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Meridian Surfaces with Constant Mean
Curvature in Pseudo-Euclidean 4-Space
with Neutral Metric
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Abstract. In the present paper we consider a special class of Lorentz sur-
faces in the four-dimensional pseudo-Euclidean space with neutral met-
ric which are one-parameter systems of meridians of rotational hyper-
surfaces with timelike, spacelike, or lightlike axis and call them merid-
ian surfaces. We give the complete classification of minimal and quasi-
minimal meridian surfaces. We also classify the meridian surfaces with
non-zero constant mean curvature.
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1. Introduction

The study of surfaces with constant mean curvature is one of the main topics
in classical differential geometry which goes back to the latter part of the
eighteenth century. Lagrange was the first who found the minimal surface
equation in 1761 when he looked for a necessary condition for minimizing
a certain integral. Actually, the notion of mean curvature was first formally
defined by Meusnier in 1776. Throughout the ninth century great mathe-
maticians such as Gauss and Weierstrass devoted much of their studies to
these surfaces. Constant mean curvature surfaces in the 3-dimensional Eu-
clidean space are also studied intensively nowadays by many geometers for
their physical interpretation. For example, surfaces with constant curvature
are important mathematical models of soap films and soap bubbles.

Constant mean curvature surfaces (CMC surfaces) in arbitrary space-
time are important objects for the special role they play in the theory of
general relativity. The study of CMC surfaces involves not only geometric
methods but also PDE and complex analysis, which is why the theory of
CMC surfaces is of great interest not only for mathematicians but also for
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physicists and engineers. Surfaces with constant mean curvature in Minkows-
ki space have been studied intensively in the past years. See for example
[3,4,16,17,20].

In the four-dimensional pseudo-Euclidean space with neutral metric
very few results are known on surfaces with constant mean curvature. A
special case of CMC surfaces are the quasi-minimal surfaces. A Lorentzian
surface in a pseudo-Riemannian manifold is called quasi-minimal (pseudo-
minimal or marginally trapped) if its mean curvature vector H is lightlike
at each point. Classification results on quasi-minimal surfaces in the pseudo-
Euclidean space E

4
2 have been obtained recently. The classification of quasi-

minimal surfaces with parallel mean curvature vector in E
4
2 is given in [9].

Chen [5] classified quasi-minimal Lorentz flat surfaces in E
4
2. As an applica-

tion, he gave the complete classification of biharmonic Lorentz surfaces in E
4
2

with lightlike mean curvature vector. Several other families of quasi-minimal
surfaces have also been classified. For example, quasi-minimal surfaces with
constant Gauss curvature in E

4
2 were classified in [6,11]. Quasi-minimal La-

grangian surfaces and quasi-minimal slant surfaces in complex space forms
were classified, respectively, in [8,10]. For an up-to-date survey on quasi-
minimal surfaces, see also [7].

In the present paper we construct special 2-dimensional Lorentz sur-
faces in E

4
2 which are one-parameter systems of meridians of the rotational

hypersurfaces with timelike, spacelike, or lightlike axis and call them merid-
ian surfaces in E

4
2. We describe all minimal meridian surfaces and show that

all of them lie in hyperplanes of E4
2. We give the complete classification of

quasi-minimal meridian surfaces (Theorems 6, 7, 8, 9). We also classify the
meridian surfaces with non-zero constant mean curvature (Theorems 10, 11,
12, 13).

2. Preliminaries

Let E4
2 be the 4-dimensional pseudo-Euclidean space with flat metric of index

2 given in local coordinates by

g̃ = dx2
1 + dx2

2 − dx2
3 − dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system of E
4
2. We denote

by 〈., .〉 the indefinite inner scalar product associated with g̃. Since g̃ is an
indefinite metric, a vector v ∈ E

4
2 can have one of the three casual characters:

it can be spacelike if 〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0, and lightlike if
〈v, v〉 = 0 and v �= 0. This terminology is inspired by general relativity and
the Minkowski 4-space E

4
1.

We use the following denotations:

S
3
2(1) =

{

V ∈ E
4
2 : 〈V, V 〉 = 1

}

;
H

3
1(−1) =

{

V ∈ E
4
2 : 〈V, V 〉 = −1

}

.

The space S
3
2(1) is known as the de Sitter space, and the space H

3
1(−1) is the

hyperbolic space (or the anti-de Sitter space) [18].
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Given a surface M in E
4
2, we denote by g the induced metric of g̃ on

M . A surface M in E
4
2 is called Lorentz if the induced metric g on M is

Lorentzian, i.e. at each point p ∈ M we have the following decomposition:

E
4
2 = TpM ⊕ NpM

with the property that the restriction of the metric onto the tangent space
TpM is of signature (1, 1), and the restriction of the metric onto the normal
space NpM is of signature (1, 1).

We denote by ∇ and ∇ the Levi–Civita connections of M and E
4
2,

respectively. Then for any vector fields X,Y tangent to M the Gauss formula
is given by

∇XY = ∇XY + h(X,Y ),
where h is the second fundamental form of M . If D is the normal connection
on the normal bundle of M , then for any normal vector field ξ and any
tangent vector field X the Weingarten formula is given by

∇Xξ = −AξX + DXξ,

where Aξ is the shape operator with respect to ξ. The shape operator and
the second fundamental form are related by the formula

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉
for any X and Y tangent to M and any ξ normal to M .

The mean curvature vector field H of M in E
4
2 is defined as

H =
1
2

tr h.

Thus, if M is a Lorentz surface and {X,Y } is a local orthonormal frame
of the tangent bundle such that 〈X,X〉 = 1, 〈Y, Y 〉 = −1, then the mean
curvature vector field is given by the formula H = 1

2 (h(X,X) − h(Y, Y )).
A surface M is called minimal if its mean curvature vector vanishes

identically, i.e. H = 0. A surface M is called quasi-minimal (or pseudo-
minimal) if its mean curvature vector is lightlike at each point, i.e. H �= 0
and 〈H,H〉 = 0. Obviously, quasi-minimal surfaces are always non-minimal.

M is said to have constant mean curvature if 〈H,H〉 = const. We shall
consider Lorentz surfaces in E

4
2 for which 〈H,H〉 = const �= 0. Such surfaces

we call CMC surfaces.

3. Meridian Surfaces in Pseudo-Euclidean 4-Space

Meridian surfaces in Euclidean 4-space were defined first in [12] as
2-dimensional surfaces lying on a standard rotational hypersurface in E

4.
These surfaces are one-parameter systems of meridians of the rotational hy-
persurface; that is why they are called meridian surfaces. The classification
of meridian surfaces with constant Gauss curvature, with constant mean cur-
vature, Chen meridian surfaces, and meridian surfaces with parallel normal
bundle is given in [12,14]. Meridian surfaces in E

4 having pointwise 1-type
Gauss map are classified in [1].
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The idea from the Euclidean case is used in [13] for the construction of
special families of two-dimensional spacelike surfaces lying on rotational hy-
persurfaces with timelike or spacelike axis in the Minkowski space E

4
1. These

surfaces are called meridian surface of elliptic or hyperbolic type, respective-
ly. A local classification of marginally trapped meridian surfaces is given in
[13]. Meridian surfaces in E

4
1 with pointwise 1-type Gauss map are classified

in [2]. The classification of meridian surfaces of elliptic or hyperbolic type
with constant Gauss curvature, with constant mean curvature, Chen merid-
ian surfaces, and meridian surfaces with parallel normal bundle is given in
[15].

Following the idea from the Euclidean and Minkowski spaces, we shall
construct Lorentz meridian surfaces in the pseudo-Euclidean 4-space E

4
2 as

one-parameter systems of meridians of rotational hypersurfaces with timelike
or spacelike axis. We will also construct meridian surfaces which are one-
parameter systems of rotational hypersurfaces with lightlike axis.

3.1. Meridian Surfaces Lying on a Rotational Hypersurface with Timelike
Axis

Let Oe1e2e3e4 be the standard orthonormal frame in E
4
2, i.e. 〈e1, e1〉 =

〈e2, e2〉 = 1, 〈e3, e3〉 = 〈e4, e4〉 = −1. First we consider a standard rotational
hypersurface with timelike axis Oe4. Similarly, we can consider a rotational
hypersurface with axis Oe3.

Since in the Minkowski space E
3
1 = span {e1, e2, e3} there exist two

types of spheres, namely the pseudo-sphere S
2
1(1) =

{

V ∈ E
3
1 : 〈V, V 〉 = 1

}

and the pseudo-hyperbolic space H
2(−1) =

{

V ∈ E
3
1 : 〈V, V 〉 = −1;V 3 > 0

}

(where V 3 is the third coordinate of V ), we consider two types of rotational
hypersurfaces about the axis Oe4.

Rotational Hypersurface of First Type
Let f = f(u), g = g(u) be smooth functions, defined in an interval

I ⊂ R. The first type rotational hypersurface MI in E
4
2, obtained by the

rotation of the meridian curve m : u → (f(u), g(u)) about the Oe4-axis, is
parametrized as follows:

MI : Z(u,w1, w2) = f(u)(cosh w1 cos w2 e1 + cosh w1 sin w2 e2 + sinh w1 e3)
+ g(u) e4.

If we denote by lI(w1, w2) = cosh w1 cos w2 e1 +cosh w1 sin w2 e2 +sinh w1 e3
the unit position vector of the sphere S

2
1(1) in E

3
1 centered at the origin O,

then the parametrization of the rotational hypersurface MI is written as

MI : Z(u,w1, w2) = f(u)lI(w1, w2) + g(u) e4.

Now, we shall construct Lorentz surfaces in E
4
2 which are one-parameter sys-

tems of meridians of the hypersurface MI .
First we consider a smooth spacelike curve c : l = l(v) = lI(w1(v),

w2(v)), v ∈ J, J ⊂ R on S
2
1(1) parametrized by the arc-length, i.e. 〈l′, l′〉 = 1.

We construct a two-dimensional surface M′
a defined by

M′
a : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J. (1)
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Since the surface M′
a is a one-parameter system of meridians of MI , we call

it a meridian surface on MI .
The tangent space of M′

a is spanned by the vector fields

zu = f ′(u) l(v) + g′(u) e4; zv = f(u) l′(v),

so, the coefficients of the first fundamental form of M′ are

E = 〈zu, zu〉 = f ′2 − g′2; F = 〈zu, zv〉 = 0; G = 〈zv, zv〉 = f2.

Since we are interested in Lorentz surfaces, we assume that the meridian
curve m is timelike, i.e. f ′2 − g′2 < 0. Without loss of generality we can
assume that f ′2 − g′2 = −1. Then the coefficients of the first fundamental
form are E = −1; F = 0; G = f2(u). We consider the unit tangent vector
fields X = zu, Y = zv

f = l′, which satisfy 〈X,X〉 = −1, 〈Y, Y 〉 = 1, and
〈X,Y 〉 = 0.

Let t(v) = l′(v) be the tangent vector field of the curve c. Since
〈t(v), t(v)〉 = 1, 〈l(v), l(v)〉 = 1, and 〈t(v), l(v)〉 = 0, there exists a unique (up
to a sign) vector field n(v), such that 〈n(v), n(v)〉 = −1 and {l(v), t(v), n(v)}
is an orthonormal frame field in E

3
1 = span {e1, e2, e3}. With respect to this

frame field we have the following Frenet formulas of c on S
2
1(1):

l′ = t;
t′ = −κ n − l;
n′ = −κ t,

(2)

where κ(v) = 〈t′(v), n(v)〉 is the spherical curvature of c on S
2
1(1). Now we

consider the following normal vector fields:

n1 = n(v); n2 = g′(u) l(v) + f ′(u) e4, (3)

which satisfy 〈n1, n1〉 = −1, 〈n2, n2〉 = 1, 〈n1, n2〉 = 0.
Taking into account (2) and (3) we get the following derivative formulas:

∇XX = κmn2; ∇Xn1 = 0;
∇XY = 0; ∇Y n1 = −κ

f Y ;
∇Y X = f ′

f Y ; ∇Xn2 = κmX;
∇Y Y = f ′

f X − κ
f n1 − g′

f n2; ∇Y n2 = g′

f Y,

(4)

where κm denotes the curvature of the meridian curve m, which in case of
a timelike curve is given by the formula κm(u) = f ′′(u)g′(u) − f ′(u)g′′(u).
Hence, we have

h(X,X) = κm n2;
h(X,Y ) = 0;
h(Y, Y ) = −κ

f n1 − g′

f n2.
(5)

Formulas (5) imply that the mean curvature vector field H of M′
a is expressed

as follows:

H = − κ

2f
n1 − fκm + g′

2f
n2.
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Using that g′2 = f ′2 + 1 and κm = f ′′

g′ , we obtain

H = − κ

2f
n1 − ff ′′ + (f ′)2 + 1

2f
√

f ′2 + 1
n2. (6)

Now, let c : l = l(v) = lI(w1(v), w2(v)), v ∈ J, J ⊂ R be a timelike curve
on S

2
1(1) parametrized by the arc-length, i.e. 〈l′, l′〉 = −1. We consider the

two-dimensional surface M′
b defined by

M′
b : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J, (7)

where f ′2 − g′2 = 1. The surface M′
b is another meridian surface on MI .

In this case we consider an orthonormal frame field {l(v), t(v), n(v)} of
E
3
1, such that t = l′, 〈l, l〉 = 1, 〈t, t〉 = −1, 〈n, n〉 = 1. Now, the Frenet

formulas of c on S
2
1(1) are

l′ = t;
t′ = κ n + l;
n′ = κ t,

where κ(v) = 〈t′(v), n(v)〉. The tangent vector fields of the meridian surface
M′

b are
zu = f ′ l + g′ e4; zv = f t,

and since f ′2 − g′2 = 1, the coefficients of the first fundamental form are
E = 1; F = 0; G = −f2(u). We consider the orthonormal tangent frame
X = zu, Y = zv

f = t, and the orthonormal normal frame field defined by

n1 = n; n2 = g′ l + f ′ e4.

Thus, we obtain a frame field {X,Y, n1, n2} of M′
b such that 〈n1, n1〉 =

1, 〈n2, n2〉 = −1 and 〈n1, n2〉 = 0. With respect to this frame field we have
the following derivative formulas:

∇XX = κmn2; ∇Xn1 = 0;
∇XY = 0; ∇Y n1 = κ

f Y ;
∇Y X = f ′

f Y ; ∇Xn2 = κmX;
∇Y Y = f ′

f X + κ
f n1 − g′

f n2, ∇Y n2 = g′

f Y,

(8)

where κm is the curvature of the meridian curve m, which in the case of a
spacelike curve is given by the formula κm = f ′g′′ − f ′′g′.

Equalities (8) imply that the mean curvature vector field is given by the
formula

H = − κ

2f
n1 +

fκm + g′

2f
n2.

Having in mind that g′2 = f ′2 − 1 and κm = f ′′

g′ , we obtain

H = − κ

2f
n1 +

ff ′′ + (f ′)2 − 1

2f
√

f ′2 − 1
n2. (9)
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So, we have two types of meridian surfaces lying on MI : meridian sur-
faces of type M′

a and meridian surfaces of type M′
b.

Rotational Hypersurface of Second Type

Now, we consider the second type rotational hypersurface MII in E
4
2,

obtained by the rotation of the meridian curve m : u → (f(u), g(u)) about
the axis Oe4, which is given by the following parametrization:

MII : Z(u,w1, w2) = f(u)
(

sinhw1 cos w2 e1 + sinhw1 sin w2 e2 + cosh w1 e3
)

+ g(u) e4.

Note that lII(w1, w2) = sinhw1 cos w2 e1+sinh w1 sin w2 e2+cosh w1 e3 is the
unit position vector of the hyperbolic sphere H

2(−1) in E
3
1 = span {e1, e2, e3}

centered at the origin O. So, the parametrization of MII can be written as:

MII : Z(u,w1, w2) = f(u)lII(w1, w2) + g(u) e4.

Meridian surfaces lying on the rotational hypersurface of second type MII

can be constructed as follows: let c : l = l(v) = lII(w1(v), w2(v)) be a smooth
curve on the hyperbolic sphere H

2(−1), where w1 = w1(v), w2 = w2(v), v ∈
J, J ⊂ R. Then the two-dimensional surface M′′ defined by

M′′ : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J (10)

is a one-parameter system of meridians of MII , which we call a meridian
surface on MII .

The tangent space of M′′ is spanned by the vector fields

zu = f ′(u) l(v) + g′(u) e4; zv = f(u) l′(v),

so the coefficients of the first fundamental form of M′′ are

E = 〈zu, zu〉 = −(f ′2 + g′2); F = 〈zu, zv〉 = 0; G = 〈zv, zv〉 = f2〈l′, l′〉.
Since c is a curve lying on H

2(−1), we have 〈l, l〉 = −1, which implies that
the tangent vector field t = l′ satisfies 〈t, t〉 = 1. Without loss of generality
we suppose that f ′2 + g′2 = 1. Then the coefficients of the first fundamental
form of M′′ are E = −1; F = 0; G = f2.

We consider an orthonormal frame field {l(v), t(v), n(v)} of c satisfying
the conditions 〈l, l〉 = −1, 〈t, t〉 = 1, 〈n, n〉 = 1. The Frenet formulas of c on
H

2(−1) are

l′ = t;
t′ = κ n + l;
n′ = −κ t,

(11)

where κ(v) = 〈t′(v), n(v)〉 is the curvature of c on H
2(−1).

Let us consider the following orthonormal frame field of M′′:

X = zu; Y =
zv

f
= t; n1 = n(v); n2 = −g′(u) l(v) + f ′(u) e4.
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This frame field satisfies 〈X,X〉 = −1, 〈Y, Y 〉 = 1, 〈X,Y 〉 = 0, 〈n1, n1〉 = 1,
〈n2, n2〉 = −1, 〈n1, n2〉 = 0. Taking into account (11) we get the following
derivative formulas:

∇XX = κmn2; ∇Xn1 = 0;
∇XY = 0; ∇Y n1 = −κ

f Y ;
∇Y X = f ′

f Y ; ∇Xn2 = −κmX;
∇Y Y = f ′

f X + κ
f n1 − g′

f n2; ∇Y n2 = − g′

f Y,

where κm = f ′g′′ − f ′′g′. Hence, we obtain the formulas

h(X,X) = κm n2;
h(X,Y ) = 0;
h(Y, Y ) = κ

f n1 − g′

f n2,

which imply that the normal mean curvature vector field of M′′ is given by

H =
κ

2f
n1 +

ff ′′ + (f ′)2 − 1

2f
√

1 − f ′2 n2.

Note that we can construct only one type of Lorentz meridian surfaces lying
on the rotational hypersurface MII .

3.2. Meridian Surfaces Lying on a Rotational Hypersurface with Spacelike
Axis

In a similar way, we can construct meridian surfaces lying on a rotational
hypersurface with spacelike axis Oe1 (or Oe2).

In the Minkowski space E
3
2 = span {e2, e3, e4} there exist two types of

spheres, namely the de Sitter space S
2
2(1) =

{

V ∈ E
3
2 : 〈V, V 〉 = 1

}

, and the
hyperbolic space H

2
1(−1) =

{

V ∈ E
3
2 : 〈V, V 〉 = −1

}

. So, we can consider two
types of rotational hypersurfaces about the axis Oe1.

Rotational Hypersurface of First Type
Let f = f(u), g = g(u) be smooth functions, defined in an interval I ⊂

R. We denote by l̃I(w1, w2) = cosh w1 e2+sinhw1 cos w2 e3+sinh w1 sin w2 e4
the unit position vector of the sphere S

2
2(1) in E

3
2 = span {e2, e3, e4} centered

at the origin O. Then, the first type rotational hypersurface ˜MI , obtained
by the rotation of the meridian curve m : u → (f(u), g(u)) about the axis
Oe1, is parametrized by

˜MI : Z(u,w1, w2) = g(u) e1 + f(u)(cosh w1 e2 + sinhw1 cos w2 e3

+ sinh w1 sin w2 e4),

or equivalently,
˜MI : Z(u,w1, w2) = g(u) e1 + f(u) l̃I(w1, w2).

Lorentz meridian surfaces lying on ˜MI are one-parameter systems of merid-
ians of ˜MI . They can be constructed as follows: let c : l = l(v) = l̃I(w1(v),
w2(v)), v ∈ J, J ⊂ R be a smooth curve on S

2
2(1). We consider the two-

dimensional surface ˜M′ defined by
˜M′ : z(u, v) = g(u) e1 + f(u) l(v), u ∈ I, v ∈ J.
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It is a one-parameter system of meridians of ˜MI , so we call ˜M′ a meridian
surface on ˜MI .

It can easily be seen that the meridian surface M′′, defined by (10), can
be transformed into the surface ˜M′ by the transformation T given by the
matrix

T =

⎛

⎜

⎜

⎝

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

. (12)

So, the meridian surface M′′ lying on MII and the meridian surface ˜M′

lying on ˜MI are congruent. Hence, all results concerning the surface M′′

hold true for the surface ˜M′.

Rotational Hypersurface of Second Type

The second type rotational hypersurface ˜MII , obtained by the rotation
of the meridian curve m about Oe1, is given by the following parametrization:

˜MII : Z(u,w1, w2) = g(u) e1 + f(u)(sinh w1 e2 + cosh w1 cos w2 e3

+ cosh w1 sin w2 e4).

Here, l̃II(w1, w2) = sinh w1 e2 + cosh w1 cos w2 e3 + cosh w1 sin w2 e4 is the
unit position vector of the hyperbolic sphere H

2
1(−1) in E

3
2 = span {e2, e3, e4}

centered at the origin O. So, the parametrization of ˜MII can be written as

˜MII : Z(u,w1, w2) = g(u) e1 + f(u) l̃II(w1, w2).

We can construct two types of meridian surfaces lying on the second type
rotational hypersurface ˜MII .

First, we consider a smooth spacelike curve c : l = l(v) = l̃II(w1(v),
w2(v)), v ∈ J, J ⊂ R lying on the hyperbolic sphere H

2
1(−1) in E

3
2. We

assume that c is parametrized by the arc-length, i.e. 〈l′, l′〉 = 1. Let ˜M′′
a be

the surface lying on ˜MII and defined by

˜M′′
a : z(u, v) = g(u) e1 + f(u) l(v), u ∈ I, v ∈ J.

The tangent space of ˜M′′
a is spanned by the vector fields

zu = g′(u) e1 + f ′(u) l(v); zv = f(u) l′(v),

so, the coefficients of the first fundamental form are

E = g′2 − f ′2; F = 0; G = f2.

Since we are interested in Lorentz surfaces, we assume that f ′2−g′2 = 1. Then
the coefficients of the first fundamental form are E = −1; F = 0; G = f2. It
is easy to see that under the transformation T given by (12) the surface M′

b

is transformed into the surface ˜M′′
a. So, all results concerning the surface M′

b

hold true for the surface ˜M′′
a.

Second, we consider a timelike curve c : l = l(v) = l̃II(w1(v), w2(v)), v ∈
J, J ⊂ R lying on the hyperbolic sphere H

2
1(−1) and parametrized by the
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arc-length, i.e. 〈l′, l′〉 = −1. Then the surface ˜M′′
b defined by

˜M′′
b : z(u, v) = g(u) e1 + f(u) l(v), u ∈ I, v ∈ J,

where f ′2 − g′2 = −1 is a Lorentz meridian surface lying on ˜MII . It is clear
that the meridian surfaces M′

a and ˜M′′
b are congruent up to the transforma-

tion T .

3.3. Meridian Surfaces Lying on a Rotational Hypersurface with Lightlike
Axis

In this subsection we will construct meridian surfaces lying on a rotation-

al hypersurface with lightlike axis. For convenience we denote ξ1 =
e2 + e4√

2
,

ξ2 =
−e2 + e4√

2
and consider the pseudo-orthonormal base {e1, e3, ξ1, ξ2} of

E
4
2. Note that 〈ξ1, ξ1〉 = 0, 〈ξ2, ξ2〉 = 0, 〈ξ1, ξ2〉 = −1. A rotational hypersur-

face with lightlike axis in E
4
2 can be parametrized by

MIII : Z(u,w1, w2) = f(u)w1 cosh w2e1 + f(u)w1 sinhw2e3

+
(

f(u)
(w1)2

2
+ g(u)

)

ξ1 + f(u)ξ2,

where f = f(u), g = g(u) are smooth functions, defined in an interval I ⊂ R

and f(u) > 0, u ∈ I.
Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R and consider the surface

M′′′ in E
4
2 given by

M′′′ : z(u, v) = Z(u,w1(v), w2(v)), (13)

where u ∈ I, v ∈ J. The surface M′′′, defined by (13), is a one-parameter
system of meridians of the rotational hypersurface MIII . So, we call M′′′ a
meridian surface on MIII .

Without loss of generality we can assume that w1 = ρ(v), w2 = v. Then
the surface M′′′ is parametrized as follows:

M′′′ : z(u, v) = f(u)

(

ρ(v) cosh v e1 + ρ(v) sinh v e3 +
ρ2(v)

2
ξ1 + ξ2

)

+ g(u) ξ1.

(14)
If we denote l(v) = ρ(v) cosh v e1 + ρ(v) sinh v e3 + ρ2(v)

2 ξ1 + ξ2, then the
parametrization (14) is written as

M′′′ : z(u, v) = f(u) l(v) + g(u) ξ1.

The tangent vector fields of M′′′ are

zu = f ′ρ cosh v e1 + f ′ρ sinh v e3 +
(

f ′ ρ
2

2
+ g′

)

ξ1 + f ′ ξ2;

zv = f(ρ̇ cosh v + ρ sinh v) e1 + f(ρ̇ sinh v + ρ cosh v) e3 + fρρ̇ ξ1,
(15)

where ρ̇ denotes the derivative of ρ with respect to v. So, the coefficients of
the first fundamental form of M′′′ are

E = −2f ′(u)g′(u); F = 0; G = f2(u)(ρ̇2(v) − ρ2(v)).
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Since we are studying Lorentz surfaces, in the case ρ̇2(v) − ρ2(v) > 0 we
assume that f ′(u)g′(u) > 0; in the case ρ̇2(v) − ρ2(v) < 0 we assume that
f ′(u)g′(u) < 0.

We consider the tangent frame field defined by X =
zu√

2εf ′g′ , Y =
zv

f
√

ε(ρ̇2 − ρ2)
, where ε = 1 in the case ρ̇2 − ρ2 > 0, f ′g′ > 0, and ε = −1

in the case ρ̇2 − ρ2 < 0, f ′g′ < 0. So, we have 〈X,X〉 = −ε, 〈Y, Y 〉 = ε,
〈X,Y 〉 = 0. We choose the following normal frame field:

n1 =

√

εf ′

2g′ (ρ cosh v e1 + ρ sinh v e3 +
f ′ρ2 − 2g′

2f ′ ξ1 + ξ2);

n2 =
1

√

ε(ρ̇2 − ρ2)
((ρ̇ sinh v + ρ cosh v) e1 + (ρ̇ cosh v + ρ sinh v) e3 + ρ2 ξ1),

(16)
which satisfies 〈n1, n1〉 = ε, 〈n2, n2〉 = −ε, 〈n1, n2〉 = 0.

Taking into account (15), we calculate the second partial derivatives of
z(u, v):

zuu = f ′′ρ cosh v e1 + f ′′ρ sinh v e3 +
(

f ′′ ρ
2

2
+ g′′

)

ξ1 + f ′′ ξ2;

zuv = f ′(ρ̇ cosh v + ρ sinh v) e1 + f ′(ρ̇ sinh v + ρ cosh v) e3 + f ′ρρ̇ ξ1;
zvv = f ((ρ̈ + ρ) cosh v + 2ρ̇ sinh v) e1 + f ((ρ̈ + ρ) sinh v + 2ρ̇ cosh v) e3

+f
(

ρ̇2 + ρρ̈
)

ξ1.

The last equalities together with (16) imply

〈zuu, n1〉 =
f ′′g′ − g′′f ′

√
2εf ′g′ ; 〈zuu, n2〉 = 0;

〈zuv, n1〉 = 0; 〈zuv, n2〉 = 0;

〈zvv, n1〉 = −f

√

εf ′

2g′ (ρ̇2 − ρ2); 〈zvv, n2〉 = f
ρρ̈ − 2ρ̇2 + ρ2
√

ε(ρ̇2 − ρ2)
.

Hence, we obtain

h(X,X) = ε
f ′′g′ − g′′f ′

(2εf ′g′)
3
2

n1;

h(X,Y ) = 0;

h(Y, Y ) = − 1
f

√

εf ′

2g′ n1 − ε
ρρ̈ − 2ρ̇2 + ρ2

f(ε(ρ̇2 − ρ2))
3
2

n2.

(17)

Note that
ε(f ′′g′ − g′′f ′)

(2εf ′g′)
3
2

is the curvature of the meridian curves (the para-

metric u-lines) of M′′′. We denote κm(u) =
ε(f ′′g′ − g′′f ′)

(2εf ′g′)
3
2

. The function

κ(v) =
ρρ̈ − 2ρ̇2 + ρ2

(ε(ρ̇2 − ρ2))
3
2

is the curvature of the curve c : l = l(v) = ρ(v) cosh
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v e1 + ρ(v) sinh v e3 + ρ2(v)
2 ξ1 + ξ2. So, formulas (17) take the form

h(X,X) = κm n1;
h(X,Y ) = 0;

h(Y, Y ) = − 1
f

√

εf ′

2g′ n1 − ε
κ

f
n2.

(18)

It follows from (18) that the mean curvature vector field H of the meridian
surface M′′′ is expressed as

H = −ε

2

(

κm +
1
f

√

εf ′

2g′

)

n1 − κ

2f
n2.

Without loss of generality we can assume that 2εf ′g′ = 1, which implies
κm = f ′′

f ′ . Hence,

H = −ε(ff ′′ + (f ′)2)
2ff ′ n1 − κ

2f
n2. (19)

Similarly to the construction of the meridian surface M′′′, one can construct
other meridian surfaces lying on rotational hypersurfaces with lightlike axis
which are congruent to the surface given by (14).

In the following sections we will study four types of Lorentz meridian
surfaces in E

4
2, namely the surfaces denoted by M′

a, M′
b, M′′, and M′′′.

4. Minimal Meridian Surfaces in E
4
2

In this section we give the classification of all minimal meridian surfaces in
E
4
2.

Theorem 1. Let M′
a be a meridian surface on MI defined by (1). Then M′

a

is minimal if and only if the curve c has zero spherical curvature and the
meridian curve m is given by

f(u) = ±
√

−u2 + 2au + b, g(u) = ±
√

a2 + b arcsin
u − a√
a2 + b

+ c,

where a = const, b = const, c = const.

Proof. The mean curvature vector field H of the meridian surface M′
a is

given by formula (6). Hence, M′
a is minimal if and only if the curvature of c

is κ = 0 and the function f(u) satisfies the following equation:

ff ′′ + (f ′)2 + 1 = 0.

The solutions of this differential equation are given by the formula f(u) =
±√−u2 + 2au + b, where a = const, b = const. Having in mind that g′ =
√

f ′2 + 1, we get the following equation for g(u):

g′ = ±
√

a2 + b√−u2 + 2au + b
.
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Integrating the above equation we obtain

g(u) = ±
√

a2 + b arcsin
u − a√
a2 + b

+ c, c = const.

�

Note that if M′
a is minimal, then κ = 0 and from (4) we get that

∇Xn1 = 0, ∇Y n1 = 0. This means that the normal vector field n1 is
constant. Hence, the surface M′

a lies in the constant 3-dimensional space
E
3
1 = span{X,Y, n2}. Consequently, M′

a lies in a hyperplane of E4
2.

Theorem 2. Let M′
b be a meridian surface on MI defined by (7). Then M′

b

is minimal if and only if the curve c has zero spherical curvature and the
meridian curve m is given by

f(u) = ±
√

u2 + 2au + b, g(u) = ±
√

a2 − b ln |u + a +
√

u2 + 2au + b| + c,

where a = const, b = const, c = const, a2 − b > 0.

Proof. Using that the mean curvature vector field H of M′
b is given by for-

mula (9), we get that M′
b is minimal if and only if κ = 0 and the function

f(u) satisfies the equation

ff ′′ + (f ′)2 − 1 = 0.

The solutions of this differential equation are given by the formula f(u) =
±√

u2 + 2au + b, where a = const, b = const. Using that g′ =
√

f ′2 − 1, we
get the following equation for g(u):

g′ = ±
√

a2 − b√
u2 + 2au + b

.

Integrating the last equation we obtain

g(u) = ±
√

a2 − b ln |u + a +
√

u2 + 2au + b| + c, c = const.

�

Note that if M′
b is minimal, we have κ = 0 and again we obtain ∇Xn1 =

0, ∇Y n1 = 0, i.e. the normal vector field n1 is constant. In this case the
surface M′

b lies in the constant 3-dimensional space E
3
2 = span{X,Y, n2}.

Consequently, M′
b lies in a hyperplane of E4

2.

Theorem 3. Let M′′ be a meridian surface on MII defined by (10). Then
M′′ is minimal if and only if the curve c has zero spherical curvature and
the meridian curve m is given by

f(u) = ±
√

u2 + 2au + b, g(u) = ±
√

b − a2 ln |u + a +
√

u2 + 2au + b| + c,

where a = const, b = const, c = const, b − a2 > 0.

The proof is similar to the proof of the previous two theorems. Again
we have that if M′′ is minimal, then it lies in a constant 3-dimensional
hyperplane E

3
2 of E4

2.
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Theorem 4. Let M′′′ be a meridian surface on MIII defined by (14). Then
M′′′ is minimal if and only if the curve c has zero curvature and the meridian
curve m is given by

f(u) =
√

au + b, g(u) =
2

3a2
(au + b)

3
2 + c,

where a = const �= 0, b = const, c = const.

The proof is similar to the proofs of the previous theorems. We also
obtain that if M′′′ is minimal, then ∇Xn2 = 0, ∇Y n2 = 0, i.e. the normal
vector field n2 is constant. In this case the surface M′′′ lies in a constant
3-dimensional space orthogonal to n2, i.e. M′′′ lies in a hyperplane of E4

2.
Finally, we can formulate the following:

Corollary 5. There are no minimal meridian surfaces lying fully in E
4
2.

5. Quasi-Minimal Meridian Surfaces in E
4
2

In this section we classify all quasi-minimal meridian surfaces in the pseudo-
Euclidean 4-space E

4
2.

Theorem 6. Let M′
a be a meridian surface on MI defined by (1). Then M′

a

is quasi-minimal if and only if the curve c has constant curvature κ = a =
const, a �= 0 and the meridian curve m is determined by f ′ = ϕ(f), where

ϕ(t) = ±1
t

√

(±at + c)2 − t2, c = const,

g(u) is defined by g′ =
√

f ′2 + 1.

Proof. Using formula (6) for the mean curvature vector field H of the meridi-
an surface M′

a, we get that M′
a is quasi-minimal, i.e. H �= 0 and 〈H,H〉 = 0,

if and only if
(

ff ′′ + (f ′)2 + 1
)2

f ′2 + 1
= κ2, κ �= 0.

The left-hand side of this equation is a function of u, and the right-hand side
of the equation is a function of v. Hence, we obtain

κ = a, a = const �= 0;
(

ff ′′ + (f ′)2 + 1
)2 = a2(f ′2 + 1).

So, the meridian m is determined by the following differential equation:

ff ′′ + (f ′)2 + 1 = ±a
√

f ′2 + 1. (20)

The solutions of the above differential equation can be found in the following
way. If we set f ′ = ϕ(f) in Eq. (20), we obtain that the function ϕ = ϕ(t) is
a solution of the equation:

t

2
(ϕ2)′ + ϕ2 + 1 = ±a

√

ϕ2 + 1. (21)
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Now, we set z(t) =
√

ϕ2(t) + 1, so, Eq. (21) takes the form

z′ +
1
t

z = ±a

t
.

The general solution of the last equation is given by the formula z(t) = ±at+c
t ,

c = const. Hence, the general solution of (21) is

ϕ(t) = ±1
t

√

(±at + c)2 − t2.

�

Similarly to the proof of Theorem 6 we obtain the classification of all
quasi-minimal meridian surfaces of type M′

b:

Theorem 7. Let M′
b be a meridian surface on MI defined by (7). Then M′

b

is quasi-minimal if and only if the curve c has constant curvature κ = a =
const, a �= 0 and the meridian curve m is determined by f ′ = ϕ(f) where

ϕ(t) = ±1
t

√

(c ± at)2 + t2, c = const,

g(u) is defined by g′ =
√

f ′2 − 1.

The classification of all quasi-minimal meridian surface of type M′′ is
given in the next theorem.

Theorem 8. Let M′′ be a meridian surface on MII defined by (10). Then
M′′ is quasi-minimal if and only if the curve c has constant curvature κ =
a = const, a �= 0 and the meridian curve m is determined by f ′ = ϕ(f) where

ϕ(t) = ±1
t

√

t2 − (c ± at)2, c = const,

g(u) is defined by g′ =
√

1 − f ′2.

The proof is similar to the proof of Theorem 6.

Theorem 9. Let M′′′ be a meridian surface on MIII defined by (14). Then
M′′′ is quasi-minimal if and only if the curve c has constant curvature κ =
a = const, a �= 0 and the meridian curve m is determined by f ′ = ϕ(f) where

ϕ(t) =
±at + c

t
, c = const,

g(u) is defined by g′ = 1
2εf ′ .

Proof. Using formula (19) for the mean curvature vector field H of the merid-
ian surface M′′′, we get that M′′′ is quasi-minimal if and only if

(

ff ′′ + (f ′)2
)2

= κ2(f ′)2, κ �= 0.

The last equality implies that

κ = a, a = const �= 0;
ff ′′ + (f ′)2 = ±af ′.
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The solutions of the above differential equation can be found in the
following way: setting f ′ = ϕ(f), we obtain that the function ϕ = ϕ(t) is a
solution of the equation

ϕ′ +
1
t

ϕ = ±a

t
.

The general solution of the last equation is given by the formula ϕ(t) = ±at+c
t ,

c = const. �

6. Meridian Surfaces with Constant Mean Curvature in E
4
2

In this section we shall classify all meridian surfaces with non-zero constant
mean curvature.

Let M′
a be a meridian surface on MI defined by (1). The mean curva-

ture vector field H of M′
a is given by formula (6). So, we have

〈H,H〉 =

(

ff ′′ + (f ′)2 + 1
)2 − κ2(f ′2 + 1)

4f2(f ′2 + 1)
. (22)

In the next theorem we classify the meridian surfaces of type M′
a for which

〈H,H〉 = c = const, c �= 0.

Theorem 10. Let M′
a be a meridian surface on MI defined by (1). Then M′

a

has non-zero constant mean curvature, i.e. 〈H,H〉 = c = const, c �= 0, if and
only if the curve c has constant curvature κ = a = const, a �= 0 and the
meridian curve m is determined by f ′ = ϕ(f) where

ϕ(t) = ± 1
t

√

(

b ± t
2

√
a2 + 4ct2 ± a2

4
√
c
ln |2√

ct +
√

a2 + 4ct2|
)2

− t2, if c > 0,

ϕ(t) = ± 1
t

√

(

b ± t
2

√
a2 − 4ct2 ± a2

4
√−c

arcsin 2
√−c t
a

)2

− t2, if c < 0,

b = const, and g(u) is defined by g′ =
√

f ′2 + 1.

Proof. Let M′
a be a meridian surface on MI . It follows from (22) that the

condition on M′
a to have non-zero constant mean curvature, i.e. 〈H,H〉 =

c = const, c �= 0 is equivalent to the equality
(

ff ′′ + (f ′)2 + 1
)2 − κ2(f ′2 + 1)

4f2(f ′2 + 1)
= c.

The last equality can be written as
(

ff ′′ + (f ′)2 + 1
)2 − 4cf2(f ′2 + 1)

f ′2 + 1
= κ2. (23)

Since the left-hand side of (23) is a function of u, and the right-hand side of
(23) is a function of v, we obtain

κ = a, a = const �= 0;
(ff ′′+(f ′)2+1)2−4cf2(f ′2+1)

f ′2+1 = a2.
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Hence, the meridian m is determined by the solutions of the following differ-
ential equation:

(

ff ′′ + (f ′)2 + 1
)2 − 4cf2(f ′2 + 1) = a2(f ′2 + 1).

We can find the solutions of the last equation by setting f ′ = ϕ(f). Then we
obtain that the function ϕ = ϕ(t) is a solution of the following equation:

(

t

2
(ϕ2)′ + ϕ2 + 1

)2

− 4ct2(ϕ2 + 1) = a2(ϕ2 + 1). (24)

If we set z(t) =
√

ϕ2(t) + 1, from equation (24) we get

z′ +
1
t

z = ±
√

a2 + 4ct2

t
.

The general solution of the last equation is given by the formula z(t) =
1
t

(

b ± ∫ √
a2 + 4ct2 dt

)

, where b = const.
If c > 0, i.e. the mean curvature vector field H is spacelike, then

∫ √
a2 + 4ct2 dt = t

2

√
a2 + 4ct2 + a2

4
√

c
ln |2√

ct +
√

a2 + 4ct2|. Hence,

z(t) =
1
t

(

b ± t

2

√

a2 + 4ct2 ± a2

4
√

c
ln |2√

ct +
√

a2 + 4ct2|
)

and the general solution of (24) is

ϕ(t) = ±1
t

√

(

b ± t

2

√

a2 + 4ct2 ± a2

4
√

c
ln |2√

ct +
√

a2 + 4ct2|
)2

− t2.

If c < 0, i.e. the mean curvature vector field H is timelike, then
∫ √

a2 + 4ct2 dt

= t
2

√
a2 − 4ct2 + a2

4
√−c

arcsin 2
√−c t

a . Hence, the function z(t) is given by

z(t) =
1
t

(

b ± t

2

√

a2 − 4ct2 ± a2

4
√−c

arcsin
2
√−c t

a

)

and the general solution of (24) is

ϕ(t) = ±1
t

√

(

b ± t

2

√

a2 − 4ct2 ± a2

4
√−c

arcsin
2
√−c t

a

)2

− t2.

�

Now, let M′
b be a meridian surface on MI defined by (7). Hence, the

mean curvature vector field H of M′
b is given by formula (9) and

〈H,H〉 =
κ2(f ′2 − 1) − (

ff ′′ + (f ′)2 − 1
)2

4f2(f ′2 − 1)
.

The classification of the meridian surfaces of type M′
b for which 〈H,H〉 =

c = const, c �= 0 is given in the following theorem:

Theorem 11. Let M′
b be a meridian surface on MI defined by (7). Then M′

b

has non-zero constant mean curvature, i.e. 〈H,H〉 = c = const, c �= 0, if and
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only if the curve c has constant curvature κ = a = const, a �= 0 and the
meridian curve m is determined by f ′ = ϕ(f), where

ϕ(t) = ± 1
t

√

(

b ± t
2

√
a2 − 4ct2 ± a2

4
√
c
arcsin 2

√
c t

a

)2

+ t2, if c > 0,

ϕ(t) = ± 1
t

√

(

b ± t
2

√
a2 − 4ct2 ± a2

4
√−c

ln |2√−ct +
√

a2 − 4ct2|
)2

+ t2, if c < 0,

b = const, and g(u) is defined by g′ =
√

f ′2 − 1.

The proof of this theorem is similar to the proof of Theorem 10.
In the next theorem we give the classification of the meridian surfaces

of type M′′ for which 〈H,H〉 = c = const, c �= 0.

Theorem 12. Let M′′ be a meridian surface on MII defined by (10). Then
M′′ has non-zero constant mean curvature, i.e. 〈H,H〉 = c = const, c �= 0,
if and only if the curve c has constant curvature κ = a = const, a �= 0 and
the meridian curve m is determined by f ′ = ϕ(f), where

ϕ(t) = ± 1
t

√

t2 −
(

b ∓ t
2

√
a2 − 4ct2 ∓ a2

4
√
c
arcsin 2

√
c t

a

)2

, if c > 0,

ϕ(t) = ± 1
t

√

t2 −
(

b ∓ t
2

√
a2 − 4ct2 ∓ a2

4
√−c

ln |2√−ct +
√

a2 − 4ct2|
)2

, if c < 0,

b = const, and g(u) is defined by g′ =
√

1 − f ′2.

At the end of this section we give the classification of the meridian
surfaces of type M′′′ with non-zero constant mean curvature.

Theorem 13. Let M′′′ be a meridian surface on MIII defined by (14). Then
M′′′ has non-zero constant mean curvature 〈H,H〉 = εc, c = const, c �= 0, if
and only if the curve c has constant curvature κ = a = const, a �= 0 and the
meridian curve m is determined by f ′ = ϕ(f) where

ϕ(t) = 1
t

(

b ± t
2

√
a2 + 4ct2 ± a2

4
√

c
ln |2√

c t +
√

a2 + 4ct2|
)

, if c > 0,

ϕ(t) = 1
t

(

b ± t
2

√
a2 − 4ct2 ± a2

4
√−c

arcsin 2
√−ct

a

)

, if c < 0,

b = const, and g(u) is defined by g′ = 1
2εf ′ .

Proof. The mean curvature vector field of the meridian surface M′′′ is given
by (19). So, the condition on M′′′ to have non-zero constant mean curvature
〈H,H〉 = εc, c = const �= 0 is equivalent to the equality

(

ff ′′ + f ′2)2 − κ2f ′2

4f2f ′2 = c.

The last equality can be written as
(

ff ′′ + f ′2)2 − 4cf2f ′2

f ′2 = κ2. (25)

Since the left-hand side of (25) is a function of u, the right-hand side of (25)
is a function of v, we obtain
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κ = a, a = const �= 0;
(ff ′′+f ′2)2−4cf2f ′2

f ′2 = a2.

Hence, the meridian m is determined by the solutions of the following differ-
ential equation:

ff ′′ + f ′2 = ±f ′√a2 + 4cf2.

Setting f ′ = ϕ(f) we obtain that the function ϕ = ϕ(t) is a solution of the
equation:

ϕ′ +
1
t

ϕ = ±
√

a2 + 4ct2

t
. (26)

If c > 0, then the general solution of (26) is

ϕ(t) =
1
t

(

b ± t

2

√

a2 + 4ct2 ± a2

4
√

c
ln |2√

ct +
√

a2 + 4ct2|
)

.

If c < 0, then the general solution of (26) is given by

ϕ(t) =
1
t

(

b ± t

2

√

a2 − 4ct2 ± a2

4
√−c

arcsin
2
√−c t

a

)

.

�
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Uludağ University
16059 Bursa
Turkey
e-mail: bbulca@uludag.edu.tr

Velichka Milousheva
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str. bl. 8
1113 Sofia
Bulgaria



MJOM Meridian Surfaces with Constant Mean Curvature Page 21 of 21 48

and

“L. Karavelov” Civil Engineering Higher School
175 Suhodolska Str.
1373 Sofia
Bulgaria
e-mail: vmil@math.bas.bg

Received: June 9, 2016.

Revised: January 13, 2017.

Accepted: February 10, 2017.


	Meridian Surfaces with Constant Mean Curvature in Pseudo-Euclidean 4-Space with Neutral Metric
	Abstract
	1. Introduction
	2. Preliminaries
	3. Meridian Surfaces in Pseudo-Euclidean 4-Space
	3.1. Meridian Surfaces Lying on a Rotational Hypersurface with Timelike Axis
	3.2. Meridian Surfaces Lying on a Rotational Hypersurface with Spacelike Axis
	3.3. Meridian Surfaces Lying on a Rotational Hypersurface with Lightlike Axis

	4. Minimal Meridian Surfaces in mathbbE42
	5. Quasi-Minimal Meridian Surfaces in mathbbE42
	6. Meridian Surfaces with Constant Mean Curvature in mathbbE24
	Acknowledgements
	References




