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Abstract. In this investigation a new subclass of bi-univalent functions is
established that are defined in the open unit disk A= {Z € C:|Z| < 1} and are
endowed with the Salagean type g-difference operator. Then, Hankel inequalities
for the new function class are obtained and several related consequences of the
results are also stated.
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1 Introduction

Let A indicate the class of analytic functions of the form

£ =z+zanzn 1)
=2

n=
normalized by f(0) =0=f'(0) —1. Let § indicate the subclass of A
comprising of functions of the form Eq. (1) and also univalent in A.

For the function f € A, Jackson’s g-derivative [1] (0 < g < 1) is expressed by:

f(2)-f(qz)
—_— *0
D f(z) =] G0z z )
f'(0), z=0
and Dé f(2) = Dq(Dyf (2)). Thus, from Eq. (2), we deduce that
Dyf(z) =1+ Z [n]q@nz",
n=2
where
1_ n
Inlg = 3=

If g > 17, we get [n], > n.
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Lately, in [2] the Salagean type g-differential operator has been introduced as
given by

Def(2) = f(2)

Dyf (2) = 2Dy f (2)

Dif(2) = 2D4(Df ' f(2))

DEf(2) =z + Tip-z[nlkanz™ (k € N,z € A). (3)

Forq — 17, we get
DKF(z) = 7 + z nka,z"  (k € No,z € A)
n=2

the familiar Saldgean derivative [3].

Noonan and Thomas [4] introduced the q*"* Hankel determinant of function f
by

an An+1 - Qpig-1
An+1 An+2 - An+q
Hym) = | S : (@=1).
An+q-1 An+q -+ Qni2q-2

In particular,
a; a;
H1=| |=aa—aZ=a—a2
2() az a3 143 2 3 2
and
a, as
H,(2 =| |=aa — a?.
2() a3 a4 244 3

Then, Fekete and Szegd [5] obtained estimates of |H,(1)| = |az — 8a3| for 6 is
real. That is, if f € A, then

46 —3 6>1
las —6a3| <{1+2exp(Ty) 0<O=<1.
3 — 46 6<0

Furthermore, Keogh and Merkes [6] derived sharp estimates for |H,(1)| when
f is starlike, convex and close-to-convex in A.

Next, according to the Koebe One Quarter Theorem [7], every univalent
function f has an inverse f~! satisfying f~1(f(z)) =z (z €A) and

FUETw) =w (w]| < 1o(H), 10(f) = i). A function f € A is said to be bi-
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univalent in A if both f and f~! are univalent in A. Let X indicate the class of
bi-univalent functions defined in the unit disk A. Since f € Z has the Taylor
representation given by Eq. (1), computation shows that g = f~! has the
following representation:

gw) = fH(w) =w — a;w? + (2af — azp)w® + - (4)

Several researchers have introduced new subclasses of bi-univalent functions
and derived non-sharp the initial coefficients (see [8-18]).

Now, by using the Salagean type g-differential operator for functions g of the
form Eq. (4), we define:

Dkgw) = w — ay[2]kw? + (2a — ag)[3]kwS + - 5)

and introduce a new subclass of X to acquire the estimates of the initial Taylor-
Maclaurin coefficients. Then, by using the values of a, and az, we derive the
Fekete-Szego and Hankel inequalities.

2 Bi-Univalent Function Class FZ{ (2, B)

In this section, we will give the following new subclass involving the Salagean
type g-difference operator and also its related classes.

Definition 2.1. A function f € Z given by Eq. (1) is said to be in the class
FEKLB) (0<p<10<A<1lzweEN)

if the following conditions hold:
ff(2) '
R ((1 - ==+ A(DEf(2)) ) >

and

w

R ((1 _ e A(@';g(w))’> > B.

Example 2.2. A function f € X, members of which are given by Eq. (1) and

1. for A =0, let iFZ'q‘(O,ﬁ) =:iRZ'q‘(,B’) denote the subclass of £ and the
following conditions hold

k k
9{(%) > B and m(M) > B
zZ w
2. forA=1,let TEé‘(l, B) =: }[Z’;(ﬁ) denote the subclass of X and satisfy the
following conditions
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R|(Dif(@)]|>F and  R|(Dhgw))|> 8.

3 Hankel Inequalities for f € FZX(4, B)

In this section, we will determine the functional |a2 a, — a§| for the functions
fe TZg (4, B) due to Altinkaya and Yalgin [19]. Now, we recall the following
lemmas:

Lemma 3.1. (See [4]) Let P be the well-known class of Carathéodory
functions, that is c(z) € A with the power series expansion

c(z) =1+2Xn-1cn2" (z€4) (6)
and R(c(z)) > 0. Then

lenl €2 (n=1,23,...)

and is sharp for each n. Indeed,

c(2) =T==1+37,22"  (vnz1).

Lemma 3.2. (See [20]) If ¢ € P, then
2c, = c? +x(4 —c?), (7)
des=c3 +2(4—cHox —c (4 —cHx? +2(4 — cH(1 — |x|?2)

for some complex numbers x, z with |x| < 1 and |z| < 1.

Lemma 3.3. (See [5]) The power series for ¢ converges in A to a function in P
if and only if the Toeplitz determinants

2 cq cy e Cp
c_ 2 c .t Cpo

T, =]t ) oo, T (n=123,.)
Cn Cont1 Cony2 2

and c_, = ¢, are all nonnegative. They are exactly positive except for

m
c(z) = Z i Co (%), p, >0, t, real

k=1

and t,, # t; (ik # j). Inthiscase T,, >0 (n <m —1)and T, = 0 (n = m).

Next, we designate the second Hankel coefficient estimates for f € F 2’5 1 B).
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Theorem 3.4. Let f € FEE(A, B). Then

laza, — aj|
H(2), A(B,A,k,q) =0,B(B,4,k,q) =0
4(1 - B)?
ax {W,H(Z)}, A(ﬁ,)l,k,q) > O,B(ﬁ,ﬂ,k,q) <0
=1 sa-p '
A(B,A,k,q) <0,B(B,A4,k,q) <0

(1 +22)2[3]2+"

max {H(&,), H(2)}, AB, Ak, q) < 0,B(B, A k,q)>0

where

16(1—-p)* 4(1-p)°
(1+D*21F " (1 + D)+ 3D[2]E[41E

yle = [ZBBAKD) 41-p? B B.Akq)
0 AB, Ak, q) (1+24)2[3]2K  4A(B, Ak, q)

H(2) =

. a-p* (1-p)°
ABA ko) = (L+)*2]8  4(1+ )21+ 22)[2]2F[3]%
~ 1-p)? (1 - )
201+ (1 + 3D [2]K[41E T 4(1 + 22)2[3]2F
— 3 _ 2
BB, Ak, q) = (1-5) + 3(1-p)

(L+ )21+ 2D[212K3]F (1 + D (1 + 3D)[2]5[4]%
2(1-p)?
(L4 22)2[3]%F

Proof. Suppose that f € F Z'q‘ (B,A). There are two functions ¢, € P
satisfying the conditions of Lemma 3.1 such that

-2 D) ADEF@) =B+ (- B2, ()

(1 -2 4 2 (Dhgw)) = §+ (1 - BI(2), ©)

where

d(2) =1+ c1z + 2% + 323 + -,
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lp(w) =1+ d1W + dez + d3W3 + ..o,

Now, by comparing the corresponding coefficients in Eq. (8) and Eq. (9), we
get

A+ D[2]kay = (1= B)cy, (10)

1+ 2)[3]kas = (1 = P)cy, (11)

(143D [4]8a, = (1= P)cs (12)
and

—(1+M[2]faz = (1 - B)dy, (13)

(1 +2)[3]%(2a3 — a3) = (1 — B)d,, (14)

—(1+ 3)[4]E(5a3 — 5a,a3 + a,) = (1 — B)ds. (15)
From Eq. (10) and Eq. (13), we get

42 = ﬁcl - (1:/1_)152]’.;% (16)

which implies

(S _dl'
Now from Eq. (11) and Eq. (14), we obtain
(1-B)*

1_
2+ 9B _q,).

37 (122 [2]2F 2(1+2)[3]¥

On the other hand, subtracting Eq. (15) from Eq. (12) and using Eq. (16), we get

_ 5(1-B)> _ 1-p) _
Ay = 41+ (1+2)[2]8[3]% c1(cz —dz) + 2(1+31)[4]% (c3 — ds).

Thus, we establish that

__a-p* 4
(1+/’1)4[2]4k 1
laza, — a3| = (1-p)3 ! ,
+ 4(1+)2(1+22)[2]2F[31% ci(cz — dz)
a-p)- Cdy) - OB g2
2 16~ 43) T g Epe (2 T 427 (a7

Now, by Lemma 3.2, we get
2c, =c?+x(4—c?) and2d, =d?+y(4—d?), (18)
and hence, by Eq. (18), we have
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4—c2

C;—dy = x—=¥). (19)

Further, we get
des=c3+2(4—cHox —c (4 —cHx?+2(4 - cH(A - x|z,
4ds = df +2(4 — d?)dyy —di (4 — d)y* + 2(4 — dD)(1 - |y|P)w

and thus, we acquire

3 2 _ 2
_d3 =%+@(x+y) _C1(4—4 C1)(x2 +y2) (20)

2
—C
(A= x)z = @ = lyPwl
Using Eq. (19) — Eq. (20) in Eq. (17), we get

+

lasa, — a3|=
-1-p* (1-pB)? 4
aoakCr T ka1k €1
1+ D*[2]4 4(1+ D)+ 31)[2]g[4]g
a-py? Fa=ch) ,
4(1+)2(1+22)[2)2F[31% 2 (x=y)
;2 2042
+ (1-p) ci(4-ci) (x +7v)

21+)(A+3D)[2]5[41% 2

(1-p)? ct(=ct) 2, .2
21+)(A+3D[2]K[41% 4 G +y9)

_ (1-B)? (4= req 112V — (1 — 112
_+2(1+/1)(1+3A)[2]’3[4]’,§ 2 [ = 1x1Dz = (1 = |y[H)w]

__QA-B? G-, 2
4(1+20)2[312F 4 (=)

Since ¢ € P, we find that |¢;| < 2. Thus, letting |c;| = € € [0,2] and applying
triangle inequality on Eq. (21), we get

_a-pr et (1-B)? 4
(1+2)*[2)3F 4(1+2)(1+32)[2]5[41%

|a2a4 - a3| —

(1-B)? _
21+ (1+31)[2]K[4]1K e(d-¢ )

1-p)° (1-p)? e%(4—¢%)
+ (4(1+/1)2(1+21)[2] k31K + 2(1+0)(1+31)[2]5[4]% ) (lxl + 1yD

(1-p)? £(e= 2)(4 £2) . 12
2(1+A) (1+3 1) [2]K 4]k (Ix1* + 1y1%)
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1— 2 4_22
e Ul 1y 1)

Foréd = |x| <1and?9 = |y| < 1, we get
|a2a4 - a%l S C]_ + C2(6 + 7.9) + C3(62 + 192) (22)
Cs(6 +9)2 =¥(6,9),

where
. =B A=)
€1 =C(e) = T+ D2 e+ 41+ (1 + 3)[2]4[4]% i
(1_B)2 8(4’_82) >0
21+ + 3D[215[415 o
C =C(€)=< D
2=l2 4(1+ D)2(1 + 2)[2]2F[3]1%
) 20
2(1+ )(1 + 3D)[2]%[4]% 2 o
e (1-B) ee =DM =¢Y
G =0G3(8) = 2(1+ (1 + 3)[2]4[4]% 4 =
Y _ o2)2
C= ey =B BT E) 5,

4(1+ 22233k 4

Next, we will find the maximum of (W(6,9)) in T ={(6,9):0<6 <1,0<
9 < 1}. Since the coefficients of W(§,9) have dependent variable &, we should
maximize W(§,9) for the cases € = 0,& = 2 and € € (0,2).

1. Lete = 0. Thus, from (22), we may write

1— 2
W(5,9) = W(a +9)2.

2. We can find that the maximum of W(4§,9) occurs at § = ¥ = 1 and we find

max{‘}’(819)-0<5<10<19<1}:ﬂ
T T T T (1+22)2[312F

3. Lete = 2. Thus, W(6,9) is a constant function

_ _le(1-p)* 4(1-p)*
¥(0,9) = +D*215F T @+Da+3D) 215418

4. Lete € (0,2). If we change § + 9 = { and §.9 = n, then

Y(8,9) = C1(e) + C(e)T + [C3(e) + Ca(€)]3* — 2C3(e)m
=G((n), 0<7<20<n<1l.
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Presently, we try to get maximum of G({,7) in
={((,n):0<7=<20<n<1}
From the definition of G({,n), we get
Gz (G,m) = C2(8) + 2[C3(e) + C4 ()] = 0,
Gz(G,m) = —2C3(e) = 0.

We deduce that the function doesn’t have any critical point in . Thus, W(6,9)
doesn’t have any critical point in square I' and so the function doesn’t get
maximum value in T

Next, we inspect the maximum of W(§,9) on the boundary of T.
Firstly,let § = 0,0 <9 < 1 (orletd = 0,0 < § < 1). Then, we may write
W(0,9) = C1(e) + C2(e)9 + [C3(e) + Cu()]9? = 91(9).
Thus,
P1(9) = C2(e) + 2[C3(e) + Ca()]Y.
Case (i): If C3(€) + C4(¢) = 0, then @7 (9) > 0. The function is increasing and

so the maximum occurs at 9 = 1.

Case (ii): Let C3(e) + C4(e) < 0. Since Cy(e) + 2[C3(e) + C4(e)] > 0,
Cy(8) + 2[C5(8) + C4(8)]9 = Ca(e) + 2[C5(e) + Cyu(9)] holds for all
9 € [0,1]. So, ¢1(9) > 0. Hence, ¢;(9) is an increasing function. Thus, the
maximum occurs at 9 = 1,

max { ¥(0,9):0 <9 < 1} = C1(e) + C,(€) + C5(¢) + Cu(e).
Secondly, let § = 1,0 <9 < 1 (similarly, 9 = 1,0 < § < 1). Then

W(1,9) = C1(e) + C2(e) + C5(e) + Cu(e)
+[C2(&) + 2C4()]9 + [C3(e) + Cu(e)]9?
= ¢,(9).

It can be stated that ¢, (9) is an increasing function like case (i). In that way,
max { W(1,9):0 <9 < 1} = Cy(¢e) + 2[Co(&) + C3(€)] + 4C4 ().
Also, for every € € (0,2), we can easily see that
C1(e) + 2[C3(e) + C3(8)] + 4C4(€) > C1(e) + Ca(e) + C3(e) + Cu(e).
Therefore, we find that
max {W(5,9):0 <6 <1,0 <9 <1} = Cy(e) + 2[Co(e) + C3(e)] + 4C4(e).
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Since @41(1) < ¢,(1) for € € [0,2], max W (6,9) = ¥(1,1) on the boundary of
I'. So, the maximum of ¥ occurs at § = 1 and ¥ = 1 in the I..

Let us define H: (0,2) —» R as
H(e) =max ¥ (6,9) =¥(1,1)

= 2[C5(&) + C3(&)] + C1(€) + 4C4 (). (23)
Therefore, from Eq. (23), we obtain
4(1 - B)?
}[(S) = W‘FA(IB,/LI(, q) gt + 2 B(ﬁ,)l,k,q) 82,
where
. a-p* (1-p)°
ABA k) = (1+ D)*[2]¢" 41+ )21+ 2)[2]3%[3]%
~ (1-p)? (1-B)?
201+ D)1+ 3D)[2]5[415 41 + 22)?[3]%*
_ (1-p)3 3(1-p)?
B Ak a) = (1+ D21+ 2)[2]2¥[3]% * 1+ D+ 3D)[2]5[41%
2(1-p)?

(L +2)23EF

Now, we try to get the maximum value of H(¢) in (0,2). After some basic
calculations, we have

H'(e) = 4A(B, A, k,q)€3 + 2B(B, A, k, q)=.

Next, we examine the different cases of A(B,4,k,q) and B(B,4,k,q) as
follows:

Case 1: Let A(B,4,k,q) = 0and B(B,4,k,q) = 0, then H'(e) = 0. Hence, the
maximum point has to be on the boundary of & € [0,2], that is &€= 2.
Thus,

max{¥(5,9):0<6<10<9 <1}
=H(2)

16(1-p)* 4(1-B)?
O @HA21Ek T A+ a+3)[2]k[41%

(24)
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Case 2: If A(8, A, k,q) > 0 and B(8, A, k,q) < 0,2, = /% is a critical

point of H(€). Since H''(gy) < 0, the maximum value of function H (¢)
occurs at € = g and

4(1-p)?
m +AB, Ak, q) g +2B(B, Ak, q) &
__4@-p)*  3B*BAkq)
T (L+20)2B]2F 44BN kq)

4(1-pB)*
(1+22)2[3]2F

max{¥(5,9):0<6<10<9 <1}

_ 4(1-p)*  16(1-p)* 4(1-p)*
= max (1+22)2[312F (1+)4[2]8F © (1+D)(1+3D)[21E[41%)

H(e) =

In this case, H (&) < Therefore,

(25)

Case 3: If A(B,4,k,q) <0 and B(B,4,k,q) < 0,H(¢) is decreasing in (0,2).
Therefore,

4(1-B)?
max{‘P(8,19):0S6£1,0S19S1}=W (26)
Case 4: If A(B,4,k,q) <0and B(B,4,k,q) > 0, &, is a critical point of H (¢).

Since K" (gy) < 0, the maximum value of H (¢) occurs at € = &, and

4(1-p)*
(1+221)2[3]2F < H (o).

Therefore,

max {W(6,9):0<6<10<9Y <1}

_ 16(1-p)* 4(1-p)?
- max {}[(50)' e 2 (1+A><1+31)[21’,;[4]’5} 27)

Thus, from Egs. (24-26) and Eq. (27), the proof is completed.

Remark 3.5. For A =0 (and4 = 1) in Theorem 3.4, we can confirm the
Hankel inequalities for the function classes RZ’,;(())), H 2’5 (¢), respectively.
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