Hankel Inequalities for a Subclass of Bi-Univalent Functions based on Salagean type q-Difference Operator

Sibel Yalçın ${ }^{1}$, Şahsene Altınkaya ${ }^{1}$, Gangadharan Murugusundaramoorthy ${ }^{2^{*}}$ \& Kaliappan Vijaya ${ }^{2}$
${ }^{1}$ Department of Mathematics, Bursa Uludag University, 16059, Görükle, Bursa, Turkey
${ }^{2}$ Department of Mathematics, Vellore Institute of Technology, Vellore-632014, India
*E-mail: gmsmoorthy@yahoo.com

Abstract

In this investigation a new subclass of bi-univalent functions is established that are defined in the open unit disk $\Delta=\{Z \in \mathbb{C}:|Z|<1\}$ and are endowed with the Sălăgean type q-difference operator. Then, Hankel inequalities for the new function class are obtained and several related consequences of the results are also stated.

Keywords: bi-univalent; coefficient bounds; convex functions; Hankel inequalities; Starlike; univalent.

1 Introduction

Let \mathcal{A} indicate the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

normalized by $f(0)=0=f^{\prime}(0)-1$. Let \mathcal{S} indicate the subclass of \mathcal{A} comprising of functions of the form Eq. (1) and also univalent in Δ.

For the function $f \in \mathcal{A}$, Jackson's q-derivative [1] $(0<q<1)$ is expressed by:

$$
\mathfrak{D}_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z}, & z \neq 0 \tag{2}\\ f^{\prime}(0), & z=0\end{cases}
$$

and $\mathfrak{D}_{q}^{2} f(z)=\mathfrak{D}_{q}\left(\mathfrak{D}_{q} f(z)\right)$. Thus, from Eq. (2), we deduce that

$$
\mathfrak{D}_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

If $q \rightarrow 1^{-}$, we get $[n]_{q} \rightarrow n$.
Received October $28^{\text {th }}, 2017$, Revised May $13^{\text {th }}, 2020$, Accepted for publication June $2^{\text {nd }}, 2020$
Copyright © 2020 Published by ITB Institute for Research and Community Services, ISSN: 2337-5760,
DOI: 10.5614/j.math.fund.sci.2020.52.2.4

Lately, in [2] the Sălăgean type q-differential operator has been introduced as given by

$$
\begin{align*}
& \mathfrak{D}_{q}^{0} f(z)=f(z) \\
& \mathfrak{D}_{q}^{1} f(z)=z \mathfrak{D}_{q} f(z) \\
& \mathfrak{D}_{q}^{k} f(z)=z \mathfrak{D}_{q}\left(\mathfrak{D}_{q}^{k-1} f(z)\right) \\
& \mathfrak{D}_{q}^{k} f(z)=z+\sum_{n=2}^{\infty}[n]_{q}^{k} a_{n} z^{n} \quad\left(k \in \mathbb{N}_{0}, z \in \Delta\right) . \tag{3}
\end{align*}
$$

For $q \rightarrow 1^{-}$, we get

$$
\mathfrak{D}^{k} f(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n} \quad\left(k \in \mathbb{N}_{0}, z \in \Delta\right)
$$

the familiar Sălăgean derivative [3].
Noonan and Thomas [4] introduced the $\boldsymbol{q}^{\text {th }}$ Hankel determinant of function f by

$$
H_{\boldsymbol{q}}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+\boldsymbol{q}-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+\boldsymbol{q}} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+\boldsymbol{q}-1} & a_{n+\boldsymbol{q}} & \ldots & a_{n+2 \boldsymbol{q}-2}
\end{array}\right| \quad(\boldsymbol{q} \geq 1) .
$$

In particular,

$$
H_{2}(1)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|=a_{1} a_{3}-a_{2}^{2}=a_{3}-a_{2}^{2}
$$

and

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2} .
$$

Then, Fekete and Szegö [5] obtained estimates of $\left|H_{2}(1)\right|=\left|a_{3}-\theta a_{2}^{2}\right|$ for θ is real. That is, if $f \in \mathcal{A}$, then

$$
\left|a_{3}-\theta a_{2}^{2}\right| \leq \begin{cases}4 \theta-3 & \theta \geq 1 \\ 1+2 \exp \left(\frac{-2 \theta}{1-\theta}\right) & 0 \leq \theta \leq 1 . \\ 3-4 \theta & \theta \leq 0\end{cases}
$$

Furthermore, Keogh and Merkes [6] derived sharp estimates for $\left|H_{2}(1)\right|$ when f is starlike, convex and close-to-convex in Δ.
Next, according to the Koebe One Quarter Theorem [7], every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z,(z \in \Delta)$ and $f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$. A function $f \in \mathcal{A}$ is said to be bi-
univalent in Δ if both f and f^{-1} are univalent in Δ. Let Σ indicate the class of bi-univalent functions defined in the unit disk Δ. Since $f \in \Sigma$ has the Taylor representation given by Eq. (1), computation shows that $g=f^{-1}$ has the following representation:

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{4}
\end{equation*}
$$

Several researchers have introduced new subclasses of bi-univalent functions and derived non-sharp the initial coefficients (see [8-18]).

Now, by using the Sălăgean type q-differential operator for functions g of the form Eq. (4), we define:

$$
\begin{equation*}
\mathfrak{D}_{q}^{k} g(w)=w-a_{2}[2]_{q}^{k} w^{2}+\left(2 a_{2}^{2}-a_{3}\right)[3]_{q}^{k} w^{3}+\cdots \tag{5}
\end{equation*}
$$

and introduce a new subclass of Σ to acquire the estimates of the initial TaylorMaclaurin coefficients. Then, by using the values of a_{2} and a_{3}, we derive the Fekete-Szegö and Hankel inequalities.

$2 \quad$ Bi-Univalent Function Class $\mathcal{F}_{\boldsymbol{q}}^{\boldsymbol{k}}(\boldsymbol{\lambda}, \boldsymbol{\beta})$

In this section, we will give the following new subclass involving the Sălăgean type q-difference operator and also its related classes.

Definition 2.1. A function $f \in \Sigma$ given by Eq. (1) is said to be in the class

$$
\mathcal{F} \Sigma_{q}^{k}(\lambda, \beta) \quad(0 \leq \beta<1,0 \leq \lambda \leq 1, z, w \in \Delta)
$$

if the following conditions hold:

$$
\mathfrak{R}\left((1-\lambda) \frac{\mathfrak{D}_{q}^{k} f(z)}{z}+\lambda\left(\mathfrak{D}_{q}^{k} f(z)\right)^{\prime}\right)>\beta
$$

and

$$
\mathfrak{R}\left((1-\lambda) \frac{\mathfrak{D}_{q}^{k} g(w)}{w}+\lambda\left(\mathfrak{D}_{q}^{k} g(w)\right)^{\prime}\right)>\beta .
$$

Example 2.2. A function $f \in \Sigma$, members of which are given by Eq. (1) and

1. for $\lambda=0$, let $\mathcal{F} \Sigma_{q}^{k}(0, \beta)=: \mathcal{R} \Sigma_{q}^{k}(\beta)$ denote the subclass of Σ and the following conditions hold

$$
\Re\left(\frac{\mathfrak{D}_{q}^{k} f(z)}{z}\right)>\beta \quad \text { and } \quad \Re\left(\frac{\mathcal{D}_{g}^{k} g(w)}{w}\right)>\beta
$$

2. for $\lambda=1$, let $\mathcal{F} \Sigma_{q}^{k}(1, \beta)=: \mathcal{H} \Sigma_{q}^{k}(\beta)$ denote the subclass of Σ and satisfy the following conditions

$$
\mathfrak{R}\left[\left(\mathfrak{D}_{q}^{k} f(z)\right)^{\prime}\right]>\beta \quad \text { and } \quad \mathfrak{R}\left[\left(\mathfrak{D}_{q}^{k} g(w)\right)^{\prime}\right]>\beta
$$

3 Hankel Inequalities for $\boldsymbol{f} \in \mathcal{F} \boldsymbol{\Sigma}_{q}^{k}(\lambda, \boldsymbol{\beta})$

In this section, we will determine the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the functions $f \in \mathcal{F} \Sigma_{\mathrm{q}}^{k}(\lambda, \beta)$ due to Altınkaya and Yalçın [19]. Now, we recall the following lemmas:

Lemma 3.1. (See [4]) Let \mathcal{P} be the well-known class of Carathéodory functions, that is $c(z) \in \mathcal{A}$ with the power series expansion

$$
\begin{equation*}
c(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \quad(z \in \Delta) \tag{6}
\end{equation*}
$$

and $\mathfrak{R}(c(z))>0$. Then

$$
\left|c_{n}\right| \leq 2(n=1,2,3, \ldots)
$$

and is sharp for each n. Indeed,

$$
c(z)=\frac{1+z}{1-z}=1+\sum_{n=1}^{\infty} 2 z^{n} \quad(\forall n \geq 1) .
$$

Lemma 3.2. (See [20]) If $c \in \mathcal{P}$, then

$$
\begin{align*}
& 2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right), \tag{7}\\
& 4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2} z\right)
\end{align*}
$$

for some complex numbers x, z with $|x| \leq 1$ and $|z| \leq 1$.
Lemma 3.3. (See [5]) The power series for c converges in Δ to a function in \mathcal{P} if and only if the Toeplitz determinants

$$
T_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right| \quad(n=1,2,3, \ldots)
$$

and $c_{-\kappa}=\overline{c_{\kappa}}$ are all nonnegative. They are exactly positive except for

$$
c(z)=\sum_{\kappa=1}^{m} \rho_{\kappa} c_{0}\left(e^{i t_{\kappa} z}\right), \rho_{\kappa}>0, t_{\kappa} \text { real }
$$

and $t_{\kappa} \neq t_{j}(\kappa \neq j)$. In this case $T_{n}>0(n<m-1)$ and $T_{n}=0(n \geq m)$.
Next, we designate the second Hankel coefficient estimates for $f \in \mathcal{F} \Sigma_{q}^{k}(\lambda, \beta)$.

Theorem 3.4. Let $f \in \mathcal{F} \Sigma_{q}^{k}(\lambda, \beta)$. Then

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \\
& \leq \begin{cases}H(2), & A(\beta, \lambda, k, q) \geq 0, B(\beta, \lambda, k, q) \geq 0 \\
\max \left\{\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}, H(2)\right\}, & A(\beta, \lambda, k, q)>0, B(\beta, \lambda, k, q)<0 \\
\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k},} & A(\beta, \lambda, k, q) \leq 0, B(\beta, \lambda, k, q) \leq 0 \\
\max \left\{H\left(\varepsilon_{0}\right), H(2)\right\}, & A(\beta, \lambda, k, q)<0, B(\beta, \lambda, k, q)>0\end{cases}
\end{aligned}
$$

where

$$
\begin{gathered}
H(2)=\frac{16(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}}+\frac{4(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}}, \\
H\left(\varepsilon_{0}=\sqrt{\frac{-B(\beta, \lambda, k, q)}{A(\beta, \lambda, k, q)}}\right)=\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}-\frac{B^{2}(\beta, \lambda, k, q)}{4 A(\beta, \lambda, k, q)^{\prime}} \\
A(\beta, \lambda, k, q)=\frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}}-\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}} \\
-\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}}+\frac{(1-\beta)^{2}}{4(1+2 \lambda)^{2}[3]_{q}^{2 k}} \\
B(\beta, \lambda, k, q)=\frac{(1-\beta)^{3}}{(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}}+\frac{3(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \\
-\frac{2(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}} .
\end{gathered}
$$

Proof. Suppose that $f \in \mathcal{F} \Sigma_{q}^{k}(\beta, \lambda)$. There are two functions $\phi, \psi \in \mathcal{P}$ satisfying the conditions of Lemma 3.1 such that

$$
\begin{align*}
& (1-\lambda) \frac{\mathfrak{D}_{q}^{k} f(z)}{z}+\lambda\left(\mathfrak{D}_{q}^{k} f(z)\right)^{\prime}=\beta+(1-\beta) \phi(z), \tag{8}\\
& (1-\lambda) \frac{\mathfrak{D}_{q}^{k} g(w)}{w}+\lambda\left(\mathfrak{D}_{q}^{k} g(w)\right)^{\prime}=\beta+(1-\beta) \psi(z), \tag{9}
\end{align*}
$$

where

$$
\phi(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots
$$

$$
\psi(w)=1+d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\cdots
$$

Now, by comparing the corresponding coefficients in Eq. (8) and Eq. (9), we get

$$
\begin{align*}
& (1+\lambda)[2]_{q}^{k} a_{2}=(1-\beta) c_{1} \tag{10}\\
& (1+2 \lambda)[3]_{q}^{k} a_{3}=(1-\beta) c_{2} \tag{11}\\
& (1+3 \lambda)[4]_{q}^{k} a_{4}=(1-\beta) c_{3} \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
& -(1+\lambda)[2]_{q}^{k} a_{2}=(1-\beta) d_{1} \tag{13}\\
& (1+2 \lambda)[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) d_{2} \tag{14}\\
& -(1+3 \lambda)[4]_{q}^{k}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)=(1-\beta) d_{3} \tag{15}
\end{align*}
$$

From Eq. (10) and Eq. (13), we get

$$
\begin{equation*}
a_{2}=\frac{1-\beta}{(1+\lambda)[2]_{q}^{k}} c_{1}=-\frac{1-\beta}{(1+\lambda)[2]_{q}^{k}} d_{1} \tag{16}
\end{equation*}
$$

which implies

$$
c_{1}=-d_{1}
$$

Now from Eq. (11) and Eq. (14), we obtain

$$
a_{3}=\frac{(1-\beta)^{2}}{(1+\lambda)^{2}[2]_{q}^{2 k}} c_{1}^{2}+\frac{(1-\beta)}{2(1+2 \lambda)[3]_{q}^{k}}\left(c_{2}-d_{2}\right)
$$

On the other hand, subtracting Eq. (15) from Eq. (12) and using Eq. (16), we get

$$
a_{4}=\frac{5(1-\beta)^{2}}{4(1+\lambda)(1+2 \lambda)[2]_{q}^{k}[3]_{q}^{k}} c_{1}\left(c_{2}-d_{2}\right)+\frac{(1-\beta)}{2(1+3 \lambda)[4]_{q}^{k}}\left(c_{3}-d_{3}\right) .
$$

Thus, we establish that

$$
\begin{align*}
& \left|a_{2} a_{4}-a_{3}^{2}\right|=\left\lvert\, \begin{array}{c}
-\frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}} c_{1}^{4} \\
+\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}} c_{1}^{2}\left(c_{2}-d_{2}\right)
\end{array}\right. \\
& +\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} c_{1}\left(c_{3}-d_{3}\right)-\frac{(1-\beta)^{2}}{4(1+2 \lambda)[3]_{q}^{2 k}}\left(c_{2}-d_{2}\right)^{2} \tag{17}
\end{align*} .
$$

Now, by Lemma 3.2, we get

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \quad \text { and } 2 d_{2}=d_{1}^{2}+y\left(4-d_{1}^{2}\right) \tag{18}
\end{equation*}
$$

and hence, by Eq. (18), we have

$$
\begin{equation*}
c_{2}-d_{2}=\frac{4-c_{1}^{2}}{2}(x-y) . \tag{19}
\end{equation*}
$$

Further, we get

$$
\begin{aligned}
& 4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \\
& 4 d_{3}=d_{1}^{3}+2\left(4-d_{1}^{2}\right) d_{1} y-d_{1}\left(4-d_{1}^{2}\right) y^{2}+2\left(4-d_{1}^{2}\right)\left(1-|y|^{2}\right) w
\end{aligned}
$$

and thus, we acquire

$$
\begin{align*}
c_{3}-d_{3}= & \frac{c_{1}^{3}}{2}+\frac{c_{1}\left(4-c_{1}^{2}\right)}{2}(x+y)-\frac{c_{1}\left(4-c_{1}^{2}\right)}{4}\left(x^{2}+y^{2}\right) \tag{20}\\
& +\frac{4-c_{1}^{2}}{2}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right]
\end{align*}
$$

Using Eq. (19) - Eq. (20) in Eq. (17), we get

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right|= \\
& \left\lvert\, \frac{-(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}} c_{1}^{4}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} c_{1}^{4}\right. \\
& +\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}} \frac{c_{1}^{2}\left(4-c_{1}^{2}\right)}{2}(x-y) \\
& +\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{c_{1}^{2}\left(4-c_{1}^{2}\right)}{2}(x+y) \\
& -\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{c_{1}^{2}\left(4-c_{1}^{2}\right)}{4}\left(x^{2}+y^{2}\right) \\
& =+\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{c_{1}\left(4-c_{1}^{2}\right)}{2}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right] \\
& \left.-\frac{(1-\beta)^{2}}{4(1+2 \lambda)^{2}[3]_{q}^{2 k}} \frac{\left(4-c_{1}^{2}\right)^{2}}{4}(x-y)^{2} \right\rvert\, .
\end{aligned}
$$

Since $c \in \mathcal{P}$, we find that $\left|c_{1}\right| \leq 2$. Thus, letting $\left|c_{1}\right|=\varepsilon \in[0,2]$ and applying triangle inequality on Eq. (21), we get

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}} \varepsilon^{4}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon^{4} \\
& +\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon\left(4-\varepsilon^{2}\right) \\
& +\left(\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}}+\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}}\right) \frac{\varepsilon^{2}\left(4-\varepsilon^{2}\right)}{2}(|x|+|y|) \\
& +\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{\varepsilon(\varepsilon-2)\left(4-\varepsilon^{2}\right)}{4}\left(|x|^{2}+|y|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
-\frac{(1-\beta)^{2}}{4(1+2 \lambda)^{2}[3]_{q}^{2 k}} \frac{\left(4-\varepsilon^{2}\right)^{2}}{4}(|x|+|y|)^{2} . \tag{21}
\end{equation*}
$$

For $\delta=|x| \leq 1$ and $\vartheta=|y| \leq 1$, we get

$$
\begin{align*}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \leq C_{1}+C_{2}(\delta+\vartheta)+C_{3}\left(\delta^{2}+\vartheta^{2}\right) \tag{22}\\
& C_{4}(\delta+\vartheta)^{2}=\Psi(\delta, \vartheta),
\end{align*}
$$

where

$$
\begin{aligned}
C_{1}=C_{1}(\varepsilon)= & \frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}} \varepsilon^{4}+\frac{(1-\beta)^{2}}{4(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon^{4} \\
& +\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \varepsilon\left(4-\varepsilon^{2}\right) \geq 0, \\
C_{2}=C_{2}(\varepsilon)= & \left(\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}}\right. \\
& \left.+\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}}\right) \frac{\varepsilon^{2}\left(4-\varepsilon^{2}\right)}{2} \geq 0, \\
C_{3}=C_{3}(\varepsilon)= & \frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \frac{\varepsilon(\varepsilon-2)\left(4-\varepsilon^{2}\right)}{4} \leq 0, \\
C_{4}=C_{4}(\varepsilon)= & \frac{(1-\beta)^{2}}{4(1+2 \lambda)^{2}[3]_{q}^{2 k}} \frac{\left(4-\varepsilon^{2}\right)^{2}}{4} \geq 0 .
\end{aligned}
$$

Next, we will find the maximum of $(\Psi(\delta, \vartheta))$ in $\Gamma=\{(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq$ $\vartheta \leq 1\}$. Since the coefficients of $\Psi(\delta, \vartheta)$ have dependent variable ε, we should maximize $\Psi(\delta, \vartheta)$ for the cases $\varepsilon=0, \varepsilon=2$ and $\varepsilon \in(0,2)$.

1. Let $\varepsilon=0$. Thus, from (22), we may write

$$
\Psi(\delta, \vartheta)=\frac{(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}(\delta+\vartheta)^{2} .
$$

2. We can find that the maximum of $\Psi(\delta, \vartheta)$ occurs at $\delta=\vartheta=1$ and we find

$$
\max \{\Psi(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq \vartheta \leq 1\}=\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2{ }_{2}}} .
$$

3. Let $\varepsilon=2$. Thus, $\Psi(\delta, \vartheta)$ is a constant function

$$
\Psi(\delta, \vartheta)=\frac{16(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}}+\frac{4(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} .
$$

4. Let $\varepsilon \in(0,2)$. If we change $\delta+\vartheta=\zeta$ and $\delta . \vartheta=\eta$, then

$$
\begin{aligned}
& \Psi(\delta, \vartheta)=C_{1}(\varepsilon)+C_{2}(\varepsilon) \zeta+\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right] \zeta^{2}-2 C_{3}(\varepsilon) \eta \\
& =\mathcal{G}(\zeta, \eta), \quad 0 \leq \zeta \leq 2,0 \leq \eta \leq 1 .
\end{aligned}
$$

Presently, we try to get maximum of $\mathcal{G}(\zeta, \eta)$ in

$$
=\{(\zeta, \eta): 0 \leq \zeta \leq 2,0 \leq \eta \leq 1\} .
$$

From the definition of $\mathcal{G}(\zeta, \eta)$, we get

$$
\begin{aligned}
& \mathcal{G}_{\zeta}^{\prime}(\zeta, \eta)=C_{2}(\varepsilon)+2\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right] \zeta=0, \\
& \mathcal{G}_{\zeta}^{\prime}(\zeta, \eta)=-2 C_{3}(\varepsilon)=0 .
\end{aligned}
$$

We deduce that the function doesn't have any critical point in . Thus, $\Psi(\delta, \vartheta)$ doesn't have any critical point in square Γ and so the function doesn't get maximum value in Γ.

Next, we inspect the maximum of $\Psi(\delta, \vartheta)$ on the boundary of Γ. Firstly, let $\delta=0,0 \leq \vartheta \leq 1$ (or let $\vartheta=0,0 \leq \delta \leq 1$). Then, we may write

$$
\Psi(0, \vartheta)=C_{1}(\varepsilon)+C_{2}(\varepsilon) \vartheta+\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right] \vartheta^{2}=\varphi_{1}(\vartheta)
$$

Thus,

$$
\varphi_{1}^{\prime}(\vartheta)=C_{2}(\varepsilon)+2\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right] \vartheta
$$

Case (i): If $C_{3}(\varepsilon)+C_{4}(\varepsilon) \geq 0$, then $\varphi_{1}^{\prime}(\vartheta)>0$. The function is increasing and so the maximum occurs at $\vartheta=1$.

Case (ii): Let $C_{3}(\varepsilon)+C_{4}(\varepsilon)<0$. Since $C_{2}(\varepsilon)+2\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right]>0$, $C_{2}(\varepsilon)+2\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right] \vartheta \geq C_{2}(\varepsilon)+2\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right]$ holds for all $\vartheta \in[0,1]$. So, $\varphi_{1}^{\prime}(\vartheta)>0$. Hence, $\varphi_{1}(\vartheta)$ is an increasing function. Thus, the maximum occurs at $\vartheta=1$,

$$
\max \{\Psi(0, \vartheta): 0 \leq \vartheta \leq 1\}=C_{1}(\varepsilon)+C_{2}(\varepsilon)+C_{3}(\varepsilon)+C_{4}(\varepsilon) .
$$

Secondly, let $\delta=1,0 \leq \vartheta \leq 1$ (similarly, $\vartheta=1,0 \leq \delta \leq 1$). Then

$$
\begin{aligned}
& \Psi(1, \vartheta)=C_{1}(\varepsilon)+C_{2}(\varepsilon)+C_{3}(\varepsilon)+C_{4}(\varepsilon) \\
& +\left[C_{2}(\varepsilon)+2 C_{4}(\varepsilon)\right] \vartheta+\left[C_{3}(\varepsilon)+C_{4}(\varepsilon)\right] \vartheta^{2} \\
& =\varphi_{2}(\vartheta) .
\end{aligned}
$$

It can be stated that $\varphi_{2}(\vartheta)$ is an increasing function like case (i). In that way,

$$
\max \{\Psi(1, \vartheta): 0 \leq \vartheta \leq 1\}=C_{1}(\varepsilon)+2\left[C_{2}(\varepsilon)+C_{3}(\varepsilon)\right]+4 C_{4}(\varepsilon)
$$

Also, for every $\varepsilon \in(0,2)$, we can easily see that

$$
C_{1}(\varepsilon)+2\left[C_{2}(\varepsilon)+C_{3}(\varepsilon)\right]+4 C_{4}(\varepsilon)>C_{1}(\varepsilon)+C_{2}(\varepsilon)+C_{3}(\varepsilon)+C_{4}(\varepsilon) .
$$

Therefore, we find that
$\max \{\Psi(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq \vartheta \leq 1\}=C_{1}(\varepsilon)+2\left[C_{2}(\varepsilon)+C_{3}(\varepsilon)\right]+4 C_{4}(\varepsilon)$.

Since $\varphi_{1}(1) \leq \varphi_{2}(1)$ for $\varepsilon \in[0,2]$, max $\Psi(\delta, \vartheta)=\Psi(1,1)$ on the boundary of Γ. So, the maximum of Ψ occurs at $\delta=1$ and $\vartheta=1$ in the Γ.

Let us define $\mathcal{H}:(0,2) \rightarrow \mathbb{R}$ as

$$
\begin{align*}
& \mathcal{H}(\varepsilon)=\max \Psi(\delta, \vartheta)=\Psi(1,1) \\
& =2\left[C_{2}(\varepsilon)+C_{3}(\varepsilon)\right]+C_{1}(\varepsilon)+4 C_{4}(\varepsilon) \tag{23}
\end{align*}
$$

Therefore, from Eq. (23), we obtain

$$
\mathcal{H}(\varepsilon)=\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}+A(\beta, \lambda, k, q) \varepsilon^{4}+2 B(\beta, \lambda, k, q) \varepsilon^{2}
$$

where

$$
\begin{aligned}
& A(\beta, \lambda, k, q)=\frac{(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}}-\frac{(1-\beta)^{3}}{4(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}} \\
& -\frac{(1-\beta)^{2}}{2(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}}+\frac{(1-\beta)^{2}}{4(1+2 \lambda)^{2}[3]_{q}^{2 k}} \\
& B(\beta, \lambda, k, q)=\frac{(1-\beta)^{3}}{(1+\lambda)^{2}(1+2 \lambda)[2]_{q}^{2 k}[3]_{q}^{k}}+\frac{3(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \\
& -\frac{2(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}} .
\end{aligned}
$$

Now, we try to get the maximum value of $\mathcal{H}(\varepsilon)$ in $(0,2)$. After some basic calculations, we have

$$
\mathcal{H}^{\prime}(\varepsilon)=4 A(\beta, \lambda, k, q) \varepsilon^{3}+2 B(\beta, \lambda, k, q) \varepsilon
$$

Next, we examine the different cases of $A(\beta, \lambda, k, q)$ and $B(\beta, \lambda, k, q)$ as follows:

Case 1: Let $A(\beta, \lambda, k, q) \geq 0$ and $B(\beta, \lambda, k, q) \geq 0$, then $\mathcal{H}^{\prime}(\varepsilon) \geq 0$. Hence, the maximum point has to be on the boundary of $\varepsilon \in[0,2]$, that is $\varepsilon=2$. Thus,

$$
\begin{align*}
& \max \{\Psi(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq \vartheta \leq 1\} \\
& =\mathcal{H}(2) \\
& =\frac{16(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}}+\frac{4(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}} \tag{24}
\end{align*}
$$

Case 2: If $A(\beta, \lambda, k, q)>0$ and $B(\beta, \lambda, k, q)<0, \varepsilon_{0}=\sqrt{\frac{-B(\beta, \lambda, k, q)}{2 A(\beta, \lambda, k, q)}}$ is a critical point of $\mathcal{H}(\varepsilon)$. Since $\mathcal{H}^{\prime \prime}\left(\varepsilon_{0}\right)<0$, the maximum value of function $\mathcal{H}(\varepsilon)$ occurs at $\varepsilon=\varepsilon_{0}$ and

$$
\begin{aligned}
& \mathcal{H}\left(\varepsilon_{0}\right)=\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}+A(\beta, \lambda, k, q) \varepsilon_{0}^{4}+2 B(\beta, \lambda, k, q) \varepsilon_{0}^{2} \\
& =\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}-\frac{3 B^{2}(\beta, \lambda, k, q)}{4 A(\beta, \lambda, k, q)} .
\end{aligned}
$$

In this case, $\mathcal{H}\left(\varepsilon_{0}\right)<\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}$. Therefore,

$$
\begin{align*}
& \max \{\Psi(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq \vartheta \leq 1\} \\
& =\max \left\{\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}, \frac{16(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{4 k}}+\frac{4(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]_{q}^{k}}\right\} . \tag{25}
\end{align*}
$$

Case 3: If $A(\beta, \lambda, k, q) \leq 0$ and $B(\beta, \lambda, k, q) \leq 0, \mathcal{H}(\varepsilon)$ is decreasing in $(0,2)$. Therefore,

$$
\begin{equation*}
\max \{\Psi(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq \vartheta \leq 1\}=\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 K}} \tag{26}
\end{equation*}
$$

Case 4: If $A(\beta, \lambda, k, q)<0$ and $B(\beta, \lambda, k, q)>0, \varepsilon_{0}$ is a critical point of $\mathcal{H}(\varepsilon)$. Since $\mathcal{H}^{\prime \prime}\left(\varepsilon_{0}\right)<0$, the maximum value of $\mathcal{H}(\varepsilon)$ occurs at $\varepsilon=\varepsilon_{0}$ and

$$
\frac{4(1-\beta)^{2}}{(1+2 \lambda)^{2}[3]_{q}^{2 k}}<\mathcal{H}\left(\varepsilon_{0}\right) .
$$

Therefore,

$$
\begin{align*}
& \max \{\Psi(\delta, \vartheta): 0 \leq \delta \leq 1,0 \leq \vartheta \leq 1\} \\
& =\max \left\{\mathcal{H}\left(\varepsilon_{0}\right), \frac{16(1-\beta)^{4}}{(1+\lambda)^{4}[2]_{q}^{k}}+\frac{4(1-\beta)^{2}}{(1+\lambda)(1+3 \lambda)[2]_{q}^{k}[4]^{k}}\right\} \tag{27}
\end{align*}
$$

Thus, from Eqs. (24-26) and Eq. (27), the proof is completed.
Remark 3.5. For $\lambda=0$ (and $\lambda=1$) in Theorem 3.4, we can confirm the Hankel inequalities for the function classes $\mathcal{R} \Sigma_{q}^{k}(\phi), \mathcal{H} \Sigma_{q}^{k}(\phi)$, respectively.

Acknowledgement

The authors are grateful to the referees of this article for their valuable comments and advice.

References

[1] Jackson, F.H., On Q-Functions and a Certain Difference Operator, Transactions of the Royal Society of Edinburgh, 46, pp. 253-281,1908.
[2] Govindaraj, M. \& Sivasubramanian, S., On a Class of Analytic Functions Related to Conic Domains Involving Q-Calculus, Analysis Math., 43(3), pp. 475-487, 2017.
[3] Sălăgean, G.S., Subclasses of Univalent Functions, Complex Analysis Fifth Romanian Finish Seminar, Bucharest, pp. 362-372, 1983.
[4] Noonan, J.W. \& Thomas, D.K., On the Second Hankel Determinant of A Really Mean P-Valent Functions, Trans. Amer. Math. Soc., 223(2), pp. 337-346, 1976.
[5] Fekete, M. \& Szegö, G., Eine Bemerkung über Ungerade Schlichte Funktionen, J. Lond. Math. Soc., 2, pp. 85-89, 1933. (Text in Germany)
[6] Keogh, F.R. \& Merkes, E.P., A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc., 20, pp. 8-12, 1969.
[7] Duren, P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenchaften, 259, Springer, New York, 1983.
[8] Brannan, D.A., Clunie, J. \& Kirwan, W.E., Coefficient Estimates for A Class of Starlike Functions, Canad. J. Math., 22, pp. 476-485, 1970.
[9] Brannan, D.A. \& Taha, T.S., On Some Classes of Bi-Univalent Functions, Studia Univ. BabeŞ-Bolyai Math., 31(2), pp. 70-77, 1986.
[10] Frasin, B.A. \& Aouf, M.K., New Subclasses of Bi-Univalent Functions, Appl. Math. Lett., 24, pp. 1569-1573, 2011.
[11] Hayami, T. \& Owa, S., Coefficient Bounds for Bi-Univalent Functions, Pan Amer. Math. J., 22(4), pp. 15-26, 2012.
[12] Lewin, M., On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc., 18, pp. 63-68, 1967.
[13] Li, X-F. \& Wang, A-P., Two New Subclasses of Bi-Univalent Functions, International Mathematical Forum, 7(30), pp. 1495-1504, 2012.
[14] Panigarhi, T. \& Murugusundaramoorthy, G., Coefficient Bounds for BiUnivalent Functions Analytic Functions Associated with Hohlov Operator, Proc. Jangjeon Math. Soc., 16(1), pp. 91-100, 2013.
[15] Srivastava, H.M., Mishra, A.K. \& Gochhayat, P., Certain Subclasses of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 23(10), pp. 1188-1192, 2010.
[16] Xu, Q-H., Srivastava, H.M., \& Li, Z., A Certain Subclass of Analytic and Closed-To Convex Functions, Appl. Math. Lett., 24, pp. 396-401, 2011.
[17] Xu, Q-H., Gui, Y-C. \& Srivastava, H.M., Coefficinet Estimates for A Certain Subclass of Analytic and Bi-Univalent Functions, Appl. Math. Lett., 25, pp. 990-994, 2012.
[18] Zaprawa, P. On the Fekete-Szegö Problem for Classes of Bi-Univalent Functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1), pp. 169-178, 2014.
[19] Altınkaya, Ş. \& Yalçın, S., Upper Bounds of Second Hankel Determinant for Bi-Bazilevic Functions, Mediterranean Journal of Mathematics (MJOM), 13(6), pp. 4081-4090, 2016.
[20] Libera, R.J. \& Zlotkiewicz, E.J., Coefficient Bounds for the Inverse of A Function with Derivative in \mathcal{P}, Proc. Amer. Math. Soc., 87(2), pp. 251257, 1983.

