

Hankel Inequalities for a Subclass of Bi-Univalent Functions based on Salagean type *q*-Difference Operator

Sibel Yalçın¹, Şahsene Altınkaya¹, Gangadharan Murugusundaramoorthy^{2*} & Kaliappan Vijaya²

¹Department of Mathematics, Bursa Uludag University, 16059, Görükle, Bursa, Turkey ²Department of Mathematics, Vellore Institute of Technology, Vellore-632014, India *E-mail: gmsmoorthy@yahoo.com

Abstract. In this investigation a new subclass of bi-univalent functions is established that are defined in the open unit disk $\Delta = \{Z \in \mathbb{C} : |Z| < 1\}$ and are endowed with the Sălăgean type *q*-difference operator. Then, Hankel inequalities for the new function class are obtained and several related consequences of the results are also stated.

Keywords: *bi-univalent*; *coefficient bounds*; *convex functions*; *Hankel inequalities*; *Starlike*; *univalent*.

1 Introduction

Let \mathcal{A} indicate the class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

normalized by f(0) = 0 = f'(0) - 1. Let S indicate the subclass of A comprising of functions of the form Eq. (1) and also univalent in Δ .

For the function $f \in A$, Jackson's *q*-derivative [1] (0 < q < 1) is expressed by:

$$\mathfrak{D}_q f(z) = \begin{cases} \frac{f(z) - f(qz)}{(1 - q)z}, & z \neq 0\\ f'(0), & z = 0 \end{cases}$$
(2)

and $\mathfrak{D}_q^2 f(z) = \mathfrak{D}_q(\mathfrak{D}_q f(z))$. Thus, from Eq. (2), we deduce that

$$\mathfrak{D}_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1},$$

where

$$[n]_q = \frac{1-q^n}{1-q}.$$

If $q \to 1^-$, we get $[n]_q \to n$.

Received October 28th, 2017, Revised May 13th, 2020, Accepted for publication June 2nd, 2020 Copyright © 2020 Published by ITB Institute for Research and Community Services, ISSN: 2337-5760, DOI: 10.5614/j.math.fund.sci.2020.52.2.4

189

Lately, in [2] the Sălăgean type q-differential operator has been introduced as given by

$$\begin{aligned} \mathfrak{D}_q^0 f(z) &= f(z) \\ \mathfrak{D}_q^1 f(z) &= z \mathfrak{D}_q f(z) \\ \mathfrak{D}_q^k f(z) &= z \mathfrak{D}_q (\mathfrak{D}_q^{k-1} f(z)) \\ \mathfrak{D}_q^k f(z) &= z + \sum_{n=2}^{\infty} [n]_q^k a_n z^n \quad (k \in \mathbb{N}_0, z \in \Delta). \end{aligned}$$
(3)

For $q \rightarrow 1^-$, we get

$$\mathfrak{D}^k f(z) = z + \sum_{n=2}^{\infty} n^k a_n z^n \quad (k \in \mathbb{N}_0, z \in \Delta)$$

the familiar Sălăgean derivative [3].

Noonan and Thomas [4] introduced the q^{th} Hankel determinant of function f by

$$H_{q}(n) = \begin{vmatrix} a_{n} & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+q-1} & a_{n+q} & \dots & a_{n+2q-2} \end{vmatrix} \quad (q \ge 1).$$

In particular,

$$H_2(1) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} = a_1 a_3 - a_2^2 = a_3 - a_2^2$$

and

$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2 a_4 - a_3^2.$$

Then, Fekete and Szegö [5] obtained estimates of $|H_2(1)| = |a_3 - \theta a_2^2|$ for θ is real. That is, if $f \in A$, then

$$|a_3 - \theta a_2^2| \le \begin{cases} 4\theta - 3 & \theta \ge 1\\ 1 + 2 \exp(\frac{-2\theta}{1-\theta}) & 0 \le \theta \le 1.\\ 3 - 4\theta & \theta \le 0 \end{cases}$$

Furthermore, Keogh and Merkes [6] derived sharp estimates for $|H_2(1)|$ when *f* is starlike, convex and close-to-convex in Δ .

Next, according to the Koebe One Quarter Theorem [7], every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z, (z \in \Delta)$ and $f(f^{-1}(w)) = w$ ($|w| < r_0(f), r_0(f) \ge \frac{1}{4}$). A function $f \in \mathcal{A}$ is said to be bi-

190

univalent in Δ if both f and f^{-1} are univalent in Δ . Let Σ indicate the class of bi-univalent functions defined in the unit disk Δ . Since $f \in \Sigma$ has the Taylor representation given by Eq. (1), computation shows that $g = f^{-1}$ has the following representation:

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 + \cdots.$$
⁽⁴⁾

Several researchers have introduced new subclasses of bi-univalent functions and derived non-sharp the initial coefficients (see [8-18]).

Now, by using the Sălăgean type q-differential operator for functions g of the form Eq. (4), we define:

$$\mathfrak{D}_{q}^{k}g(w) = w - a_{2}[2]_{q}^{k}w^{2} + (2a_{2}^{2} - a_{3})[3]_{q}^{k}w^{3} + \cdots$$
(5)

and introduce a new subclass of Σ to acquire the estimates of the initial Taylor-Maclaurin coefficients. Then, by using the values of a_2 and a_3 , we derive the Fekete-Szegö and Hankel inequalities.

2 Bi-Univalent Function Class $\mathcal{F}\Sigma_q^k(\lambda,\beta)$

In this section, we will give the following new subclass involving the Sălăgean type *q*-difference operator and also its related classes.

Definition 2.1. A function $f \in \Sigma$ given by Eq. (1) is said to be in the class

$$\mathcal{F}\Sigma_q^k(\lambda,\beta) \quad (0 \le \beta < 1, 0 \le \lambda \le 1, z, w \in \Delta)$$

if the following conditions hold:

$$\Re\left((1-\lambda)\frac{\mathfrak{D}_q^k f(z)}{z} + \lambda \big(\mathfrak{D}_q^k f(z)\big)'\right) > \beta$$

and

$$\Re\left((1-\lambda)\frac{\mathfrak{D}_q^k g(w)}{w} + \lambda \big(\mathfrak{D}_q^k g(w)\big)'\right) > \beta.$$

Example 2.2. A function $f \in \Sigma$, members of which are given by Eq. (1) and

1. for $\lambda = 0$, let $\mathcal{F}\Sigma_q^k(0,\beta) =: \mathcal{R}\Sigma_q^k(\beta)$ denote the subclass of Σ and the following conditions hold

$$\Re\left(\frac{\mathfrak{D}_q^k f(z)}{z}\right) > \beta$$
 and $\Re\left(\frac{\mathfrak{D}_q^k g(w)}{w}\right) > \beta$

2. for $\lambda = 1$, let $\mathcal{F}\Sigma_q^k(1,\beta) =: \mathcal{H}\Sigma_q^k(\beta)$ denote the subclass of Σ and satisfy the following conditions

$$\Re\left[\left(\mathfrak{D}_{q}^{k}f(z)\right)'\right] > \beta$$
 and $\Re\left[\left(\mathfrak{D}_{q}^{k}g(w)\right)'\right] > \beta$.

3 Hankel Inequalities for $f \in \mathcal{F}\Sigma_q^k(\lambda, \beta)$

In this section, we will determine the functional $|a_2a_4 - a_3^2|$ for the functions $f \in \mathcal{F}\Sigma_q^k(\lambda, \beta)$ due to Altınkaya and Yalçın [19]. Now, we recall the following lemmas:

Lemma 3.1. (See [4]) Let \mathcal{P} be the well-known class of Carathéodory functions, that is $c(z) \in \mathcal{A}$ with the power series expansion

$$c(z) = 1 + \sum_{n=1}^{\infty} c_n \, z^n \quad (z \in \Delta) \tag{6}$$

and $\Re(c(z)) > 0$. Then

 $|c_n| \le 2 \ (n = 1, 2, 3, ...)$

and is sharp for each n. Indeed,

$$c(z) = \frac{1+z}{1-z} = 1 + \sum_{n=1}^{\infty} 2 z^n \qquad (\forall n \ge 1).$$

Lemma 3.2. (See [20]) If $c \in \mathcal{P}$, then

$$2c_{2} = c_{1}^{2} + x(4 - c_{1}^{2}),$$

$$4c_{3} = c_{1}^{3} + 2(4 - c_{1}^{2})c_{1}x - c_{1}(4 - c_{1}^{2})x^{2} + 2(4 - c_{1}^{2})(1 - |x|^{2}z)$$
(7)

for some complex numbers x, z with $|x| \le 1$ and $|z| \le 1$.

Lemma 3.3. (See [5]) The power series for *c* converges in Δ to a function in \mathcal{P} if and only if the Toeplitz determinants

$$T_n = \begin{vmatrix} 2 & c_1 & c_2 & \cdots & c_n \\ c_{-1} & 2 & c_1 & \cdots & c_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2 \end{vmatrix} \quad (n = 1, 2, 3, \dots)$$

and $c_{-\kappa} = \overline{c_{\kappa}}$ are all nonnegative. They are exactly positive except for

$$c(z) = \sum_{\kappa=1}^{m} \rho_{\kappa} c_0(e^{it_{\kappa}z}), \ \rho_{\kappa} > 0, \ t_{\kappa} \text{ real}$$

and $t_{\kappa} \neq t_j \ (\kappa \neq j)$. In this case $T_n > 0 \ (n < m - 1)$ and $T_n = 0 \ (n \ge m)$.

Next, we designate the second Hankel coefficient estimates for $f \in \mathcal{F}\Sigma_q^k(\lambda, \beta)$.

Theorem 3.4. Let $f \in \mathcal{F}\Sigma_q^k(\lambda, \beta)$. Then

$$\begin{aligned} |a_{2}a_{4} - a_{3}^{2}| \\ H(2), \\ \max\left\{\frac{H(2)}{(1+2\lambda)^{2}[3]_{q}^{2k}}, H(2)\right\}, \quad A(\beta,\lambda,k,q) \geq 0, B(\beta,\lambda,k,q) \geq 0 \\ \max\left\{\frac{4(1-\beta)^{2}}{(1+2\lambda)^{2}[3]_{q}^{2k}}, H(2)\right\}, \quad A(\beta,\lambda,k,q) > 0, B(\beta,\lambda,k,q) < 0 \\ \frac{4(1-\beta)^{2}}{(1+2\lambda)^{2}[3]_{q}^{2k}}, \quad A(\beta,\lambda,k,q) \leq 0, B(\beta,\lambda,k,q) \leq 0 \\ \max\left\{H(\varepsilon_{0}), H(2)\right\}, \quad A(\beta,\lambda,k,q) < 0, B(\beta,\lambda,k,q) > 0 \end{aligned}$$

where

$$\begin{split} H(2) &= \frac{16(1-\beta)^4}{(1+\lambda)^4 [2]_q^{4k}} + \frac{4(1-\beta)^2}{(1+\lambda)(1+3\lambda)[2]_q^k [4]_q^k}, \\ H\left(\varepsilon_0 &= \sqrt{\frac{-B(\beta,\lambda,k,q)}{A(\beta,\lambda,k,q)}}\right) = \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}} - \frac{B^2(\beta,\lambda,k,q)}{4A(\beta,\lambda,k,q)}, \\ A(\beta,\lambda,k,q) &= \frac{(1-\beta)^4}{(1+\lambda)^4 [2]_q^{4k}} - \frac{(1-\beta)^3}{4(1+\lambda)^2(1+2\lambda)[2]_q^{2k} [3]_q^k} \\ - \frac{(1-\beta)^2}{2(1+\lambda)(1+3\lambda)[2]_q^k [4]_q^k} + \frac{(1-\beta)^2}{4(1+2\lambda)^2 [3]_q^{2k}} \\ B(\beta,\lambda,k,q) &= \frac{(1-\beta)^3}{(1+\lambda)^2(1+2\lambda)[2]_q^{2k} [3]_q^k} + \frac{3(1-\beta)^2}{(1+\lambda)(1+3\lambda)[2]_q^k [4]_q^k} \\ - \frac{2(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}}. \end{split}$$

Proof. Suppose that $f \in \mathcal{F}\Sigma_q^k(\beta, \lambda)$. There are two functions $\phi, \psi \in \mathcal{P}$ satisfying the conditions of Lemma 3.1 such that

$$(1-\lambda)\frac{\mathfrak{D}_q^k f(z)}{z} + \lambda \left(\mathfrak{D}_q^k f(z)\right)' = \beta + (1-\beta)\phi(z),\tag{8}$$

$$(1-\lambda)\frac{\mathfrak{D}_{q}^{k}g(w)}{w} + \lambda \big(\mathfrak{D}_{q}^{k}g(w)\big)' = \beta + (1-\beta)\psi(z),\tag{9}$$

where

$$\phi(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,$$

$$\psi(w) = 1 + d_1 w + d_2 w^2 + d_3 w^3 + \cdots$$

Now, by comparing the corresponding coefficients in Eq. (8) and Eq. (9), we get

$$(1+\lambda)[2]_q^k a_2 = (1-\beta)c_1, \tag{10}$$

$$(1+2\lambda)[3]_q^k a_3 = (1-\beta)c_2, \tag{11}$$

$$(1+3\lambda)[4]_q^k a_4 = (1-\beta)c_3 \tag{12}$$

and

$$-(1+\lambda)[2]_q^k a_2 = (1-\beta)d_1, \tag{13}$$

$$(1+2\lambda)[3]_q^k(2a_2^2-a_3) = (1-\beta)d_2, \tag{14}$$

$$-(1+3\lambda)[4]_q^k(5a_2^3-5a_2a_3+a_4) = (1-\beta)d_3.$$
(15)

From Eq. (10) and Eq. (13), we get

$$a_{2} = \frac{1-\beta}{(1+\lambda)[2]_{q}^{k}}c_{1} = -\frac{1-\beta}{(1+\lambda)[2]_{q}^{k}}d_{1},$$
(16)

which implies

 $c_1 = -d_1.$

Now from Eq. (11) and Eq. (14), we obtain

$$a_3 = \frac{(1-\beta)^2}{(1+\lambda)^2 [2]_q^{2k}} c_1^2 + \frac{(1-\beta)}{2(1+2\lambda)[3]_q^k} (c_2 - d_2).$$

On the other hand, subtracting Eq. (15) from Eq. (12) and using Eq. (16), we get

$$a_4 = \frac{5(1-\beta)^2}{4(1+\lambda)(1+2\lambda)[2]_q^k[3]_q^k} c_1(c_2 - d_2) + \frac{(1-\beta)}{2(1+3\lambda)[4]_q^k} (c_3 - d_3).$$

Thus, we establish that

$$|a_{2}a_{4} - a_{3}^{2}| = \begin{vmatrix} -\frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4k}}c_{1}^{4} \\ +\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2\lambda)[2]_{q}^{2k}[3]_{q}^{k}}c_{1}^{2}(c_{2} - d_{2}) \\ +\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}}c_{1}(c_{3} - d_{3}) - \frac{(1-\beta)^{2}}{4(1+2\lambda)[3]_{q}^{2k}}(c_{2} - d_{2})^{2} \end{vmatrix}.$$
(17)

Now, by Lemma 3.2, we get

$$2c_2 = c_1^2 + x(4 - c_1^2)$$
 and $2d_2 = d_1^2 + y(4 - d_1^2)$, (18)

and hence, by Eq. (18), we have

$$c_2 - d_2 = \frac{4 - c_1^2}{2} (x - y). \tag{19}$$

Further, we get

$$4c_3 = c_1^3 + 2(4 - c_1^2)c_1x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z,$$

$$4d_3 = d_1^3 + 2(4 - d_1^2)d_1y - d_1(4 - d_1^2)y^2 + 2(4 - d_1^2)(1 - |y|^2)w$$

and thus, we acquire

$$c_{3} - d_{3} = \frac{c_{1}^{3}}{2} + \frac{c_{1}(4 - c_{1}^{2})}{2}(x + y) - \frac{c_{1}(4 - c_{1}^{2})}{4}(x^{2} + y^{2}) + \frac{4 - c_{1}^{2}}{2}[(1 - |x|^{2})z - (1 - |y|^{2})w].$$
(20)

Using Eq. (19) – Eq. (20) in Eq. (17), we get

$$\begin{split} & \left|a_{2}a_{4}-a_{3}^{2}\right| = \\ & \left|\frac{-(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4k}}c_{1}^{4}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}}c_{1}^{4}\right. \\ & + \frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2\lambda)[2]_{q}^{2k}[3]_{q}^{k}}\frac{c_{1}^{2}(4-c_{1}^{2})}{2}(x-y) \\ & + \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}}\frac{c_{1}^{2}(4-c_{1}^{2})}{2}(x+y) \\ & - \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}}\frac{c_{1}^{2}(4-c_{1}^{2})}{4}(x^{2}+y^{2}) \\ & = + \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}}\frac{c_{1}(4-c_{1}^{2})}{2}[(1-|x|^{2})z-(1-|y|^{2})w] \\ & - \frac{(1-\beta)^{2}}{4(1+2\lambda)^{2}[3]_{q}^{2k}}\frac{(4-c_{1}^{2})^{2}}{4}(x-y)^{2} \bigg|. \end{split}$$

Since $c \in \mathcal{P}$, we find that $|c_1| \leq 2$. Thus, letting $|c_1| = \varepsilon \in [0,2]$ and applying triangle inequality on Eq. (21), we get

$$\begin{split} \left| a_{2}a_{4} - a_{3}^{2} \right| &\leq \frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4k}} \varepsilon^{4} + \frac{(1-\beta)^{2}}{4(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon^{4} \\ &+ \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon (4-\varepsilon^{2}) \\ &+ \left(\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2\lambda)[2]_{q}^{2k}[3]_{q}^{k}} + \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \right) \frac{\varepsilon^{2}(4-\varepsilon^{2})}{2} \left(|x| + |y| \right) \\ &+ \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{\varepsilon(\varepsilon-2)(4-\varepsilon^{2})}{4} \left(|x|^{2} + |y|^{2} \right) \end{split}$$

$$-\frac{(1-\beta)^2}{4(1+2\lambda)^2[3]_q^{2k}}\frac{(4-\varepsilon^2)^2}{4}(|x|+|y|)^2.$$
(21)

For $\delta = |x| \le 1$ and $\vartheta = |y| \le 1$, we get

$$\begin{aligned} |a_2 a_4 - a_3^2| &\leq C_1 + C_2(\delta + \vartheta) + C_3(\delta^2 + \vartheta^2) \\ C_4(\delta + \vartheta)^2 &= \Psi(\delta, \vartheta), \end{aligned} \tag{22}$$

where

$$\begin{split} \mathcal{C}_{1} &= \mathcal{C}_{1}(\varepsilon) = \frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4k}} \varepsilon^{4} + \frac{(1-\beta)^{2}}{4(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon^{4} \\ &+ \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon(4-\varepsilon^{2}) \ge 0, \\ \mathcal{C}_{2} &= \mathcal{C}_{2}(\varepsilon) = \left(\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2\lambda)[2]_{q}^{2k}[3]_{q}^{k}} \\ &+ \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}}\right) \frac{\varepsilon^{2}(4-\varepsilon^{2})}{2} \ge 0, \\ \mathcal{C}_{3} &= \mathcal{C}_{3}(\varepsilon) = \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3\lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{\varepsilon(\varepsilon-2)(4-\varepsilon^{2})}{4} \le 0, \\ \mathcal{C}_{4} &= \mathcal{C}_{4}(\varepsilon) = \frac{(1-\beta)^{2}}{4(1+2\lambda)^{2}[3]_{q}^{2k}} \frac{(4-\varepsilon^{2})^{2}}{4} \ge 0. \end{split}$$

Next, we will find the maximum of $(\Psi(\delta, \vartheta))$ in $\Gamma = \{(\delta, \vartheta): 0 \le \delta \le 1, 0 \le \vartheta \le 1\}$. Since the coefficients of $\Psi(\delta, \vartheta)$ have dependent variable ε , we should maximize $\Psi(\delta, \vartheta)$ for the cases $\varepsilon = 0, \varepsilon = 2$ and $\varepsilon \in (0, 2)$.

1. Let $\varepsilon = 0$. Thus, from (22), we may write

$$\Psi(\delta,\vartheta) = \frac{(1-\beta)^2}{(1+2\lambda)^2[3]_q^{2k}} (\delta+\vartheta)^2.$$

2. We can find that the maximum of $\Psi(\delta, \vartheta)$ occurs at $\delta = \vartheta = 1$ and we find

$$\max \left\{ \Psi(\delta, \vartheta) : 0 \le \delta \le 1, 0 \le \vartheta \le 1 \right\} = \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}}$$

3. Let $\varepsilon = 2$. Thus, $\Psi(\delta, \vartheta)$ is a constant function

$$\Psi(\delta,\vartheta) = \frac{16(1-\beta)^4}{(1+\lambda)^4[2]_q^{4k}} + \frac{4(1-\beta)^2}{(1+\lambda)(1+3\lambda)[2]_q^k[4]_q^k}.$$

- 4. Let $\varepsilon \in (0,2)$. If we change $\delta + \vartheta = \zeta$ and $\delta \cdot \vartheta = \eta$, then
 - $$\begin{split} \Psi(\delta,\vartheta) &= C_1(\varepsilon) + C_2(\varepsilon)\zeta + [C_3(\varepsilon) + C_4(\varepsilon)]\zeta^2 2C_3(\varepsilon)\eta \\ &= \mathcal{G}(\zeta,\eta), \quad 0 \leq \zeta \leq 2, 0 \leq \eta \leq 1. \end{split}$$

Presently, we try to get maximum of $\mathcal{G}(\zeta, \eta)$ in

$$= \{ (\zeta, \eta) : 0 \le \zeta \le 2, 0 \le \eta \le 1 \}.$$

From the definition of $\mathcal{G}(\zeta, \eta)$, we get

$$\begin{aligned} \mathcal{G}_{\zeta}'(\zeta,\eta) &= \mathcal{C}_{2}(\varepsilon) + 2[\mathcal{C}_{3}(\varepsilon) + \mathcal{C}_{4}(\varepsilon)]\zeta = 0, \\ \mathcal{G}_{\zeta}'(\zeta,\eta) &= -2\mathcal{C}_{3}(\varepsilon) = 0. \end{aligned}$$

We deduce that the function doesn't have any critical point in $\$. Thus, $\Psi(\delta, \vartheta)$ doesn't have any critical point in square Γ and so the function doesn't get maximum value in Γ .

Next, we inspect the maximum of $\Psi(\delta, \vartheta)$ on the boundary of Γ . Firstly, let $\delta = 0, 0 \le \vartheta \le 1$ (or let $\vartheta = 0, 0 \le \delta \le 1$). Then, we may write

$$\Psi(0,\vartheta) = C_1(\varepsilon) + C_2(\varepsilon)\vartheta + [C_3(\varepsilon) + C_4(\varepsilon)]\vartheta^2 = \varphi_1(\vartheta).$$

Thus,

$$\varphi_1'(\vartheta) = C_2(\varepsilon) + 2[C_3(\varepsilon) + C_4(\varepsilon)]\vartheta.$$

Case (i): If $C_3(\varepsilon) + C_4(\varepsilon) \ge 0$, then $\varphi'_1(\vartheta) > 0$. The function is increasing and so the maximum occurs at $\vartheta = 1$.

Case (ii): Let $C_3(\varepsilon) + C_4(\varepsilon) < 0$. Since $C_2(\varepsilon) + 2[C_3(\varepsilon) + C_4(\varepsilon)] > 0$, $C_2(\varepsilon) + 2[C_3(\varepsilon) + C_4(\varepsilon)]\vartheta \ge C_2(\varepsilon) + 2[C_3(\varepsilon) + C_4(\varepsilon)]$ holds for all $\vartheta \in [0,1]$. So, $\varphi'_1(\vartheta) > 0$. Hence, $\varphi_1(\vartheta)$ is an increasing function. Thus, the maximum occurs at $\vartheta = 1$,

 $\max \left\{ \Psi(0,\vartheta) \colon 0 \leq \vartheta \leq 1 \right\} = C_1(\varepsilon) + C_2(\varepsilon) + C_3(\varepsilon) + C_4(\varepsilon).$

Secondly, let $\delta = 1, 0 \le \vartheta \le 1$ (similarly, $\vartheta = 1, 0 \le \delta \le 1$). Then

$$\begin{aligned} \Psi(1,\vartheta) &= C_1(\varepsilon) + C_2(\varepsilon) + C_3(\varepsilon) + C_4(\varepsilon) \\ &+ [C_2(\varepsilon) + 2C_4(\varepsilon)]\vartheta + [C_3(\varepsilon) + C_4(\varepsilon)]\vartheta^2 \\ &= \varphi_2(\vartheta). \end{aligned}$$

It can be stated that $\varphi_2(\vartheta)$ is an increasing function like case (i). In that way,

 $\max \{ \Psi(1,\vartheta): 0 \le \vartheta \le 1 \} = C_1(\varepsilon) + 2[C_2(\varepsilon) + C_3(\varepsilon)] + 4C_4(\varepsilon).$

Also, for every $\varepsilon \in (0,2)$, we can easily see that

$$\mathcal{C}_1(\varepsilon) + 2[\mathcal{C}_2(\varepsilon) + \mathcal{C}_3(\varepsilon)] + 4\mathcal{C}_4(\varepsilon) > \mathcal{C}_1(\varepsilon) + \mathcal{C}_2(\varepsilon) + \mathcal{C}_3(\varepsilon) + \mathcal{C}_4(\varepsilon).$$

Therefore, we find that

$$\max \{ \Psi(\delta, \vartheta) : 0 \le \delta \le 1, 0 \le \vartheta \le 1 \} = C_1(\varepsilon) + 2[C_2(\varepsilon) + C_3(\varepsilon)] + 4C_4(\varepsilon).$$

Since $\varphi_1(1) \le \varphi_2(1)$ for $\varepsilon \in [0,2]$, max $\Psi(\delta, \vartheta) = \Psi(1,1)$ on the boundary of Γ . So, the maximum of Ψ occurs at $\delta = 1$ and $\vartheta = 1$ in the Γ .

Let us define \mathcal{H} : (0,2) $\rightarrow \mathbb{R}$ as

$$\mathcal{H}(\varepsilon) = \max \Psi(\delta, \vartheta) = \Psi(1, 1)$$

= 2[C_2(\varepsilon) + C_3(\varepsilon)] + C_1(\varepsilon) + 4C_4(\varepsilon). (23)

Therefore, from Eq. (23), we obtain

$$\mathcal{H}(\varepsilon) = \frac{4(1-\beta)^2}{(1+2\lambda)^2[3]_q^{2k}} + A(\beta,\lambda,k,q) \varepsilon^4 + 2 B(\beta,\lambda,k,q) \varepsilon^2,$$

where

$$\begin{split} A(\beta,\lambda,k,q) &= \frac{(1-\beta)^4}{(1+\lambda)^4 [2]_q^{4k}} - \frac{(1-\beta)^3}{4(1+\lambda)^2(1+2\lambda)[2]_q^{2k}[3]_q^k} \\ &- \frac{(1-\beta)^2}{2(1+\lambda)(1+3\lambda)[2]_q^k[4]_q^k} + \frac{(1-\beta)^2}{4(1+2\lambda)^2[3]_q^{2k}} \\ B(\beta,\lambda,k,q) &= \frac{(1-\beta)^3}{(1+\lambda)^2(1+2\lambda)[2]_q^{2k}[3]_q^k} + \frac{3(1-\beta)^2}{(1+\lambda)(1+3\lambda)[2]_q^k[4]_q^k} \\ &- \frac{2(1-\beta)^2}{(1+2\lambda)^2[3]_q^{2k}}. \end{split}$$

Now, we try to get the maximum value of $\mathcal{H}(\varepsilon)$ in (0,2). After some basic calculations, we have

$$\mathcal{H}'(\varepsilon) = 4A(\beta, \lambda, k, q)\varepsilon^3 + 2B(\beta, \lambda, k, q)\varepsilon$$

Next, we examine the different cases of $A(\beta, \lambda, k, q)$ and $B(\beta, \lambda, k, q)$ as follows:

Case 1: Let $A(\beta, \lambda, k, q) \ge 0$ and $B(\beta, \lambda, k, q) \ge 0$, then $\mathcal{H}'(\varepsilon) \ge 0$. Hence, the maximum point has to be on the boundary of $\varepsilon \in [0,2]$, that is $\varepsilon = 2$. Thus,

$$\max \{ \Psi(\delta, \vartheta) : 0 \le \delta \le 1, 0 \le \vartheta \le 1 \}$$

= $\mathcal{H}(2)$
= $\frac{16(1-\beta)^4}{(1+\lambda)^4 [2]_q^{4k}} + \frac{4(1-\beta)^2}{(1+\lambda)(1+3\lambda) [2]_q^k [4]_q^k}$ (24)

Case 2: If $A(\beta, \lambda, k, q) > 0$ and $B(\beta, \lambda, k, q) < 0$, $\varepsilon_0 = \sqrt{\frac{-B(\beta, \lambda, k, q)}{2A(\beta, \lambda, k, q)}}$ is a critical point of $\mathcal{H}(\varepsilon)$. Since $\mathcal{H}''(\varepsilon_0) < 0$, the maximum value of function $\mathcal{H}(\varepsilon)$ occurs at $\varepsilon = \varepsilon_0$ and

$$\begin{aligned} \mathcal{H}(\varepsilon_0) &= \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}} + A(\beta,\lambda,k,q) \,\varepsilon_0^4 + 2 \,B(\beta,\lambda,k,q) \,\varepsilon_0^2 \\ &= \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}} - \frac{3B^2(\beta,\lambda,k,q)}{4A(\beta,\lambda,k,q)}. \end{aligned}$$

In this case, $\mathcal{H}(\varepsilon_0) < \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}}$. Therefore,

$$\max \left\{ \Psi(\delta, \vartheta) : 0 \le \delta \le 1, 0 \le \vartheta \le 1 \right\}$$

=
$$\max \left\{ \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}}, \frac{16(1-\beta)^4}{(1+\lambda)^4 [2]_q^{4k}} + \frac{4(1-\beta)^2}{(1+\lambda)(1+3\lambda) [2]_q^k [4]_q^k} \right\}.$$
 (25)

Case 3: If $A(\beta, \lambda, k, q) \le 0$ and $B(\beta, \lambda, k, q) \le 0, \mathcal{H}(\varepsilon)$ is decreasing in (0,2). Therefore,

$$\max\left\{\Psi(\delta,\vartheta): 0 \le \delta \le 1, 0 \le \vartheta \le 1\right\} = \frac{4(1-\beta)^2}{(1+2\lambda)^2 [3]_q^{2k}} \tag{26}$$

Case 4: If $A(\beta, \lambda, k, q) < 0$ and $B(\beta, \lambda, k, q) > 0$, ε_0 is a critical point of $\mathcal{H}(\varepsilon)$. Since $\mathcal{H}''(\varepsilon_0) < 0$, the maximum value of $\mathcal{H}(\varepsilon)$ occurs at $\varepsilon = \varepsilon_0$ and

$$\frac{4(1-\beta)^2}{(1+2\lambda)^2[3]_q^{2k}} < \mathcal{H}(\varepsilon_0).$$

Therefore,

$$\max \left\{ \Psi(\delta, \vartheta) : 0 \le \delta \le 1, 0 \le \vartheta \le 1 \right\}$$

=
$$\max \left\{ \mathcal{H}(\varepsilon_0), \frac{16(1-\beta)^4}{(1+\lambda)^4 [2]_q^{4k}} + \frac{4(1-\beta)^2}{(1+\lambda)(1+3\lambda)[2]_q^k [4]_q^k} \right\}$$
(27)

Thus, from Eqs. (24-26) and Eq. (27), the proof is completed.

Remark 3.5. For $\lambda = 0$ (and $\lambda = 1$) in Theorem 3.4, we can confirm the Hankel inequalities for the function classes $\mathcal{R}\Sigma_{q}^{k}(\phi)$, $\mathcal{H}\Sigma_{q}^{k}(\phi)$, respectively.

Acknowledgement

The authors are grateful to the referees of this article for their valuable comments and advice.

References

- [1] Jackson, F.H., *On Q-Functions and a Certain Difference Operator*, Transactions of the Royal Society of Edinburgh, **46**, pp. 253-281,1908.
- [2] Govindaraj, M. & Sivasubramanian, S., On a Class of Analytic Functions Related to Conic Domains Involving Q-Calculus, Analysis Math., 43(3), pp. 475-487, 2017.
- [3] Sălăgean, G.S., *Subclasses of Univalent Functions*, Complex Analysis Fifth Romanian Finish Seminar, Bucharest, pp. 362-372, 1983.
- [4] Noonan, J.W. & Thomas, D.K., On the Second Hankel Determinant of A Really Mean P-Valent Functions, Trans. Amer. Math. Soc., 223(2), pp. 337-346, 1976.
- [5] Fekete, M. & Szegö, G., *Eine Bemerkung über Ungerade Schlichte Funktionen*, J. Lond. Math. Soc., **2**, pp. 85-89, 1933. (Text in Germany)
- [6] Keogh, F.R. & Merkes, E.P., A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc., **20**, pp. 8-12, 1969.
- [7] Duren, P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenchaften, 259, Springer, New York, 1983.
- [8] Brannan, D.A., Clunie, J. & Kirwan, W.E., Coefficient Estimates for A Class of Starlike Functions, Canad. J. Math., 22, pp. 476-485, 1970.
- [9] Brannan, D.A. & Taha, T.S., On Some Classes of Bi-Univalent Functions, Studia Univ. BabeŞ-Bolyai Math., 31(2), pp. 70-77, 1986.
- [10] Frasin, B.A. & Aouf, M.K., New Subclasses of Bi-Univalent Functions, Appl. Math. Lett., 24, pp. 1569-1573, 2011.
- [11] Hayami, T. & Owa, S., Coefficient Bounds for Bi-Univalent Functions, Pan Amer. Math. J., 22(4), pp. 15-26, 2012.
- [12] Lewin, M., On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc., 18, pp. 63-68, 1967.
- [13] Li, X-F. & Wang, A-P., *Two New Subclasses of Bi-Univalent Functions*, International Mathematical Forum, 7(30), pp. 1495-1504, 2012.
- [14] Panigarhi, T. & Murugusundaramoorthy, G., Coefficient Bounds for Bi-Univalent Functions Analytic Functions Associated with Hohlov Operator, Proc. Jangjeon Math. Soc., 16(1), pp. 91-100, 2013.
- [15] Srivastava, H.M., Mishra, A.K. & Gochhayat, P., Certain Subclasses of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 23(10), pp. 1188-1192, 2010.
- [16] Xu, Q-H., Srivastava, H.M., & Li, Z., A Certain Subclass of Analytic and Closed-To Convex Functions, Appl. Math. Lett., 24, pp. 396-401, 2011.
- [17] Xu, Q-H., Gui, Y-C. & Srivastava, H.M., Coefficinet Estimates for A Certain Subclass of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 25, pp. 990-994, 2012.

Hankel Inequalities for a Subclass of Bi-Univalent Functions 201

- [18] Zaprawa, P. On the Fekete-Szegö Problem for Classes of Bi-Univalent Functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1), pp. 169-178, 2014.
- [19] Altınkaya, Ş. & Yalçın, S., Upper Bounds of Second Hankel Determinant for Bi-Bazilevic Functions, Mediterranean Journal of Mathematics (MJOM), 13(6), pp. 4081-4090, 2016.
- [20] Libera, R.J. & Zlotkiewicz, E.J., Coefficient Bounds for the Inverse of A Function with Derivative in P, Proc. Amer. Math. Soc., 87(2), pp. 251-257, 1983.