,015 385 4 16 2,554 1 23 157

26� 2,600 400 0.5 2 2,200 0 0 100
7.2 1,312 432 31 135 512 7 37

33.7§ 4,488 1,079 3,210

16 2,233 942 1,318 430

NA

14 1,242 869 276

NA

4.6 5,357 1,243 29 363 3,868 764

44.4§ 455 228 218 6

15 965 297 35 103 619 283

25* 3,302 404 2,898 370

9 3,839 2,614 13 347 1,225 124

NA

NA

*Less than 2 years after chemotherapy.

�More than 10 years after chemotherapy and radiotherapy for lymphoma.

�More than 10 years after chemotherapy for lymphoma.

§Receiving immunosuppressive drugs.
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