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ON A SUBCLASS OF CERTAIN
CONVEX HARMONIC FUNCTIONS

SIBEL YALCIN AND METIN OzTURK

ABSTRACT. We define and investigate a subclass of complex val-
ued harmonic convex functions that are univalent and sense pre-
serving in the open unit disk. We obtain coefficient conditions,
extreme points, distortion bounds, convolution conditions for the
above family of harmonic functions.

1. Introduction

A continuous function f = w + v is a complex valued harmonic
function in a domain ® C C if both v and v are real harmonic in ©. In
any simply connected domain we can write f = h+ g, where h and g are
analytic in ©. A necessary and sufficient condition for f to be locally
univalent and sense preserving in D is that |h/(2)] > |¢'(2)| in D.

Denote by Sy the class of functions f = h + g that are harmonic
univalent and sense preserving in the unit disk U = {z : |2| < 1} for
which f(0) = f,(0) =1 = 0. Then for f = h+ g € Sy we may express
the analytic functions A and g as

o0 o0
(1) h(z) =z + Zanz", g(z) = anz", b1 < 1.
n=2 n=1

In 1984 Clunie and Sheil-Small [3] investigated the class Sy as well as its
geometric subclasses and obtained some coefficient bounds. Since then,
there have been several related papers on Sy and its subclasses.

We let SCy (A, ) denote the subclass of Sy consisting of f =h+ g
of the form (1) that satisfy the condition
(2)

AR (2) =237 (2))+(2A+1) 220" (2)+(1—4N) 22" (z)+ 2k’ (2)+(1—2X)zg' ()
Re { S Gl ot B >
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where 0 < A< a/(1+a)or A>1/(1+a)and 0 < a < 1.
We further let SC (), a) denote the subclass of SCy (A, @) consisting
of functions f = h + g such that h and g are of the form

(3) h(z)=z— lanl2®,  g(2) = |bal2™
n=2 n=1

Recently, Aver and Zlotkiewicz [2], Jahangiri [4, 5] and Silverman [7],
studied the harmonic convex functions. Jahangiri [4] proved that if
f =h+ §is given by (1) and if

S (Mg, 2Dy ) <o 0sa<ta=1,
l-«a l-o

n=1
then f is harmonic, univalent, and convex of order a in U. This condition
is proved to be also necessary if h and g are of the form (3). Ava and
Zlotkiewicz [2] proved that the coefficient condition

o0

2”2(|an| +bal) <1, b1 =0

n=2
is sufficient for functions f = h + § € Sy to be harmonic convex. Sil-
verman (7] proved that this coefficient condition is also necessary if ay,
and by, (n =2,3,...) in (1) are negative.

We note that SCx (), @) is the generalization of the family of har-
monic convex functions of order o by Jahangiri [4, 5].

In this note, we give sufficient coefficient conditions for normalized
harmonic functions in SCg (A, o). These conditions are also shown to
be necessary when h has negative and g has positive coefficients. We
also obtain extreme points, distortion bounds, some preliminary results
concerning neighborhoods, convolutions and convex combinations for

SCH(\, ).

2. Main results

We begin with a sufficient coefficient condition for functions in SCg
(A, @).

THEOREM 2.1. Let f = h+ g be so that h and g are given by (1).
Furthermore, let

) Z (n(n —a)(An—A+1) lan] + n(n+ a)|An + X — 1] |bn|> <2

1l «o 1l -«

n=1
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wherea; =1,0<a<1,0< A< a/(1+a)or A >1/(1+ ). Then f
€ SChx(\ «) and f is sense-preserving, univalent harmonic in U .

Proof. We show that f € SCg (A, o). We only need to show that if
(4) holds then the condition (2) is satisfied. In view of (1) the condition
(2) takes the form

Re { 1- 04+Zln_2 n{n—a)(An-— )\+1)anz"l 1y  n(nta)(Antr— l)bnz”/z}
+X % n(An=A+1)anz"~14+) 00 ln()\n+)\ 1)brzn/z
14+ A(z)
1+ B(z)

= Re

Setting
1+ A(2) 14 w(z)
1+ B(z) 1-w(2)’

we will have Reit4(2) > ¢ if jlw(z)] < 1,

1+B(z)
_ _Al) - B(2)
W) = S AR T B
_ oty on (n a—1)(Mn—-A+1)anz?" -3 (n+a+1)()\n+/\ 1)bnz" /2
T 2—at+y X yn(n—a+l)(An—A+1)anz"1- n(n+a—1)(An+A-1)bpz" /2’
so that
|w(z)’ < a+3 >, n(n—a=1)(An=24+Dlan|+3°>°; n(nta+1)|An+A—=1||bn|

2—a—( o gn(n—at+D)(An—A+1)an|+> 02, n(n+a—1)|/\n+)\—1||bn]) ’

This last expression is bounded above by 1 if and only if

Y n(n—a)(An— A+ Dlag| + > _n(n+a)dn+ A= 1|lb| <10
n=2 n=1
If 21 # 22, thenfor A > 1/(1+a) or 0 <a/(1+a)
f(z1) = f(22) ‘ g(z1) ( 2)
h(z1) — h(z2) | ~ h(z1) — ( 2)
=1 TL=1 bn(Z{L—Zg')
(21 — 22) + 2 o0lp an (2} — 23)
ZOO:]_ nlbnl
>1-— B
1- Zn:Z nlan|
S 1 ~ ,Zo_l n(n+ai|_>\z+/\—1| |b l

1— (n— a))\n )\—l—l!' |
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which proves univalence. Note that f is sense preserving in U, for 0 <
A< a/(l+a)or A>1/(1+ «). This is because

o0

1/ (2)] > 1= nlag||2[*!
n=2
>1—Zn|an|
n=2
“nn-—a)An—-+1
> 1__2: ( 1{_a Maﬂ
n=2
oo
n(n + a)|An+ A — 1|
>
- Z l—« lbnl
n=1
[o ¢] .
nn+a)dn+A—1 _
> z: ( i[_a |wnudn 1

3
I
—

nlball2["! > |g'(2)].

3
I
—

The functions

—~
ot
-
g
—~
N
N
Il
]

+i l—a o
n(n — a)( )\n—)\+1)

n=2

o0
+Znn+a|)\n+)\ | "

n=1

where

oo 0
E:lmny+§E:Wn|::L
n=2 n=1

~show that the coefficient bound given by (4) is sharp. The functions of
the form (5) are in SCy(A, a) because

Z (n(n —a)(An—A+1) ] + n(n+ a)|An + A —1] lbnl)

l-a l—«

n=1

(o] o0
=1+ [zl + D lvnl =2.
n=2 n=1
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THEOREM 2.2. Let f = h + g be so that h and g are given by (3).
Then f € SCx(\, a) if and only if

© Z( n— a()\n >\+1)|n‘ n(n+a)l)\n+)\ 1|Ibn|)S2’

— -«

wherea; =1,0<a<1,0< A <a/(1+a)orA>1/(1+a).

Proof. The if part follows from Theorem 2.1 upon noting that SCx(A,
a) C SCy(\, a). For the only if part, we show that f € SCx(A, ). Then
for z =re® in U we obtain
Re { A(ZPh"(2)=23g" () +(2A+1) 2R (2)+(1—4N) 22¢" (2)+2h/ (2)+(1—2N)zg' (z) _ a}
A(z2h"" (2)+22g" (2))+2h' (2)+(2X-1)zg’ (2)
_ Re{(l-a)z— 2 n(n—a)(An—A+1)|an|2" =3 22, n(nta)(An+A-1)|b, |2"}

- S n O A Dan 2 TS, nOn T A1) (b2

(1—0)— {52, n(n=a)An=2+)an|r" T +E 2, n(n+a)AntA-1|balr" 1}

1+zn T A Dlan]r - TH 3 1n|)\n+)\—1||bn|r"—1 > 0.

v

The above inequality must hold for all z € U. In particular, letting
z =1 — 17 yields the required condition (6). O

As special cases of Theorem 2.2, we obtain the following two corol-
laries.

COROLLARY 2.3. f =h+ g€ SCx(0,a) if and only if

Z nn @) M) <y

COROLLARY 24. f =h+ge€ SCx(1, ) if and only if

S Ay
= l-a " 1-

Next we determine a representation theorem for functions in SCx(A, a).

THEOREM 2.5. f = h+ g € SCgz(A, @) if and only if f can be ex-
pressed as

(7) f(z) = Z(thn(z) + Yngn(z)), z€el,
n=1
where
hi(z) =z, hp(2) =2z — 1 —a 2", (n=2,3,...)

n(n —a)(An—A+1)
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and

B s
= " :1 2 [
gn(Z) z + n(n_+_ a)l)\n+ )\ _ 1|Z ) (TL <y )7

> (Xn+Yn)=1, X, >0and¥, >0.
n=1

Proof. For functions f of the form (7) we have

MS

f(z) = (Xnhn(2) + Yngn(2))
n=1
= 2 (Kot Ya)e Z A=) On A+ 1)

3
Il
—

o0
l—a
Y, z".
+z:nn—ka WA +x-1]"" ?

n=1

Then

N n(n — @)|An — A+ 1] 1-a
> I—a (n<n~a>(An—A+1>X")

n=2
~n(n+a)|dn+ A —1] l-«a
+; -« (n(n+a)|)\n+)\~1lyn>
o0 oo
ZXn+ YV,=1-X1<1
n=2 n=1

and so f € SCz(A, ).
Conversely, suppose f € SCx(A, a). Letting

o0 oo
X1=1-Y X, =Y Y,
n=2 n=1
where
nn—a)(n—-—A+1
Xn:( )1( )Ianl (n=2,3,...)
-«
and
-1
Yn:n(n+a)l)\n+)\ ||bn[, (n=1,2,..)

l-«o
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We obtain the require representation, since

—z—2|an|z +Z|b|

n=2

el (1-a)X, o = (1-a)Y, Zn
_Z—Znn— YOn—A+1)" +g: nn+a)nt+r—1|
=z Z(Z — hn(2)) Xn — Z(z — gn(2))Yn

n=2 n=1

:(1 i EO; >z+Zh X+>:gn

= D (Xnhn(2) + Yngn(2)).

O

Our next theorem is on the distortion bounds for functions in SCq
(A, @), which yields a covering result for this family.

THEOREM 2.6. If f € SCz(A\, o) and |z =r < 1, then

1f()] < L+ |a)r
+< -« _ (I+o)2x -1
22-a)(A+1) 22—-a)(A+1)

|b1|> r2, |z =r <1
and

17 () = (1= |ba])r

( 1-a (1+a)|2X —1]
T \22-a)(A+1) 22-a)A+1)

|b1|> r? lzl=r<1

Proof. We only prove the left hand inequality. The right hand in-
equality can be proved using similar arguments. Let f € SCx(A, o),
then by Theorem 2.2, we obtain

| £(2)]
z+ |b1]z — Z(]an|z" = [bn|2")
n=2




810 Sibel Yalgin and Metin Oztiirk

o0

> (L= Jbr))r = (lan] + [Bal)r™

n=2
0o

> (1= [ba)r = Y (lan| + [ba])r?

n=2
l—«
> (1- o) - 5 :

2-a)(r+1)"

2 (1=l - gy (1- S = )

O
The following covering result follows from the left hand inequality in
Theorem 2.7.
COROLLARY 2.7. If f € SCx(), @), then

{w ) < PAHDE=) +1+{6A+1) — (14 )2+ 1) + 23 — 1]} b
' ' 22-a)(A +1)

} c f(U).

For
o o o0 o
f@)=2-) anz"+» bpz"and F(z)=2—) An2"+ Y BnZ",
n=2 n=1 n=2 n=1

we define the convolution of two harmonic functions f and F as
o0 o0

(f*F)(2)=f(2) *F(z2) =2 =) _ anAn2" + Y by Bn2".
n=2 n=1

Using this definition, we show that the class SC#(A, @) is closed under
convolution

THEOREM 2.8. For 0 < B8 < a < 1,let f € SCz(M\ o) and F €
SCF()\,,B) Then f xF € SCH()\, oz) C SCF()\,ﬁ)

Proof. Let f € SCx(A,a) and F € SCx(\, B). Obviously, the coeffi-
cients of f and F must satisfy conditions similar to the inequality (6).
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So for the coefficients of f x F' we can write

in(n—a)(x\n—)\—i—l) A

n(n+a)dn+ -1
-« 1—«a

8Bl

n=1
> nn—a)An—-A+1 nn+a)|dn+ A —
3 ( )1( )Ianl ( )l

1
e’ 1-—~ bn.

n=1

The right hand side of the above inequality is bounded by 2 because
[ € SCxz(A ). By the same token, we then conclude that f x F €
SCF()\,Q/) C SCF()\,,B) 4

THEOREM 2.9. The class SCg (), a) is closed under convex combina-
tion.

Proof. For i =1,2,3,... let f; € SCx(\, a), where f; is given by

=z- lag,|"+ ) |bi,|2"
n=2 n=1

Then by (6),

(8) i nn—a)(An—A+1) lan| + n(n+ a)|An + X —

1
<2
1-a 1~ b <2

n=1

For > 2.ti = 1, 0 < ¢; < 1, the convex combination of f; may be
written as

St =23 ( Sl )+ 3 (S eihul )

Then by (8),
> —A+1)
> | :

= ti{ i [n(n— )(An— )\+ 1)lain| + n(n+ail)‘"+)‘* lllbinl]}

l—«a -«

nn+a |)\n+)\

in

o

This is the condition by (6) and so

> tifi(2) € TSy (A, @).

=1
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Following [1, 6] we define the é—neighborhood of a function f € Sy
by

Ns(f) = {F €Sy:F(z)=2+) A"+ Bnz"
n=2 n=1

- ,
and Zn(|an — Ap| + |bn — Bpl) + |01 — B1| < 5} .

n=2

In particular, for the identity function I(2) = z, we immediately have
x0

© N0 = {156 = -3
n=2

o0 oo
+>  [balz"and > n(lan| + [bal) + 1] < 5}.
n=1 n=2

THEOREM 2.10. Let

1
BT
Then

) l—a+BA+1D) -0 +a)A+14+ 220 =1]}|b:]].

SCx(M, @) C Ns(I).

Proof. Let f € SCxz(A, o). Then the proof follows since, by (6), we
have

> n(lan] + [bal) + [b1]

|an|

l-a X (nn—a)dn—-X+1)
(2—04)()\-1-1)7;2( 1-a

nn+a)ldn+A—-1
nln+o) )

1 —

l-a 14+ a)]2xA -1
2—a)A+1) [1_ 1o il
< l-« +3()\—1-1)—(1+oz)()\—i-1+|2)\—1|)
T (2-a)(A+1) (2-—a)(A+1)

which, in view of definition (9), proves Theorem 2.10. O

< ||+

|b1| = 4,
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