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1. Introduction

Let M(φ, ξ, η, g) be a contact metric maniold. It is well known that the tensors
τ = Lξg and ∇ξτ play a fundamental role in the study of the geometry of
M(φ, ξ, η, g) (here, Lξ is the Lie derivative in the direction of ξ). A contact
metric 3-manifold is said to be 3-τ -a if it satisfies

∇ξτ = 2aτφ, (1.1)

where a is an arbitrary smooth function on M [10].
The classification of conformally flat contact metric manifolds is an in-

teresting problem which has been investigated by many researchers. At one
hand, in many cases conformally flat contact metric manifolds must have
constant sectional curvature ([8], [13]). On the other hand, Blair [3, pp.108]
constructed examples of non-compact conformally flat contact metric 3-
manifolds with non-constant sectional curvature. In [6], Calvaruso proved
that a conformally flat contact metric 3-manifold satisfying (1.1) has con-
stant sectional curvature 0 or 1 and showed that Blair’s examples satisfy the
∇ξτ = 2aτφ, where a smooth function with ξ(a) = 0. Gouli-Andreou et.al
[10] found a new class of conformaly flat 3-τ -a manifold and constructed
compact examples of conformally flat contact metric 3-manifolds.
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As a generalization of the Sasakian manifold, Blair et al. [3] introduced
the notion of a contact metric manifold called a (κ, μ)-contact metric manifold
satisfying the condition

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY ) (1.2)

for all vector fields X,Y on M, where κ and μ are constants on M . Recently
(κ, μ)-contact metric manifolds have been studied by various authors ([5], [9]).
(κ, μ)-contact metric manifolds include Sasakian manifolds (κ = 1 and h =
0), and also many examples of non-Sasakian (κ, μ)-contact metric manifolds
have been provided. Koufogiorgos and Tsichlias [17] generalized the notion
of a (κ, μ)-contact metric manifold by regarding the constants κ and μ in
(1.2) to be smooth functions on M , called a generalized (κ, μ)-contact metric
manifold. It is proved in [17] that if dimM > 3 then κ, μ were necessarely
constant. Moreover, they gave the examples satisfying (1.2) with κ, μ non
constant smooth functions for dimension 3 in [17]. The local classification
of 3-dimensional generalized (κ, μ)-contact metric manifolds, satisfying the
condition ‖gradκ‖ =constant( �= 0) was obtained in [18]. In [14] Koufogiorgos
et al. proved the existence of a new class of contact metric manifolds: the
so called (κ, μ, v)-contact metric manifolds. Such a manifold M is defined
through the condition

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY )
+ν(η(Y )φhX − η(X)φhY ) (1.3)

for all vector fields X,Y on M and κ, μ, ν are smooth functions on M. Fur-
thermore, it is shown in [14] that if dim M > 3, then κ, μ are constants and
ν is the zero function. They also proved that the condition (1.3) is invariant
under the D-homothetic deformations, and further that, if dimM = 3, then
the condition (1.3) is equivalent to the following condition

Q =
(ρ

2
− κ

)
I +

(
−ρ

2
+ 3κ

)
η ⊗ ξ + μh + νφh (1.4)

holding on an open and dense subset of M , where ρ is the scalar curvature
of M . From (1.4) it can be easily obtained that the characteristic vector field
ξ is an eigenvector of the Ricci operator Q. Koufogiorgos et al. [15] gave a
classification of 3-τ -a for (κ, μ, v)-contact metric manifolds.

On a compact orientable m-dimensional Riemannian manifold (M, g), a
unit vector field V is said to be harmonic if it is a critical point for the energy
functional, E(V ) = m

2 vol(M, g)+ 1
2

∫
M

‖ ∇V ‖2 dv, on the space of all unit vec-

tor fields. A (2n+1)-dimensional contact metric manifold M(φ, ξ, η, g) whose
characteristic vector field ξ is a harmonic vector field is called a H -contact
metric manifold. Perrone [20] proved that M(φ, ξ, η, g) is H -contact metric
manifold if and only if ξ is an eigenvector of the Ricci operator Q. Perrone
[19] also gave a geometric interpretation of generalized (κ, μ)-contact metric
manifolds in terms of harmonic maps. In particular, he showed that a contact
metric 3-manifold M is a generalized (κ, μ)-contact metric manifold on an
everywhere dense open subset of M if and only if its characteristic vector
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field ξ determines a harmonic map. Then Koufogiorgos et al. [14] proved that
a contact metric 3-manifold M is an H-contact metric manifold if and only
if it is a (κ, μ, ν)-contact metric manifold on an everywhere dense and open
subset of M . In the same paper, they also gave examples of 3-dimensional
(κ, μ, v)-contact metric manifolds which are not generalized (κ, μ)-contact
metric manifolds. Koufogiorgos and Stamatiou [16] also showed that a 3-
dimensional contact metric manifold M with R(X,Y )ξ = 0, for any X,Y
∈ ker η, is a (κ, μ, v)-contact metric manifold on an open and dense subset of
M.

A contact metric manifold M is called weakly locally φ-symmetric if
it satisfies the curvature condition g((∇XR)(Y, Z)V,W ) = 0 for all vector
fields X,Y, Z, V and W orthogonal to the characteristic vector field ξ (as
in the Sasakian case) [4]. A contact metric manifold M is called a strongly
locally φ-symmetric contact metric manifold if the characteristic reflections
are local isometries ([8], [16]). Calvaruso et al. [8] proved that, in dimension
three, M is strongly locally φ-symmetric if and only if M is a generalized
(κ, μ)-contact metric manifold.

In this paper, we obtain a full local classification of 3-dimensional (non-
Sasakian) contact metric manifolds satisfying ‖gradλ‖ = 1 (λ,−λ being the
nonvanishing eigenvalues of tensor h) and ∇ξτ = 2aτφ. The paper is orga-
nized in the following way. The Section 2 contains the presentation of some
basic notions about contact manifolds and (κ, μ)-contact metric manifolds,
(κ, μ, v)-contact metric manifolds. In section 3 we give some properties of
contact metric 3-manifold. In section 4 we give Main Theorem and general-
ize the corollaries of [15] and [18] .We also give two examples which satisfy
the conditions of this manifold. In section 5 we give several properties and
some applications about contact metric 3-manifold with ‖grad λ‖ = 1 and
∇ξτ = 2aτφ.

2. Preliminaries

A differentiable manifold M of dimension 2n + 1 is said to be a contact
manifold if it carries a global 1-form η such that η ∧ (dη)n �= 0. It is well
known that then there exists a unique vector field ξ (called the Reeb vector
field) such that η(ξ) = 1 and dη(ξ, ·) = 0. It is well known that there also
exists a Riemannian metric g and a (1, 1)-tensor field φ such that

φ(ξ) = 0, φ2 = −I + η ⊗ ξ, η ◦ φ = 0, (2.1)

g(φX, φY ) = g(X,Y ) − η(X)η(Y ) (2.2)

for any vector field X and Y on M . The structure (φ, ξ, η, g) can be chosen
so that dη(X,Y ) = g(X,φY ). The manifold M together with the structure
tensors (φ, ξ, η, g) is called a contact metric manifold structure and is denoted
by M(φ, ξ, η, g). Define an operator h by h = 1

2Lξφ, where L denotes Lie
differentiation. The tensor field h vanishes identically if and only if the vector
field ξ is Killing and in this case the contact metric manifold is said to be
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K-contact. It is well known that h and φh are symmetric operators, h anti-
commutes with φ

φh + hφ = 0, hξ = 0, η ◦ h = 0, trh = trφh = 0, (2.3)

where trh denotes the trace of h. Since h anti-commutes with φ, if X is an
eigenvector of h corresponding to the eigenvalue λ then φX is also an eigen-
vector of h corresponding to the eigenvalue −λ. Moreover, for any contact
manifold M , the following is satisfied

∇Xξ = −φX − φhX, (2.4)

where ∇ is the Riemannian connection of g.
On a contact metric manifold M2n+1 we have the formulas

(∇ξh) = φ(I − h2 − l), (2.5)

l − φlφ = −2(h2 + φ2), (2.6)
Trl = g(Qξ, ξ) = 2n− Trh2, (2.7)
τ = 2g(φ·, h·), (2.8)

∇ξτ = 2g(φ·,∇ξh·), (2.9)

‖τ‖2 = 4trh2, (2.10)

where l = R(X, ξ)ξ, Q is Ricci operator of M.

A contact metric manifold satisfying R(X,Y )ξ = 0 is locally isometric
to En+1 × Sn(4) for n > 1 and flat for n = 1 ([2]).

If a contact metric manifold M is normal (i.e., Nφ + 2dη⊗ ξ = 0, where
Nφ denotes the Nijenhuis tensor formed with φ), then M is called a Sasakian
manifold. Equivalently, a contact metric manifold is Sasakian if and only if
(∇Xφ)Y = g(X,Y )ξ − η(Y )X or R(X,Y )ξ = η(Y )X − η(X)Y ([1]).

As a generalization of both R(X,Y )ξ = 0 and the Sasakian manifold
consider

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY ) (2.11)

for smooth functions κ and μ on M . If κ, μ is constant M is called (κ, μ)-
contact metric manifold. Otherwise M is generalized (κ, μ)-contact metric
manifold. This kind of manifolds were introduced and studied by Blair,
Koufogiorgos and Papantoniou in [3]. Since then, they have been intensively
studied see in particular [5] and [14].

Let M(φ, ξ, η, g) be a contact metric manifold. A D-homothetic trans-
formation [21] is the transformation

η̄ = αη, ξ̄ =
1
α
ξ, φ̄ = φ, ḡ = αg + α(α− 1)η ⊗ η (2.12)

at the structure tensors, where α is a positive constant. It is well known (see
[21]) that M(φ̄, ξ̄, η̄, ḡ) is also a contact metric manifold. When two contact
structures (φ, ξ, η, g) and (φ̄, ξ̄, η̄, ḡ) are related by (2.12), we will say that
they are D-homothetic.
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We can easily show that h̄ = 1
αh so λ̄ = 1

αλ. Using the relations above
we finally obtain that

R̄(X,Y )ξ̄ =
κ + α2 − 1

α2
(η̄(Y )X − η̄(X)Y )

+
μ + 2(α− 1)

α
(η̄(Y )h̄X − η̄(X)h̄Y )

for all vector fields X and Y on M. Thus M(φ̄, ξ̄, η̄, ḡ) is a (κ̄, μ̄)-contact
metric manifold with

κ̄ =
κ + α2 − 1

α2
, μ̄ =

μ + 2(α− 1)
α

.

It is well known(see, for example, [2]) that every 3-dimensional contact metric
manifold satisfies the integrability condition

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX).

Now we will give examples of generalized (κ, μ)-contact metric manifold and
generalized (κ, μ, ν)-contact metric manifold.

Example. [15, 17] We consider the 3-dimensional manifold M = {(x1,x2, x3) ∈
R3 | x3 �= 0}, where (x1,x2, x3) are the standard coordinates in R3. The vec-
tor fields

e1 =
∂

∂x1
, e2 = −2x2x3

∂

∂x1
+

2x1

x3
3

∂

∂x2
− 1

x2
3

∂

∂x3
, e3 =

1
x3

∂

∂x2

are linearly independent at each point of M . Let g be the Riemannian metric
defined by g(ei, ej) = δij , i, j = 1, 2, 3 and η the dual 1-form to the vector
field e1.We define the tensor φ of type (1, 1) by φe1 = 0, φe2 = e3, φe3 = − e2.
Following [17], we have that M(η, e1, φ, g) is a generalized (κ, μ)-contact met-
ric manifold with κ = x4

3−1

x4
3

, μ = 2
(
1 − 1

x2
3

)
. By a straightforward calculation,

one can deduce that M satisfies

∇ξτ = 2
(

1 − 1
x2
3

)
τφ.

In [14] Koufogiorgos et al. proved the existence of a new class of contact
metric manifolds which is called (κ, μ, υ)-contact metric manifold. This means
that curvature tensor R satisfies the condition

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + μ(η(Y )hX − η(X)hY )
+υ(η(Y )φhX − η(X)φhY )

for any vector fields X, Y and κ, μ, υ are smooth functions.
Furthermore, it is shown in [14] that if dimM > 3, then κ, μ are con-

stants and υ is the zero function.

Example. [14] Let M be 3-dimensional contact metric manifold such that

M =
{
(x,y, z) ∈ R3 | x > 0, y > 0, z > 0

}
,



1984 I. K. Erken and C. Murathan Mediterr. J. Math.

where (x, y, z) are the cartesian coordinates in R3. We define three vector
fields on M as

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = −4

z
eG Gy

∂

∂x
+ β

∂

∂y
+ eG/2 ∂

∂z
,

where G = G(y, z) < 0 for all (y, z) is a solution of the partial differential
equation

2Gyy + G2
y = −ze−G

and the function β = β(x, y, z) solves the system of partial differential equa-
tions

βx =
4

zx2
eG,

βy =
1
2z

eG/2 − Gze
G/2

2
− 4eGGy

xz
.

Setting κ = 1 − (4e2G)/(z2x4), μ = 2(1 + (2eG)/(zx2)) and ν = −2/x. By
direct calculation, these relations yield

R(Z,W )ξ = κ(η(W )Z − η(Z)W ) + μ(η(W )hZ − η(Z)hW ) +
+ν(η(W )φhZ − η(Z)φhW )

for all vector fields Z,W on M, where κ, μ, ν are nonconstant smooth func-
tions. Hence, it has been shown that M is a (generalized) (κ, μ, ν)-contact
metric manifold.

3. Three dimensional contact metric manifolds

In this section, we will give some properties of contact metric 3-manifold.
Let M(φ, ξ, η, g) be a contact metric 3-manifold. Let

U = {p ∈ M | h(p) �= 0} ⊂ M,

U0 = {p ∈ M | h(p) = 0} ⊂ M.

That h is a smooth function on M implies U ∪U0 is an open and dense
subset of M , so any property satisfied in U0 ∪ U is also satisfied in M.

For any point p ∈ U∪U0, there exists a local orthonormal basis {e, φe, ξ}
of smooth eigenvectors of h in a neighborhood of p (this we call a φ-basis).

On U , we put he = λe, hφe = −λφe, where λ is a nonvanishing smooth
function assumed to be positive.

Lemma 3.1. [12] (see also [8]) On the open set U we have

∇ξe = aφe, ∇ee = bφe, ∇φee = −cφe + (λ− 1)ξ, (3.1)
∇ξφe = −ae,∇eφe = −be + (1 + λ)ξ,∇φeφe = ce, (3.2)
∇ξξ = 0, ∇eξ = −(1 + λ)φe, ∇φeξ = (1 − λ)e, (3.3)
∇ξh = −2ahφ + (ξ · λ)s, (3.4)
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where a is a smooth function,

b =
1
2λ

((φe · λ) + A) with A = η(Qe) = S(ξ, e), (3.5)

c =
1
2λ

((e · λ) + B) with B = η(Qφe) = S(ξ, φe) (3.6)

and s is the type (1, 1) tensor field defined by sξ = 0, se = e and sφe = −φe.

From Lemma 3.1 and the formula [X,Y ] = ∇XY −∇Y X, we can prove
that

[e, φe] = ∇eφe− ∇φee = −be + cφe + 2ξ, (3.7)
[e, ξ] = ∇eξ −∇ξe = −(a + λ + 1)φe, (3.8)

[φe, ξ] = ∇φeξ −∇ξφe = (a− λ + 1)e. (3.9)

Definition 3.2. [10] Let M be a 3-dimensional contact metric manifold and
h = λh+ − λh− the spectral decomposition of h on U1. If

∇h−Xh−X =
[
ξ, h+X

]
(3.10)

for all vector fields X on M and all points of an open subset W of U1 and
h = 0 on the points of M which do not belong to W , then the manifold is
said to be semi-K contact manifold.

Remark 3.3. [10] From relations (3.1)-(3.4) and (3.7)-(3.9) the condition
(3.10) for X = e leads to [ξ, e] = 0 while for X = φe leads to ∇φeφe = 0.
Hence on a semi-K contact manifold we have a + λ + 1 = c = 0. If we ap-
ply the deformation e → φe, φe → e, ξ → −ξ, λ → −λ, b → c, c → b,
then the contact structure remains the same. Hence the condition for a 3-
dimensional contact metric manifold to be semi-K contact is equivalent to
a − λ + 1 = b = 0. On the other hand, if on a 3-dimensional contact metric
manifold the relation ∇h+Xh+X = [ξ, h−X] holds, then applying relations
(3.1)-(3.4) we have a− λ + 1 = b = 0.

4. Main Results

The local classification of 3-dimensional generalized (κ, μ)-contact metric
manifolds, satisfying the condition ‖gradκ‖ =constant( �= 0) was obtained
in [18]. As a result, contact metric manifold with ‖grad λ‖g = d �= 0 (cons.)
is Dα- deformed in another contact metric manifold with

∥∥grad λ̄
∥∥
ḡ

= dα−
3
2

and choosing α = d
2
3 , it is enough to study those contact metric manifold

with ‖grad λ‖ = 1. If d = 0, then λ is constant. As a result, if λ = 0, then
M is a Sasakian manifold.

Now we will give our main Theorem.

Theorem 4.1. Let M(φ, ξ, η, g) be a 3-dimensional contact metric manifold
with ‖grad λ‖ = 1 and ∇ξτ = 2aτφ. Then at any point p ∈ M there exist
a chart (U, (x, y, z)) such that λ = g(z) �= 0 and A = 0, B = F (y, z) or
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A = F (y, z), B = 0. In the first case (A = 0, B = F (y, z)), the following are
valid,

ξ =
∂

∂x
, φe =

∂

∂y
and e = k1

∂

∂x
+ k2

∂

∂y
+ k3

∂

∂z
, k3 �= 0.

In the second case (A = F (y, z), B = 0), the following are valid,

ξ =
∂

∂x
, e =

∂

∂y
and φe = k′1

∂

∂x
+ k′2

∂

∂y
+ k′3

∂

∂z
, k′3 �= 0,

where

k1(x, y, z) = −2y + r(z), k′1(x, y, z) = 2y + r′(z),

k2(x, y, z) = k′2(x, y, z) = 2xg(z) − (H(y, z) + y)
2g(z)

+ β(z),

k3(x, y, z) = k′3(x, y, z) = t(z) + δ,
∂H(y, z)

∂y
= F (y, z)

and r, r′, β are smooth functions of z and δ is constant. Also, g(z) =
∫

1
k3(z)

dz.

Proof. By virtue of (2.9) and (2.10), it can be proved that the assumption
∇ξτ = 2aτφ is equivalent to ξ · λ = 0. From the definition of gradient of a
differentiable function we get

gradλ = (e · λ)e + (φe · λ)φe + (ξ · λ)ξ (4.1)
= (e · λ)e + (φe · λ)φe.

Using (4.1) and ‖grad λ‖ = 1, we have

(e · λ)2 + (φe · λ)2 = 1. (4.2)

Differentiating (4.2) with respect to ξ and using (3.8) and (3.9) we obtain

(ξ.e(λ)(e(λ) + (ξφe(λ))(φe(λ) = 0
([ξ, e] (λ)) e(λ) + ([ξ, φe] (λ)) (φe)λ = 0

λe(λ)φe(λ) = 0

and, since λ �= 0,
e(λ)φe(λ) = 0. (4.3)

To study this system we consider the open subsets of U

U ′ = {p ∈ U | e(λ)(p) �= 0 } , U ′′ = {p ∈ U | (φe)(λ)p �= 0} ,
where U ′ ∪ U ′′ is open and dense in the closure of U. We distinguish two
cases:

Case 1: Now we suppose that p ∈ U ′. By virtue of (4.2), (4.3) we have
(φe)(λ) = 0, e(λ) = ∓1. Changing to the basis (ξ,−e,−φe) if necessary, we
can assume that e(λ) = 1. By the equation (3.9), we get

[φe, ξ] (λ) = (φe)(ξ(λ)) − ξ((φe)(λ)) (4.4)
= (a− λ + 1)e(λ).
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If we use the relations e(λ) = 1, (φe)(λ) = 0 and ξ · λ = 0 in the equation
(4.4), one can easily obtain a = λ−1. Hence, the equations (3.7), (3.8), (3.9)
and (3.5), (3.6) are reduced

[e, φe] = −be + cφe + 2ξ, (4.5)
[e, ξ] = −2λφe, (4.6)

[φe, ξ] = 0, (4.7)

b =
A

2λ
, c =

(B + 1)
2λ

, (4.8)

respectively.
Since [φe, ξ] = 0, the distribution which is spanned by φe and ξ is

integrable and so for any p ∈ U ′ there exist a chart {V ,(x, y, z)} at p, such
that

ξ =
∂

∂x
, φe =

∂

∂y
, e = k1

∂

∂x
+ k2

∂

∂y
+ k3

∂

∂z
, (4.9)

where k1, k2, k3 are smooth functions on V . Since ξ, e, φe are linearly inde-
pendent, we have k3 �= 0 at any point of V . Using (4.5), (4.6) and (4.9) we
get following partial differential equations:

∂k1
∂y

=
A

2λ
k1 − 2,

∂k2
∂y

=
1
2λ

[Ak2 −B − 1] ,
∂k3
∂y

=
A

2λ
k3, (4.10)

∂k1
∂x

= 0,
∂k2
∂x

= 2λ,
∂k3
∂x

= 0. (4.11)

Moreover we know that
∂λ

∂x
= 0,

∂λ

∂y
= 0. (4.12)

Differentiating the equation ∂k3

∂x = 0 with respect to ∂
∂y and using ∂k3

∂y = A
2λk3,

we find

0 =
∂2k3
∂y∂x

=
∂2k3
∂x∂y

=
1
2λ

∂A

∂x
k3 +

1
2λ

A
∂k3
∂x

=
1
2λ

∂A

∂x
k3.

So
∂A

∂x
= 0. (4.13)

Differentiating ∂k2

∂x = 2λ with respect to ∂
∂y and using

∂k2
∂y

=
1
2λ

[Ak2 −B − 1]

and the equation (4.13), we prove that

∂2k2
∂y∂x

= 0 =
∂2k2
∂x∂y

=
1
2λ

[
∂A

∂x
k2 + A

∂k2
∂x

− ∂B

∂x

]
.

So
∂B

∂x
= 2λA. (4.14)

From (4.12) we have following solution

λ = ĝ(z) + d = ǧ(z), (4.15)



1988 I. K. Erken and C. Murathan Mediterr. J. Math.

where d is constant. Using e(λ) = k1
∂λ
∂x +k2

∂λ
∂y +k3

∂λ
∂z = 1 and (4.12), we get

∂λ

∂z
=

1
k3

, k3 �= 0. (4.16)

If we differentiate the equation (4.16) with respect to ∂
∂y and because of the

equation ∂λ
∂y = 0, we obtain

0 =
∂2λ

∂z∂y
=

∂2λ

∂y∂z
= − 1

k23

∂k3
∂y

. (4.17)

Since k3 �= 0, the equation (4.17) is reduced to

∂k3
∂y

= 0. (4.18)

Combining (4.10) and (4.18), we deduced that

A = 0. (4.19)

Using (4.14) and (4.19), we have

∂B

∂x
= 0. (4.20)

It follows from (4.20) that

B = F (y, z). (4.21)

By virtue of (4.19), (4.10) and (4.11), we easily see that

k1 = −2y + r(z), (4.22)

where r(z) is integration function. Combining (4.11) and (4.18), we get

k3 = t(z) + δ, (4.23)

where δ is constant. If we use (4.11), (4.15), (4.19) and (4.21) in (4.10)

∂k2
∂x

= 2ǧ(z),
∂k2
∂y

=
−(B + 1)

2λ
=

−(F (y, z) + 1)
2ǧ(z)

. (4.24)

It follows from this last partial differential equation that

k2 = 2xǧ(z) − (H(y, z) + y)
2ǧ(z)

+ β(z), (4.25)

where
∂H(y, z)

∂y
= F (y, z). (4.26)

Because of (4.16), there is a relation between λ = ǧ(z) and k3(z) such that
ǧ(z) =

∫
1

k3(z)
dz. We will calculate the tensor fields η, φ, g with respect to the
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basis ∂
∂x ,

∂
∂y ,

∂
∂z . For the components gij of the Riemannian metric g, using

(4.9) we have

g11 = 1, g22 = 1, g12 = g21 = 0,

g13 = g31 =
−k1
k3

,

g23 = g32 =
−k2
k3

, g33 =
1 + k21 + k22

k23
.

The components of the tensor field φ are immediate consequences of

φ(ξ) = φ(
∂

∂x
) = 0, φ(

∂

∂y
) = −k1

∂

∂x
− k2

∂

∂y
− k3

∂

∂z
,

φ(
∂

∂z
) =

k1k2
k3

∂

∂x
+

1 + k22
k3

∂

∂y
+ k2

∂

∂z
.

The expression of the contact form η, immediately follows from

η = dx− k1
k3

dz.

Now we calculate the components of tensor field h with respect to the basis
∂
∂x ,

∂
∂y ,

∂
∂z .

h(ξ) = h(
∂

∂x
) = 0, h(

∂

∂y
) = −λ

∂

∂y
,

h(
∂

∂z
) = λ

k1
k3

∂

∂x
+ 2λ

k2
k3

∂

∂y
+ λ

∂

∂z
.

Case 2: Now we suppose that p ∈ U
′′
. As in Case 1, we can assume

that (φe)(λ) = 1. Using the equations (3.7), (3.8), (3.9) and (3.5), (3.6) are
reduced

[e, φe] = −be + cφe + 2ξ, (4.27)
[e, ξ] = 0, (4.28)

[φe, ξ] = −2λe, (4.29)

b =
(A + 1)

2λ
, c =

B

2λ
, a = −1 − λ (4.30)

respectively.
Because of (4.28) we find that there exist a chart {V ′,(x, y, z)} at p

∈ U
′′
,

ξ =
∂

∂x
, ϕe = k′1

∂

∂x
+ k′2

∂

∂y
+ k′3

∂

∂z
, e =

∂

∂y
(4.31)

where k′1, k
′
2 and k′3 (k′3 �= 0), are smooth functions on V ′.

Using (4.27), (4.29) and (4.31) we get following partial differential equa-
tions:

∂k′1
∂y

=
B

2λ
k′1 + 2,

∂k′2
∂y

=
1
2λ

[Bk′2 −A− 1] ,
∂k′3
∂y

=
B

2λ
k′3, (4.32)
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∂k′1
∂x

= 0,
∂k′2
∂x

= 2λ,
∂k′3
∂x

= 0. (4.33)

Moreover we know that
∂λ

∂x
= 0,

∂λ

∂y
= 0. (4.34)

As in Case 1, if we solve partial differential equations (4.32), (4.33) and
(4.34), then we find

B = 0, A = F (y, z), (4.35)

λ = ḡ(z) + d′ = g(z), k′1 = 2y + r′(z), k′3 = t′(z) + δ′, (4.36)

k′2 = 2xg(z) − (H(y, z) + y)
2g(z)

+ β′(z), (4.37)

∂H(y, z)
∂y

= F (y, z), (4.38)

where r′(z) is integration function, d′ and δ′ are constants. By the help of
(4.36), the equation (φe)(λ) = 1 implies that

λ(z) = g(z) =
∫

1
k′3(z)

dz. (4.39)

As in Case 1, we can directly calculate the tensor fields g, φ, η and h
with respect to the basis ∂

∂x ,
∂
∂y ,

∂
∂z .

g =

⎛
⎜⎜⎝

1 0 −k′1
k′3

0 1 −k′2
k′3

−k′1
k′3

−k′2
k′3

1+k′21 +k′22
k′23

⎞
⎟⎟⎠ , φ =

⎛
⎜⎝

0 k′1 −k′1k
′
2

k′3

0 k′2 − 1+k′22
k′3

0 k′3 −k′2

⎞
⎟⎠ ,

η = dx− k′1
k′3

dz and h =

⎛
⎜⎝

0 0 −λ
k′1
k′3

0 λ −2λk′2
k′3

0 0 −λ

⎞
⎟⎠ .

�

Example. We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3, z �= 0}
and the vector fields

ξ =
∂

∂x
, φe =

∂

∂y
, e = −2y

∂

∂x
+ (2xz − 1)

∂

∂y
+

∂

∂z
.

The 1-form η = dx+2ydz defines a contact structure on M with characteristic
vector field ξ = ∂

∂x . Let g, φ be the Riemannian metric and the (1, 1)-tensor
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field given by

g =

⎛
⎝ 1 0 a1

0 1 a2
a1 a2 1 + a21 + a22

⎞
⎠ , φ =

⎛
⎝ 0 a1 a1a2

0 a2 a22 + 1
0 −1 −a2

⎞
⎠ ,

h =

⎛
⎝ 0 0 −2yz

0 −z 2z(2xz − 1)
0 0 z

⎞
⎠ , λ = z,

with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z , where a1 = 2y and a2 = 1− 2xz . By a

straightforward calculation, we obtain

∇ξτ = 2(z − 1)τφ.

Now, we will give an example which satisfies the conditions of Theorem
4.1.

Example. We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3, z > 0}
and the vector fields

ξ =
∂

∂x
, e =

∂

∂y
, φe = 2y

∂

∂x
+ (2xz − 2z + y

2z
)
∂

∂y
+ z

∂

∂z
.

The 1-form η = dx− 2y
z dz defines a contact structure on M with characteristic

vector field ξ = ∂
∂x . Let g, φ be the Riemannian metric and the (1, 1)-tensor

field given by

g =

⎛
⎜⎝

1 0 −a1

a3

0 1 −a2

a3

−a1

a3
−a2

a3

1+a2
1+a2

2

a2
3

⎞
⎟⎠ , φ =

⎛
⎜⎝

0 a1 −a1a2

a3

0 a2 − 1+a2
2

a3

0 a3 −a2

⎞
⎟⎠ ,

η = dx− a1
a3

dz and h =

⎛
⎝ 0 0 −λa1

a3

0 λ −2λa2

a3

0 0 −λ

⎞
⎠

with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z , where a1 = 2y, a2 = 2xz− 2z+y

2z , a3 = z

and λ = ln(z) . By direct computations, we get

R(X,Y )ξ

= (1 − (ln(z))2)(η(Y )X − η(X)Y ) + 2(−1 − ln(z))(η(Y )hX − η(X)hY )

and
∇ξτ = 2(− ln(z) − 1)τφ.

5. Some Applications

In this section, we will give several properties and some applications about
contact metric 3-manifold with ‖grad λ‖ = 1 and ∇ξτ = 2aτφ. This class of
manifold is denoted by Ω.
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Remark 5.1. Since the Case 2 (A = F (y, z), B = 0, a = λ−1, b = 0) is similar
to the Case 1 (A = 0, B = F (y, z), a = −λ − 1, c = 0), we only discuss the
Case 1. By virtue of ‖grad λ‖ �= 0 we can conclude that Ω is neither Sasakian
nor flat.

Remark 5.2. Calvaruso and Perrone [7] proved that a semi-symmetric contact
metric 3-manifold satisfying A = 0 or B = 0, either is flat or has constant
curvature 1. Hence Ω is not semi-symmetric space.

5.1. Harmonic vector fields

If (M, g) is a Riemannian manifold and (T 1M, gs) is its unit tangent sphere
bundle equipped with the Sasaki metric gs, a unit vector field V on M de-
termines a map between (M, g) and (T 1M, gs). When M is compact and
orientable, the energy of V is the energy E(V ) = 1

2

∫
M

‖dV ‖2 dv = m
2 vol

(M, g)+ 1
2

∫
M

‖∇V ‖2 dv of the corresponding map. V is said to be a harmonic

vector field if it is a critical point for the energy functional E defined on the
space χ1(M) unit vector fields on (M, g).

By an H-contact manifold [20] we mean a contact metric manifold such
that the characteristic vector field ξ is harmonic, that is ξ is an eigenvector of
the rough Laplacian Δ. It was shown in [20] that M is an H-contact manifold
if and only if ξ is an eigenvector of the Ricci operator.

In [16] Koufogiorgos and Stamatiou proved that every contact metric
manifold M satisfying R(X,Y )ξ = 0, for any X,Y ∈ D = kerη is an H-
contact manifold. Koufogiorgos et al. proved following Theorems:

Theorem 5.3. [14] Let M be a 3-dimensional contact metric manifold. If M
is an H-contact manifold, then M is a (κ, μ, ν)-contact metric manifold on
an everywhere open and dense subset of M.

Theorem 5.4. [15] Let M be a 3-dimensional (κ, μ, v)-contact metric manifold
for which ∇ξτ = 2aτφ where a is smooth funtion on M . Then M is either a
Sasakian manifold or generalized (κ, μ)-contact metric manifold.

If we put an extra assumption F (y, z) = 0 relative to this chart then ξ
is an eigenvector of the Ricci operator. So Ω becomes an H-contact manifold.
Hence we obtain

Corollary 5.5. If F = 0, then Ω is a generalized (κ, μ)-contact metric mani-
fold. In particular, Ω is H-contact.

5.2. Strongly locally φ-symmetry

M is called a strongly locally φ-symmetric contact metric manifold if the
characteristic reflections are local isometries ([8], [16]).

Calvaruso et al. [8] proved that a contact metric 3-manifold M strongly
locally φ-symmetric spaces if and only if τ = 0 and scalar curvature ρ is
constant or M is a (κ, μ)-contact metric manifold. Using this result and
(2.10) we obtain

Corollary 5.6. Ω is not strongly locally φ-symmetric space.
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5.3. Conformal flatness

A 3-dimensional Riemannian manifold M is called conformally flat if and
only if the Ricci operator Q satisfies

(∇XQ)Y − (∇Y Q)X =
1
4
{(X(ρ)Y − (Y (ρ)X} (5.1)

for all vector fields X and Y .

Lemma 5.7. Ω is a conformally flat if and only if

i) ξ(ρ) = 0, ii) φe(ρ) = 0, iii) ξ(B) = 0, iv) φe(B) = 0,

v)
e(ρ)
4

= B(1 + 3λ) − 4λ, vi) e(B) + 9λ3 − 5λ2 + λ(
ρ

2
− 1) − 3 +

ρ

2
= 0,

vii) B(
B + 1

2λ
) + 5λ3 − 7λ2 + λ(

ρ

2
− 1) + 3 − ρ

2
= 0, (5.2)

viii) e(B) −B(
B + 1

2λ
) + 4λ3 + 2λ2 − 6 + ρ = 0.

On the other hand, Gouli-Andreou et.al [10] investigated conformally
flat 3-τ -a manifolds and proved the following Theorem.

Theorem 5.8. [10] Let M be a 3-dimensional conformally flat 3-τ -a manifold
with a and scalar curvature ρ smooth functions, constant along the flow of
ξ. Then M is either flat or Sasakian with constant curvature 1 or a semi-K
contact manifold.

By virtue of Definition 3.2 ,Theorem 4.1, Lemma 5.7 and Theorem 5.8
we get

Corollary 5.9. Let Ω be a conformally flat space. Then Ω is a semi-K contact
manifold.

Remark 5.10. We suppose that A = B = 0. Under this condition Calvaruso
et.al. [8] proved that a conformally flat contact metric 3-manifold has constant
sectional curvature 0 or 1. Then M is either flat or Sasakian with constant
curvature 1.
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Irem Küpeli Erken and Cengizhan Murathan
Art and Science Faculty, Department of Mathematics
Uludag University, Görükle Campus, 16059 Bursa, Turkey
e-mail: iremkupeli@uludag.edu.tr, cengiz@uludag.edu.tr

Received: May 22, 2012.
Revised: November 27, 2012.
Accepted: February 11, 2013.


	A Class of 3-dimensional Contact MetricManifolds
	Abstract
	1. Introduction
	2. Preliminaries
	3. Three dimensional contact metric manifolds
	4. Main Results
	5. Some Applications
	5.1. Harmonic vector fields
	5.2. Strongly locally φ-symmetry
	5.3. Conformal flatness

	Acknowledgement
	References




