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1. Introduction

Let M(¢,&,n, g) be a contact metric maniold. It is well known that the tensors
T = L¢g and V7 play a fundamental role in the study of the geometry of
M(¢,€&,1n,9) (here, L¢ is the Lie derivative in the direction of ). A contact
metric 3-manifold is said to be 3-7-a if it satisfies

Ve = 2a7, (1.1)

where a is an arbitrary smooth function on M [10].

The classification of conformally flat contact metric manifolds is an in-
teresting problem which has been investigated by many researchers. At one
hand, in many cases conformally flat contact metric manifolds must have
constant sectional curvature ([8], [13]). On the other hand, Blair [3, pp.108]
constructed examples of non-compact conformally flat contact metric 3-
manifolds with non-constant sectional curvature. In [6], Calvaruso proved
that a conformally flat contact metric 3-manifold satisfying (1.1) has con-
stant sectional curvature 0 or 1 and showed that Blair’s examples satisfy the
Ve = 2ar¢, where a smooth function with (a) = 0. Gouli-Andreou et.al
[10] found a new class of conformaly flat 3-7-a manifold and constructed
compact examples of conformally flat contact metric 3-manifolds.
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As a generalization of the Sasakian manifold, Blair et al. [3] introduced
the notion of a contact metric manifold called a (, f1)-contact metric manifold
satisfying the condition

R(X,Y)E = r(n(Y)X —n(X)Y) + pu(n(Y)hX —n(X)hY) (1.2)

for all vector fields X,Y on M, where k and p are constants on M. Recently
(K, p)-contact metric manifolds have been studied by various authors ([5], [9]).
(k, pu)-contact metric manifolds include Sasakian manifolds (k = 1 and h =
0), and also many examples of non-Sasakian (x, u)-contact metric manifolds
have been provided. Koufogiorgos and Tsichlias [17] generalized the notion
of a (k, p)-contact metric manifold by regarding the constants x and p in
(1.2) to be smooth functions on M, called a generalized (k, u)-contact metric
manifold. It is proved in [17] that if dim M > 3 then &, u were necessarely
constant. Moreover, they gave the examples satisfying (1.2) with x, ¢ non
constant smooth functions for dimension 3 in [17]. The local classification
of 3-dimensional generalized (k, p)-contact metric manifolds, satisfying the
condition ||gradk|| =constant(# 0) was obtained in [18]. In [14] Koufogiorgos
et al. proved the existence of a new class of contact metric manifolds: the
so called (k, p,v)-contact metric manifolds. Such a manifold M is defined
through the condition

RX,Y)E = s0(Y)X =n(X)Y)+ un(Y)hX —n(X)hY)
Fr(n(Y)ohX —n(X)ohY) (1.3)

for all vector fields X,Y on M and &k, u, v are smooth functions on M. Fur-
thermore, it is shown in [14] that if dim M > 3, then k, u are constants and
v is the zero function. They also proved that the condition (1.3) is invariant
under the D-homothetic deformations, and further that, if dimM = 3, then
the condition (1.3) is equivalent to the following condition

Q=(L—r) 1+ (-L+3n)neé+uh+von (1.4)

holding on an open and dense subset of M, where p is the scalar curvature
of M. From (1.4) it can be easily obtained that the characteristic vector field
¢ is an eigenvector of the Ricci operator (). Koufogiorgos et al. [15] gave a
classification of 3-7-a for (k, i, v)-contact metric manifolds.

On a compact orientable m-dimensional Riemannian manifold (M, g), a
unit vector field V' is said to be harmonic if it is a critical point for the energy

functional, E(V) = Zvol(M, g)+3% [ || VV ||? dv, on the space of all unit vec-
M

tor fields. A (2n+1)-dimensional contact metric manifold M (¢, &, n, g) whose
characteristic vector field £ is a harmonic vector field is called a H-contact
metric manifold. Perrone [20] proved that M(¢,&,n,g) is H-contact metric
manifold if and only if £ is an eigenvector of the Ricci operator ). Perrone
[19] also gave a geometric interpretation of generalized (k, u)-contact metric
manifolds in terms of harmonic maps. In particular, he showed that a contact
metric 3-manifold M is a generalized (k, 1)-contact metric manifold on an
everywhere dense open subset of M if and only if its characteristic vector
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field ¢ determines a harmonic map. Then Koufogiorgos et al. [14] proved that
a contact metric 3-manifold M is an H-contact metric manifold if and only
if it is a (k, p, v)-contact metric manifold on an everywhere dense and open
subset of M. In the same paper, they also gave examples of 3-dimensional
(K, pt, v)-contact metric manifolds which are not generalized (k, u)-contact
metric manifolds. Koufogiorgos and Stamatiou [16] also showed that a 3-
dimensional contact metric manifold M with R(X,Y)¢ = 0, for any X,Y
€ kern, is a (k, pt, v)-contact metric manifold on an open and dense subset of
M.

A contact metric manifold M is called weakly locally ¢-symmetric if
it satisfies the curvature condition g((VxR)(Y,Z)V,W) = 0 for all vector
fields X,Y,Z,V and W orthogonal to the characteristic vector field & (as
in the Sasakian case) [4]. A contact metric manifold M is called a strongly
locally ¢-symmetric contact metric manifold if the characteristic reflections
are local isometries ([8], [16]). Calvaruso et al. [8] proved that, in dimension
three, M is strongly locally ¢-symmetric if and only if M is a generalized
(K, p)-contact metric manifold.

In this paper, we obtain a full local classification of 3-dimensional (non-
Sasakian) contact metric manifolds satisfying ||gradA|| =1 (A, —\ being the
nonvanishing eigenvalues of tensor h) and V¢r = 2ar¢. The paper is orga-
nized in the following way. The Section 2 contains the presentation of some
basic notions about contact manifolds and (k, u)-contact metric manifolds,
(K, 1, v)-contact metric manifolds. In section 3 we give some properties of
contact metric 3-manifold. In section 4 we give Main Theorem and general-
ize the corollaries of [15] and [18] .We also give two examples which satisfy
the conditions of this manifold. In section 5 we give several properties and
some applications about contact metric 3-manifold with |grad A|| = 1 and
Vet = 2a79¢.

2. Preliminaries

A differentiable manifold M of dimension 2n + 1 is said to be a contact
manifold if it carries a global 1-form 7 such that n A (dn)™ # 0. It is well
known that then there exists a unique vector field £ (called the Reeb vector
field) such that n(¢) = 1 and dn(&,-) = 0. It is well known that there also
exists a Riemannian metric g and a (1, 1)-tensor field ¢ such that

9(¢X,8Y) = g(X,Y) — n(X)n(Y) (2.2)
for any vector field X and Y on M. The structure (¢,&,7n,g) can be chosen
so that dn(X,Y) = g(X, #Y). The manifold M together with the structure
tensors (¢, &, 1, g) is called a contact metric manifold structure and is denoted
by M(¢,&,n,g). Define an operator h by h = %ngb, where £ denotes Lie

differentiation. The tensor field h vanishes identically if and only if the vector
field ¢ is Killing and in this case the contact metric manifold is said to be



1982 I. K. Erken and C. Murathan Mediterr. J. Math.

K-contact. It is well known that h and ¢h are symmetric operators, h anti-
commutes with ¢

oh+hed =0, h =0, noh =0, trh = troh =0, (2.3)

where trh denotes the trace of h. Since h anti-commutes with ¢, if X is an
eigenvector of h corresponding to the eigenvalue A\ then ¢X is also an eigen-
vector of h corresponding to the eigenvalue —\. Moreover, for any contact
manifold M, the following is satisfied

Vxé = —¢X — ¢hX, (2.4)

where V is the Riemannian connection of g.
On a contact metric manifold M2+ we have the formulas

(Veh) = o(I—h*-1), (2.5)
I—¢glp = —2(h*+ ¢?), (2.6)
Trl = g(Q¢&,€) =2n —Trh?, (2.7)
T = 29(¢-,h), (2.8)
Ver = 2g(¢-,Veh), (2.9)
7> = 4trh?, (2.10)

where | = R(X,£)&, @ is Ricci operator of M.

A contact metric manifold satisfying R(X,Y )¢ = 0 is locally isometric
to Bl x S7(4) for n > 1 and flat for n =1 ([2]).

If a contact metric manifold M is normal (i.e., Ny +2dn® ¢ = 0, where
N, denotes the Nijenhuis tensor formed with ¢), then M is called a Sasakian
manifold. Equivalently, a contact metric manifold is Sasakian if and only if
(Vxo)Y =g(X,Y){ —n(Y)X or R(X,Y){=n(Y)X —n(X)Y ([1]).

As a generalization of both R(X,Y)¢ = 0 and the Sasakian manifold
consider

R(X,Y)=r(n(Y)X —n(X)Y) + pu(n(Y)hX — n(X)hY) (2.11)

for smooth functions k and p on M. If k,p is constant M is called (k, p)-
contact metric manifold. Otherwise M is generalized (x, u)-contact metric
manifold. This kind of manifolds were introduced and studied by Blair,
Koufogiorgos and Papantoniou in [3]. Since then, they have been intensively
studied see in particular [5] and [14].

Let M(¢,&,1n,9) be a contact metric manifold. A D-homothetic trans-
formation [21] is the transformation

_ 1 _
77]:0‘777 é.: 557 ¢:¢, §:a9+04(04_1)77®77 (212)

at the structure tensors, where « is a positive constant. It is well known (see
[21]) that M(¢,£, 7, g) is also a contact metric manifold. When two contact
structures (¢,&,7,9) and (¢,€,7,g) are related by (2.12), we will say that
they are D-homothetic.
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We can easily show that h = éh SO\ = é)\. Using the relations above
we finally obtain that

ROGYIE= "L 2 00)X — n(xX)Y)
2O Gyvyhx - aoRy)

for all vector fields X and Y on M. Thus M(¢,&,7,9) is a (&, ji)-contact
metric manifold with
o k+a®—-1  _ p+2a-1)
R=—9— A="T_—"
! «@
It is well known(see, for example, [2]) that every 3-dimensional contact metric
manifold satisfies the integrability condition

(Vx@)Y = g(X +hX,Y)§ = n(Y)(X + hX).

Now we will give examples of generalized (k, 1)-contact metric manifold and
generalized (k, u, v)-contact metric manifold.

Ezample. [15, 17) We consider the 3-dimensional manifold M = {(z1,x2, 3) €
R3 | z3 # 0}, where (1,72, 23) are the standard coordinates in R®. The vec-
tor fields

0 _ 0 2x1 0 1 0 10
873:1’ €y = — ‘Tzfgaixl + xigﬁixg — ;%87%, €3 = 3:73871:2
are linearly independent at each point of M. Let g be the Riemannian metric
defined by g(e;,e;) = 6,5, ¢, =1,2,3 and 7 the dual 1-form to the vector
field e;.We define the tensor ¢ of type (1,1) by ¢e; = 0, pes = e3, pes = — es.
Following [17], we have that M (n, e1, ¢, g) is a generalized (k, u)-contact met-
4

€1 =

ric manifold with x = %31 . =2(1—- 2L ). By astraightforward calculation,
T3 Z3

one can deduce that M satisfies

1
Ver=21(11- — .
€7 < %)T¢

In [14] Koufogiorgos et al. proved the existence of a new class of contact
metric manifolds which is called (k, i, v)-contact metric manifold. This means
that curvature tensor R satisfies the condition

RX,Y)E = r((Y)X —n(X)Y) +p(n(Y)hX —n(X)hY)
+o(n(Y)phX —n(X)phY)

for any vector fields X, Y and k, y, v are smooth functions.
Furthermore, it is shown in [14] that if dimM > 3, then &, are con-
stants and v is the zero function.

Ezample. [14] Let M be 3-dimensional contact metric manifold such that

M={(zy,z)€R*|z>0,y>0, z>0},
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where (x,y,z) are the cartesian coordinates in R3. We define three vector
fields on M as
0 0 4 & 0 0 G 0]
- =, R C e - 2

oy e ¢ Vo p y te 0z
where G = G(y,z) < 0 for all (y,2) is a solution of the partial differential
equation

2Gyy + GZ =—ze C

and the function 8 = S(z,y, z) solves the system of partial differential equa-
tions

4 G
Be = Ee »
B8, = iec/2 _ G.c/? _ 46GGy_
Y 2z 2 Tz

Setting k = 1 — (4e29/(222%), p = 2(1 + (2¢%)/(22?)) and v = —2/z. By
direct calculation, these relations yield
R(ZW)S = wmW)Z=n(Z)W)+ pin(W)hZ —n(Z)hW) +
+v(n(W)ohZ — n(Z)phW)
for all vector fields Z, W on M, where k, j1, v are nonconstant smooth func-

tions. Hence, it has been shown that M is a (generalized) (k, i, v)-contact
metric manifold.

3. Three dimensional contact metric manifolds

In this section, we will give some properties of contact metric 3-manifold.
Let M(¢,&,7,9) be a contact metric 3-manifold. Let

U = {peM]h(p)#0}CM,
Upo = {peM]h(p)=0}cCM.

That h is a smooth function on M implies U U Uy is an open and dense
subset of M, so any property satisfied in Uy U U is also satisfied in M.

For any point p € UUUy, there exists a local orthonormal basis {e, ¢e, £}
of smooth eigenvectors of h in a neighborhood of p (this we call a ¢-basis).

On U, we put he = Ae, h¢pe = —A¢e, where ) is a nonvanishing smooth
function assumed to be positive.

Lemma 3.1. [12] (see also [8]) On the open set U we have

Vee = age, Vee=boe, Vyce = —cope+ (A — 1), (3.1)
Vepe = —ae, Vepe = —be+ (14 M), Vyee = ce, (3.2)
Veb = 0, Vub = (14 Noe, Vouk = (1-A)e, (3.3)
Veh = —2ahé+ (€ \)s, (3.4)
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where a is a smooth function,

b = %((qﬁe-)\)—i—A) with A =n(Qe) = S(&,e), (3.5)
c = %((0)\)4-3) with B = n(Q¢pe) = S(&, de) (3.6)

and s is the type (1,1) tensor field defined by s€ =0, se = e and spe = —dpe.

From Lemma 3.1 and the formula [X,Y] = VxY — Vy X, we can prove
that

le,pe] = Vepe — Vgee = —be + cope + 2¢, (3.7)
[e.6] = V- Vee=—(a+ A+ 1)e, (3.5)
(66,6] = Vool — Vege = (a— A+ 1)e. (3.9)

Definition 3.2. [10] Let M be a 3-dimensional contact metric manifold and
h = Ah™ — A~ the spectral decomposition of h on U;. If

Vi-xh™ X = [¢,hTX] (3.10)

for all vector fields X on M and all points of an open subset W of U; and
h = 0 on the points of M which do not belong to W, then the manifold is
said to be semi-K contact manifold.

Remark 3.3. [10] From relations (3.1)-(3.4) and (3.7)-(3.9) the condition
(3.10) for X = e leads to [{,e] = 0 while for X = ¢e leads to Vyepe = 0.
Hence on a semi-K contact manifold we have a + A +1 = ¢ = 0. If we ap-
ply the deformation e — ¢e, pe — e, £ — =&, A = =\, b — ¢, ¢ — b,
then the contact structure remains the same. Hence the condition for a 3-
dimensional contact metric manifold to be semi-K contact is equivalent to
a— A+ 1=>b=0. On the other hand, if on a 3-dimensional contact metric
manifold the relation Vj+xh*X = [£,h~ X] holds, then applying relations
(3.1)-(3.4) we have a — A+ 1=0=0.

4. Main Results

The local classification of 3-dimensional generalized (k,u)-contact metric
manifolds, satisfying the condition ||gradk| =constant(# 0) was obtained
in [18]. As a result, contact metric manifold with ||grad A, = d # 0 (cons.)

is Dy~ deformed in another contact metric manifold with H grad 5‘”@ =da3

and choosing a = d%, it is enough to study those contact metric manifold
with ||grad A|| = 1. If d = 0, then A is constant. As a result, if A = 0, then
M is a Sasakian manifold.

Now we will give our main Theorem.

Theorem 4.1. Let M(¢,&,m,g) be a 3-dimensional contact metric manifold
with ||grad A|| = 1 and Vet = 2a7¢. Then at any point p € M there exist
a chart (U, (x,y,2)) such that A = g(z) # 0 and A = 0,B = F(y,z) or
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A=F(y,z),B=0. In the first case (A=0,B = F(y, z)), the following are
valid,

0 0 0 0 0
5_%a ¢€_87yande_k1£+k287y+k3£’ ks # 0.
In the second case (A = F(y,z), B =0), the following are valid,
0 0 ., 0 , 0 , 0 ,
g_ax>€_ay a/nd(be_klax—’_kQay—’_kSaZ? k37é07

where
ki(z,y,2) = =2y +r(2), Ki(z,y,2)=2y+7(2),
(H(y,2) +y)

bale ) = Ky (a0 2) = 2ag(0) - LUELEU g
fale.2) = Ky 2) = 12) +6, THEE g

andr,r’, 3 are smooth functions of z and § is constant. Also, g(z) = [ ﬁ(z)dz.

Proof. By virtue of (2.9) and (2.10), it can be proved that the assumption
VeT = 2a1¢ is equivalent to £ - A = 0. From the definition of gradient of a
differentiable function we get

gradh = (e-Ne+ (ge-N)oe+ (£ N)¢ (4.1)
= (e-Ne+ (e - \)ge.
Using (4.1) and ||grad M| = 1, we have
(e- N2+ (ge-N)?=1. (4.2)
Differentiating (4.2) with respect to & and using (3.8) and (3.9) we obtain
(§-e(M)(e(A) + (Ede(N))(de(X)

(& el (V) e(A) + ([€; ge] (A)) (¢e) A
Ae(N)ge(A) = 0

and, since A # 0,
e(N)de(N) = 0. (4.3)

To study this system we consider the open subsets of U

U={peUle)p)#0}, U'={peU](ge)(\)p# 0},

where U’ U U” is open and dense in the closure of U. We distinguish two
cases:

Case 1: Now we suppose that p € U’. By virtue of (4.2), (4.3) we have
(¢e)(\) = 0,e(N\) = F1. Changing to the basis (£, —e, —¢e) if necessary, we
can assume that e(A) = 1. By the equation (3.9), we get

[¢e, ] (M) (¢e)(§(N)) — &((de)(N)) (4.4)
= (a—X+1)e(N).



Vol. 10 (2013) A Class of 3-dimensional Contact Metric Manifolds 1987

If we use the relations e(\) = 1, (¢e)(A) = 0 and £ - A = 0 in the equation
(4.4), one can easily obtain a = A— 1. Hence, the equations (3.7), (3.8), (3.9)
and (3.5), (3.6) are reduced

[e,pe] = —be+ cpe + 2¢, (4.5)
le,] = —2Ade, (4.6)
[¢e,{] = 0, (4.7)
A _(B+1)
b= v T o (4.8)

respectively.

Since [¢e,&] = 0, the distribution which is spanned by ¢e and ¢ is
integrable and so for any p € U’ there exist a chart {V,(x,y,2)} at p, such
that 9 9 o o0 0

EZ%, (be:aiy, k?]_a +k28 +kga
where k1, ks, k3 are smooth functions on V. Since &, e, ¢e are linearly inde-
pendent, we have ks # 0 at any point of V. Using (4.5), (4.6) and (4.9) we
get following partial differential equations

(4.9)

8]6‘1 A akg ak?) A
—=—k - — Ak -1 — = —k 4.10
Jy oA T Oy 2)\ [Ak = I y 22 ( )
8k1 8k2 8k3
bR % _9 —2 =0. 4.11
Oz 0 Oz A oz 0 (411)
Moreover we know that a o
— =0, — =0. 4.12
o =" 3y (4.12)
Differentiating the equation %’“ = 0 with respect to 6 and using % 6k3 = %k;},,
we find
_Ph_ Pk _ 104, 1 0k _ 104
C Qydx  O0xdy 2\ Ox SToNT 0 20010
So oA
— =0. 4.13
o (4.13)
Differentiating % 8’“2 = 2\ with respect to B% and using
Oks 1
= Aks — B—1
0 2 [Aks ]
and the equation (4.13), we prove that
2k 2k 1 A k B
Q:()zgzi 87]@_4_14@_87
Oyox 0xdy 2\ | Ox oxr  Ox
So 0B
— = 2)\A. 4.14
o (4.14)

From (4.12) we have following solution

A=g(z)+d=g(z2), (4.15)
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where d is constant. Using e(\) = kl% + kz% + k3% =1 and (4.12), we get

% = kig ks # 0. (4.16)
If we differentiate the equation (4.16) with respect to 6% and because of the
equation g—; = 0, we obtain
2 2
- 882'8)\y - 8aya)\z - _klga;; (4.17)
Since k3 # 0, the equation (4.17) is reduced to
%—];3 = 0. (4.18)
Combining (4.10) and (4.18), we deduced that
A=0. (4.19)
Using (4.14) and (4.19), we have
g—f =0 (4.20)
It follows from (4.20) that
B =F(y,z). (4.21)
By virtue of (4.19), (4.10) and (4.11), we easily see that
ki = -2y +r(2), (4.22)

where r(z) is integration function. Combining (4.11) and (4.18), we get
ks =t(z) + 9, (4.23)
where § is constant. If we use (4.11), (4.15), (4.19) and (4.21) in (4.10)
Oks Oky  —(B+1) —(F(y,2z)+1)

= 9§ = = . 4.24
or ~ 9G) 5, 2 23(2) (4.24)
It follows from this last partial differential equation that
3 (H(y,2) +y)
ko =2 - 4.25
where
OH(y, 2)
=F ) 4.26
o2 = F(y.2) (4:26)

Because of (4.16), there is a relation between A = §(z) and k3(z) such that
a(z)=[ ﬁ(z)dz We will calculate the tensor fields 7, ¢, g with respect to the
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-9 8 b . . . .
basis 5, TERER For the components g;; of the Riemannian metric g, using

(4.9) we have
g1 =1, goo =1, g12 =921 =0,

—ky
913 = g31 = Tg’
ko 1+ k% + k2
923 = g32 = Tgv 933 = k;ig
The components of the tensor field ¢ are immediate consequences of
0 0 0 0 0
?(&) = ¢(%) =0, o 87/) = _kl% - k287y - k3% ;

0, _kkyd 1489 0

o) = oo T Ty 0y TR0
The expression of the contact form 7, immediately follows from
k1
n=dx — k—gdz

Now we calculate the components of tensor field h with respect to the basis
o o0 0

dx Jy’ 9z "
0 0 0
h(§) = h(a—) =0, h( 87) = —)\87/,
0 ki1 O ko O 0
h(az) A%% 2)\787 )\&.

Case 2: Now we suppose that p € U”. As in Case 1, we can assume
that (¢e)(N\) = 1. Using the equations (3.7), (3.8), (3.9) and (3.5), (3.6) are
reduced

[e,pe] = —be+ cpe + 2¢, (4.27)
le,§] = 0, (4.28)
[pe,&] = —2)e, (4.29)
(A+1) B B
b= o cfﬁ,afflf)\ (4.30)

respectively.

Because of (4.28) we find that there exist a chart {V',(z,y,2)} at p
c U//’

0 0 0 0
= —_— = ! —_— ,l{j/ _— ,ZC/ —_ = - 431
§ 8:}37 pe 18.’1:+ 26y+ 3827 € ay ( )

where ki, k% and k% (k4 # 0), are smooth functions on V.

Using (4.27), (4.29) and (4.31) we get following partial differential equa-
tions:

ok _ B ok,
y 2/\

ok, B
dy 2\

[Bky, — A—1] ,

K, (4.32)
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Ok} Ok} Ok}
= =2\ =0. 4.
Ox 0, Ox " Oz 0 (4.33)
Moreover we know that
oA O\
- = -~ =0. 4.34
Ox T Oy (4.34)

As in Case 1, if we solve partial differential equations (4.32), (4.33) and
(4.34), then we find

B=0, A=F(y,z), (4.35)
A=g(z)+d =g(z), K =2y+7(z), kiy=1t(2)+7d, (4.36)
Ky = 2mg(2) — W +8(2), (4.37)
0H(y,z)
9y F(y, z), (4.38)

where 7/(z) is integration function, d’ and §’ are constants. By the help of
(4.36), the equation (¢e)(A) =1 implies that

AMz)=g(z) = / kétz) dz. (4.39)

As in Case 1, we can directly calculate the tensor fields g, ¢,n and h

: (e 0 0 0
with respect to the basis 5, Dy b2
k/ k/ k/
1 0 —k—} 0 k! —fike
k;5 ! k3/2
o= | 0o 1 f L e=]o oy -k
K K, LR k2 0 K Zj
TETR sk
R
K 0 0 /\kg/
n = dr——dz and h =| g )\ _o\E2
kS kg
0 0 -
O
Ezample. We consider the 3-dimensional manifold
M = {(z,y,2) € R*,2 # 0}
and the vector fields
0 0 0 0 0
= — = — =-2y— + 22— 1)— + —.
& ox’ ge Ay’ c y6x+( v )8y+8z

The 1-form n = dx+2ydz defines a contact structure on M with characteristic
vector field £ = a%. Let g, ¢ be the Riemannian metric and the (1, 1)-tensor
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field given by

1 0 al 0 aq a1as
g = 0 1 as , 0 = 0 ay a3+1 |,
a; ag 1+ (L% + a% 0 -1 —as
0 0 —2yz
h = 0 —z 22Q2zz-1) |, A=z
0 O z

with respect to the basis %, 8%7 %7 where a1 =2y and ao =1 —2x2z . By a

straightforward calculation, we obtain
Ver =2(z — 1)71¢.
Now, we will give an example which satisfies the conditions of Theorem
4.1.
Ezample. We consider the 3-dimensional manifold
M = {(x,y,2) € R*,z > 0}

and the vector fields

N T B e
&= ox’ 6_8y’ ¢e—2y8x+(2mz 2z )8y+28z'

The 1-formn = dx—%ydz defines a contact structure on M with characteristic
vector field & = %. Let g, ¢ be the Riemannian metric and the (1, 1)-tensor
field given by

_ a1 aiaz
1 0 as 0 a - as
a2 1
g = 0 1 2¢13 5 ) d) = 0 as — :az )
a1 _ay 1+ai+as 0 3
as as a% as —az
0 0 —\&
al a&;
n = de——dz and h =| 0 X —2)\i
a
3 00 -\
with respect to the basis a%, a%, %, where a; = 2y, as = 2x2 — 222':7*7 az =z

and A = In(z) . By direct computations, we get
R(X,Y)¢
= (1= (In(2))*)(n(Y)X = n(X)Y) +2(=1 = In(2)) (n(Y)hX — n(X)hY)

and
Ver =2(—In(z) — 1)7¢.

5. Some Applications

In this section, we will give several properties and some applications about
contact metric 3-manifold with ||grad A|| =1 and V7 = 2ar¢. This class of
manifold is denoted by 2.
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Remark 5.1. Since the Case 2 (A = F(y,2),B =0,a = A—1,b = 0) is similar
to the Case 1 (A =0,B = F(y,z),a = —A — 1,¢ = 0), we only discuss the
Case 1. By virtue of ||grad A|| # 0 we can conclude that 2 is neither Sasakian
nor flat.

Remark 5.2. Calvaruso and Perrone [7] proved that a semi-symmetric contact
metric 3-manifold satisfying A = 0 or B = 0, either is flat or has constant
curvature 1. Hence 2 is not semi-symmetric space.

5.1. Harmonic vector fields

If (M, g) is a Riemannian manifold and (T M, g,) is its unit tangent sphere
bundle equipped with the Sasaki metric gs, a unit vector field V on M de-
termines a map between (M,g) and (T'M,gs). When M is compact and

orientable, the energy of V' is the energy E(V) = % [ |dV|)* dv = Fvol
M

(M,g)+% [ HVVH2 dv of the corresponding map. V is said to be a harmonic
M

vector field if it is a critical point for the energy functional E defined on the
space x! (M) unit vector fields on (M, g).

By an H-contact manifold [20] we mean a contact metric manifold such
that the characteristic vector field £ is harmonic, that is £ is an eigenvector of
the rough Laplacian A. It was shown in [20] that M is an H-contact manifold
if and only if £ is an eigenvector of the Ricci operator.

In [16] Koufogiorgos and Stamatiou proved that every contact metric
manifold M satisfying R(X,Y){ = 0, for any X,Y € D = kern is an H-
contact manifold. Koufogiorgos et al. proved following Theorems:

Theorem 5.3. [14] Let M be a 3-dimensional contact metric manifold. If M
is an H-contact manifold, then M is a (k, p,v)-contact metric manifold on
an everywhere open and dense subset of M.

Theorem 5.4. [15] Let M be a 3-dimensional (K, f1,v)-contact metric manifold
for which Ve = 2a7¢ where a is smooth funtion on M. Then M is either a
Sasakian manifold or generalized (k, pv)-contact metric manifold.

If we put an extra assumption F(y, z) = 0 relative to this chart then &
is an eigenvector of the Ricci operator. So €2 becomes an H-contact manifold.
Hence we obtain

Corollary 5.5. If F' =0, then  is a generalized (k, p)-contact metric mani-
fold. In particular, ) is H-contact.

5.2. Strongly locally ¢-symmetry

M is called a strongly locally ¢-symmetric contact metric manifold if the
characteristic reflections are local isometries ([8], [16]).

Calvaruso et al. [8] proved that a contact metric 3-manifold M strongly
locally ¢-symmetric spaces if and only if 7 = 0 and scalar curvature p is
constant or M is a (k,u)-contact metric manifold. Using this result and
(2.10) we obtain

Corollary 5.6. 2 is not strongly locally ¢-symmetric space.
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5.3. Conformal flatness

A 3-dimensional Riemannian manifold M is called conformally flat if and
only if the Ricci operator @) satisfies

(VxQ)Y ~ (VyQ)X = 1 {(X(p)Y — (¥(n)X) (51)
for all vector fields X and Y.

Lemma 5.7. Q is a conformally flat if and only if
i) £(p) = 0, 1) de(p) =0, iil) £(B) =0, iv) ge(B) =0,

v) @:3(14—3/\)—4)\, vi) e(B)+9>\3—5/\2—|—)\(g—1)—3+g:O,
N Bt 3 2 p p_
vii) B( ) )+ 5A° —TA +)\(2 1)+3 2—0, (5.2)
B+1
Vi) e(B) — B(%) 1 AN 207~ 64 p = 0.

On the other hand, Gouli-Andreou et.al [10] investigated conformally
flat 3-7-a manifolds and proved the following Theorem.

Theorem 5.8. [10] Let M be a 3-dimensional conformally flat 3-7-a manifold
with a and scalar curvature p smooth functions, constant along the flow of
&. Then M is either flat or Sasakian with constant curvature 1 or a semi-K
contact manifold.

By virtue of Definition 3.2 ,Theorem 4.1, Lemma 5.7 and Theorem 5.8
we get

Corollary 5.9. Let Q2 be a conformally flat space. Then § is a semi-K contact
manifold.

Remark 5.10. We suppose that A = B = 0. Under this condition Calvaruso
et.al. [8] proved that a conformally flat contact metric 3-manifold has constant
sectional curvature 0 or 1. Then M is either flat or Sasakian with constant
curvature 1.
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