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1. Introduction

The idea of a semi-symmetric linear connection on a differentiable mani-
fold was introduced by Friedmann and Schoutenn in [10]. The notion of
a semi-symmetric metric connection on a Riemannian manifold was intro-
duced by Hayden in [11]. Later in [22], Yano studied some properties of
a Riemannian manifold endowed with a semi-symmetric metric connection.
In the case of hypersurfaces, in [12] and [13], Imai found some properties of
a Riemannian manifold and a hypersurface of a Riemannian manifold with
a semi-symmetric metric connection, respectively. In [20], Nakao studied
submanifolds of a Riemannian manifold with semi-symmetric connections.

In [5], Chen recalled that one of the basic interests of submanifold the-
ory is to establish simple relationships between the main extrinsic invariants
and the main intrinsic invariants of a submanifold. Many famous results
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in differential geometry can be regarded as results in this respect. The
main extrinsic invariant is the squared mean curvature and the main intrin-
sic invariants include the classical curvature invariants namely the scalar
curvature, the sectional curvature or the Ricci curvature. There are also
other important modern intrinsic invariants of submanifolds introduced by
Chen [8].

Afterwards, many geometers studied similar problems for different sub-
manifolds in various ambient spaces, for example see [3], [4], [7], [9], [16],
[17] and [21].

In [14] and [23], submanifolds of cosymplectic space forms satisfying
Chen’s inequalities were studied.

Recently, in [18] and [19], the first author and Mihai proved Chen ine-
qualities for submanifolds of real space forms with a semi-symmetric metric
connection and Chen inequalities for submanifolds of complex space forms
and Sasakian space forms endowed with semi-symmetric metric connections,
respectively.

Motivated by the studies of the above authors, in this study, we consider
Chen inequalities for submanifolds in cosymplectic space forms of constant
φ-sectional curvature N2m+1(c) endowed with a semi-symmetric metric
connection.

2. Semi-symmetric metric connection

Let Nn+p be an (n+p)-dimensional Riemannian manifold and ∇̃ a linear
connection on Nn+p. If the torsion tensor T̃ of ∇̃, defined by

T̃ (X̃, Ỹ ) = ∇̃
X̃
Ỹ − ∇̃

Ỹ
X̃ − [X̃, Ỹ ],

for any vector fields X̃ and Ỹ on Nn+p, satisfies

T̃ (X̃, Ỹ ) = ω(Ỹ )X̃ − ω(X̃)Ỹ

for a 1-form ω, then the connection ∇̃ is called a semi-symmetric connection.

Let g be a Riemannian metric on Nn+p. If ∇̃g = 0, then ∇̃ is called a
semi-symmetric metric connection on Nn+p.

A semi-symmetric metric connection ∇̃ on Nn+p is given by

∇̃
X̃
Ỹ =

◦
∇̃

X̃
Ỹ + ω(Ỹ )X̃ − g(X̃, Ỹ )U,
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for any vector fields X̃ and Ỹ on Nn+p, where
◦
∇̃ denotes the Levi-Civita

connection with respect to the Riemannian metric g and U is a vector field
defined by g(U, X̃) = ω(X̃), for any vector field X̃ [22].

We will consider a Riemannian manifold Nn+p endowed with a semi-
symmetric metric connection ∇̃ and the Levi-Civita connection denoted

by
◦
∇̃.
Let Mn be an n-dimensional submanifold of an (n + p)-dimensional

Riemannian manifold Nn+p. On the submanifold Mn we consider the in-
duced semi-symmetric metric connection denoted by ∇ and the induced

Levi-Civita connection denoted by
◦
∇.

Let R̃ be the curvature tensor of Nn+p with respect to ∇̃ and
◦
R̃ the

curvature tensor of Nn+p with respect to
◦
∇̃. We also denote by R and

◦
R

the curvature tensors of ∇ and
◦
∇, respectively, on Mn.

The Gauss formulas with respect to ∇, respectively
◦
∇ can be written

as:

∇̃XY = ∇XY + h(X,Y ), X, Y ∈ χ(M),
◦
∇̃XY =

◦
∇XY +

◦
h(X,Y ), X, Y ∈ χ(M),

where
◦
h is the second fundamental form of Mn in Nn+p and h is a (0, 2)-

tensor on Mn. According to the formula (7) from [20] h is also symmetric.
The Gauss equation for the submanifold Mn into an (n + p)-dimensional
Riemannian manifold Nn+p is

◦
R̃(X,Y, Z,W ) =

◦
R(X,Y, Z,W ) + g(

◦
h(X,Z),

◦
h(Y,W ))

− g(
◦
h(X,W ),

◦
h(Y,Z)).(2.1)

One denotes by
◦
H the mean curvature vector of Mn in Nn+p.

Then the curvature tensor R̃ with respect to the semi-symmetric metric
connection ∇̃ on Nn+p can be written as (see [13])

R̃(X,Y, Z,W ) =
◦
R̃(X,Y, Z,W )− α(Y,Z)g(X,W )

+ α(X,Z)g(Y,W )− α(X,W )g(Y,Z) + α(Y,W )g(X,Z),(2.2)
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for any vector fields X,Y, Z,W ∈ χ(Mn), where α is a (0, 2)-tensor field
defined by

α(X,Y ) = (
◦
∇̃Xω)Y − ω(X)ω(Y ) +

1

2
ω(P )g(X,Y ), ∀X,Y ∈ χ(M).

Denote by λ the trace of α.
Let π ⊂ TxM

n, x ∈ Mn, be a 2-plane section. Denote by K(π) the sec-
tional curvature of Mn with respect to the induced semi-symmetric metric
connection ∇. For any orthonormal basis {e1, ..., em} of the tangent space
TxM

n, the scalar curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej).

Recall that the Chen first invariant is given by

δM (x) = τ(x)− inf {K(π) | π ⊂ TxM
n, x ∈ Mn,dimπ = 2} ,

(see, for example, [8]), where Mn is a Riemannian manifold, K(π) is the
sectional curvature of Mn associated with a 2-plane section, π ⊂ TxM

n, x ∈
Mn and τ is the scalar curvature at x.

The following algebraic Lemma is well-known.

Lemma 2.1 ([5]). Let a1, a2, ..., an, b be (n + 1) (n ≥ 2) real numbers
such that (

n∑
i=1

ai

)2

= (n− 1)

(
n∑

i=1

a2i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a1+a2 = a3 = ... = an.

Let Mn be an n-dimensional Riemannian manifold, L a k-plane section
of TxM

n, x ∈ Mn, and X a unit vector in L.
We choose an orthonormal basis {e1, ..., ek} of L such that e1 = X.
One defines [7] the Ricci curvature (or k-Ricci curvature) of L at X by

RicL(X) = K12 +K13 + ...+K1k,

where Kij denotes, as usual, the sectional curvature of the 2-plane section
spanned by ei, ej . For each integer k, 2 ≤ k ≤ n, the Riemannian invariant
Θk on Mn is defined by:

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈ Mn,
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where L runs over all k-plane sections in TxM
n and X runs over all unit

vectors in L.

3. Chen first inequality for submanifolds of cosymplectic
manifolds

Let N2m+1 be a (2m+ 1)-dimensional almost contact manifold endowed
with an almost contact structure (φ, ξ, η), that is, φ is a (1, 1)-tensor field,
ξ is a vector field and η is 1-form such that φ2X = −X + η(X)ξ, η(ξ) = 1.
Then, φξ = 0 and η ◦ φ = 0. The almost contact structure is said to be
normal if the induced almost complex structure J on the product manifold
N ×R defined by J(X,λ d

dt) = (φX − λξ, η(X) d
dt) is integrable, where X is

tangent to N , t the coordinate of R and λ a smooth function on N×R. The
condition for being normal is equivalent to vanishing of the torsion tensor
[φ,φ] + 2dη ⊗ ξ, where [φ,φ] is the Nijenhuis tensor of φ.

Let g be a compatible Riemannian metric with (φ, ξ, η), that is,
g (φX,φY ) = g (X,Y )− η(X)η(Y ) or equivalently, Φ(X,Y ) = g(X,φY ) =
−g(φX, Y ) and g(X, ξ) = η(X) for all X,Y ∈ TN . Then N becomes an
almost contact metric manifold equipped with an almost contact metric
structure (φ, ξ, η, g). If Φ = dη, the almost contact structure is a contact
structure. A normal contact structure such that the fundamental 2-form Φ
and 1-form η are closed is called a cosymplectic structure. It can be shown
that the cosymplectic structure is characterized by

(3.1)
◦
∇̃Xφ = 0 and

◦
∇̃Xη = 0,

(see [2]). From formula (3.1) it follows that
◦
∇̃Xξ = 0.

A cosymplectic manifold N2m+1 is said to be a cosymplectic space form
[15] if the φ-sectional curvature is constant c along N2m+1 . A cosymplectic
space form will be denoted by N2m+1(c). Then the curvature tensor R̃ of
N2m+1(c) can be expressed as

◦
R̃(X,Y, Z,W ) =

c

4
[g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

+ g(X,φW )g(Y, φZ)− g(X,φZ)g(Y, φW )− 2g(X,φY )g(Z,φW )

− η(Y )η(Z)g(X,W ) + η(Y )η(W )g(X,Z)(3.2)

−η(X)η(W )g(Y, Z) + η(X)η(Z)g(Y,W )] .
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If N2m+1(c) is a cosymplectic space form of constant φ-sectional curva-
ture c with a semi-symmetric metric connection then from (2.2) and (3.2)
it follows that

R̃(X,Y, Z,W ) =
c

4
[g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

+ g(X,φW )g(Y, φZ)− g(X,φZ)g(Y, φW )− 2g(X,φY )g(Z,φW )

− η(Y )η(Z)g(X,W ) + η(Y )η(W )g(X,Z)(3.3)

−η(X)η(W )g(Y, Z) + η(X)η(Z)g(Y,W )]

− α(Y, Z)g(X,W ) + α(X,Z)g(Y,W )

− α(X,W )g(Y, Z) + α(Y,W )g(X,Z).

Let Mn, n ≥ 3, be an n-dimensional submanifold of an (2m + 1)-
dimensional cosymplectic manifold Nn+p(c) of constant φ-sectional curva-
ture c. For any tangent vector field X to Mn, we put

φX = PX + FX,

where PX and FX are tangential and normal components of φX, respec-
tively and we decompose

ξ = ξ⊤ + ξ⊥,

where ξ⊤ and ξ⊥denotes the tangential and normal parts of ξ.
Denote by Θ2(π) = g2(Pe1, e2), where {e1, e2} is an orthonormal basis

of a 2-plane section π, is a real number in [0, 1], independent of the choice
of e1, e2 (see [1]).

For submanifolds of a cosymplectic space form N2m+1(c) of constant
φ-sectional curvature c endowed with a semi-symmetric metric connection
we establish the following optimal inequality.

Theorem 3.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of
an (2m+ 1)-dimensional cosymplectic space form N2m+1(c) of constant φ-
sectional curvature c endowed with a semi-symmetric metric connection ∇̃.
We have:

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
∥H∥2 + (n+ 1)

c

8
− λ

]
(3.4)

− c

4
(3Θ2(π)− 3

2
∥P∥2 + (n− 1)∥ξ⊤∥2 − ∥ξπ∥2)− trace(α|

π⊥ ),

where π is a 2-plane section of TxM
n, x ∈ Mn .
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Proof. From [20], the Gauss equation with respect to the semi-symmetric
metric connection is

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))

− g(h(Y, Z), h(X,W )).(3.5)

Let x ∈ Mn and {e1, e2, ..., en} and {en+1, ..., e2m+1} be orthonormal
basis of TxM

n and T⊥
x Mn, respectively. For X = W = ei, Y = Z = ej ,

i ̸= j, from the equation (3.3) it follows that:

R̃(ei, ej , ej , ei) =
c

4
+

3c

4
g2(Pej , ei)−

c

4

{
η(ei)

2 + η(ej)
2
}

− α(ei, ei)− α(ej , ej).(3.6)

From (3.5) and (3.6) we get

c

4
+

3c

4
g2(Pej , ei)−

c

4

{
η(ei)

2 + η(ej)
2
}
− α(ei, ei)− α(ej , ej)

= R(ei, ej , ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).

By summation after 1 ≤ i, j ≤ n, it follows from the previous relation that

2τ + ∥h∥2 − n2 ∥H∥2 = −2(n− 1)λ+ (n2 − n)
c

4

+
3c

4
∥P∥2 − c

2
(n− 1)∥ξ⊤∥2.(3.7)

We take

ε = 2τ − n2(n− 2)

n− 1
∥H∥2 + 2(n− 1)λ− (n2 − n)

c

4

− 3c

4
∥P∥2 + c

2
(n− 1)∥ξ⊤∥2.(3.8)

Then, from (3.7) and (3.8) we get

(3.9) n2 ∥H∥2 = (n− 1)
(
∥h∥2 + ε

)
.

Let x ∈ Mn, π ⊂ TxM
n, dimπ = 2, π = span {e1, e2}. We define

en+1 =
H

∥H∥ and from the relation (3.9) we obtain:

(

n∑
i=1

hn+1
ii )2 = (n− 1)(

n∑
i,j=1

2m+1∑
r=n+1

(hrij)
2 + ε),
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or equivalently,

(

n∑
i=1

hn+1
ii )2 = (n− 1)

 n∑
i=1

(hn+1
ii )2 +

∑
i̸=j

(hn+1
ij )2 +

n∑
i,j=1

2m+1∑
r=n+2

(hrij)
2 + ε

 .

By using the algebraic Lemma we have from the previous relation

2hn+1
11 hn+1

22 ≥
∑
i ̸=j

(hn+1
ij )2 +

n∑
i,j=1

2m+1∑
r=n+2

(hrij)
2 + ε.

If we denote by ξπ = prπξ we can write (see [19])

−η(e1)
2 − η(e2)

2 = −∥ξπ∥2 .

The Gauss equation for X = W = e1, Y = Z = e2 gives

K(π) = R(e1, e2, e2, e1) =
c

4
+

3c

4
g2(Pe1, e2)−

c

4
∥ξπ∥2

− α(e1, e1)− α(e2, e2) +

2m+1∑
r=n+1

[hr11h
r
22 − (hr12)

2]

≥ c

4
+

3c

4
g2(Pe1, e2)−

c

4
∥ξπ∥2 − α(e1, e1)− α(e2, e2)

+
1

2
[
∑
i̸=j

(hn+1
ij )2 +

n∑
i,j=1

2m+1∑
r=n+2

(hrij)
2 + ε]

+

2m+1∑
r=n+2

hr11h
r
22 −

2m+1∑
r=n+1

(hr12)
2

=
c

4
+

3c

4
g2(Pe1, e2)−

c

4
∥ξπ∥2 − α(e1, e1)− α(e2, e2)

+
1

2

∑
i̸=j

(hn+1
ij )2 +

1

2

n∑
i,j=1

2m+1∑
r=n+2

(hrij)
2 +

1

2
ε

+

2m+1∑
r=n+2

hr11h
r
22 −

2m+1∑
r=n+1

(hr12)
2

=
c

4
+

3c

4
g2(Pe1, e2)−

c

4
∥ξπ∥2 − α(e1, e1)− α(e2, e2)



9 CHEN INEQUALITIES FOR SUBMANIFOLDS 403

+
1

2

∑
i ̸=j

(hn+1
ij )2 +

1

2

2m+1∑
r=n+2

∑
i,j>2

(hrij)
2 +

1

2

2m+1∑
r=n+2

(hr11 + hr22)
2

+
∑
j>2

[(hn+1
1j )2 + (hn+1

2j )2] +
1

2
ε

≥ c

4
+

3c

4
g2(Pe1, e2)−

c

4
∥ξπ∥2 − α(e1, e1)− α(e2, e2) +

ε

2
,

which implies

K(π) ≥ c

4
+

3c

4
g2(Pe1, e2)−

c

4
∥ξπ∥2 − α(e1, e1)− α(e2, e2) +

ε

2
.

Denote by
α(e1, e1) + α(e2, e2) = λ− trace(α|

π⊥ ),

(see [19]). From (3.8) it follows

K(π) ≥ τ − (n− 2)

[
n2

2(n− 1)
∥H∥2 + (n+ 1)

c

8
− λ

]
+

c

4

(
3Θ2(π)− 3

2
∥P∥2 + (n− 1)∥ξ⊤∥2 − ∥ξπ∥2

)
+ trace(α|

π⊥ ),

which represents the inequality to prove. �

Corollary 3.2. Under the same assumptions as in Theorem 3.1 if ξ is
tangent to Mn, we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
∥H∥2 + (n+ 1)

c

8
− λ

]
− c

4

(
3Θ2(π)− 3

2
∥P∥2 + n− 1− ∥ξπ∥2

)
− trace(α|

π⊥ ).

If ξ is normal to Mn, we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
∥H∥2 + (n+ 1)

c

8
− λ

]
− c

4

(
3Θ2(π)− 3

2
∥P∥2

)
− trace(α|

π⊥ ).

Recall the following important result (Proposition 1.2) from [12].
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Proposition 3.3. The mean curvature H of Mn with respect to the

semi-symmetric metric connection coincides with the mean curvature
◦
H of

Mn with respect to the Levi-Civita connection if and only if the vector field
U is tangent to Mn.

Remark 3.4. According to the formula (7) from [20] (see also Proposi-

tion 3.3), it follows that h =
◦
h if U is tangent to Mn. In this case inequality

(3.4) becomes

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)

∥∥∥∥ ◦
H

∥∥∥∥2 + (n+ 1)
c

8
− λ

]

− c

4

(
3Θ2(π)−3

2
∥P∥2 + (n− 1)∥ξ⊤∥2 − ∥ξπ∥2

)
− trace(α|

π⊥ ).

Proposition 3.5. If the vector field U is tangent to Mn, then the equali-
ty case of inequality (3.4) holds at a point x ∈ Mn if and only if there
exists an orthonormal basis {e1, e2, ..., en} of TxM

n and an orthonormal
basis {en+1, ..., en+p} of T⊥

x Mn such that the shape operators of Mn in
N2m+1(c) at x have the following forms:

Aen+1 =


a 0 0 · · · 0
0 b 0 · · · 0
0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ

 , a+ b = µ,

Aer =


hr11 hr12 0 · · · 0
hr12 −hr11 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 , n+ 2 ≤ i ≤ 2m+ 1,

where we denote by hrij = g(h(ei, ej), er), 1 ≤ i, j ≤ n and n + 2 ≤ r ≤
2m+ 1.

Proof. The equality case holds at a point x ∈ Mn if and only if it
achieves the equality in all the previous inequalities and we have the equality
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in the Lemma.

hn+1
ij = 0,∀i ̸= j, i, j > 2,

hrij = 0,∀i ̸= j, i, j > 2, r = n+ 1, ..., 2m+ 1,

hr11 + hr22 = 0,∀r = n+ 2, ..., 2m+ 1,

hn+1
1j = hn+1

2j = 0,∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

We may chose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr11,

b = hr22, µ = hn+1
33 = ... = hn+1

nn . �
It follows that the shape operators take the desired forms.

4. k-Ricci curvature for submanifolds of cosymplectic space
forms

We first state a relationship between the sectional curvature of a sub-
manifold Mn of a cosymplectic space form N2m+1(c) of constant φ-sectional
curvature c endowed with a semi-symmetric metric connection ∇̃ and the
squared mean curvature ∥H∥2. Using this inequality, we prove a relationship
between the k-Ricci curvature of Mn (intrinsic invariant) and the squared
mean curvature ∥H∥2 (extrinsic invariant), as another answer of the basic
problem in submanifold theory which we have mentioned in the introduc-
tion.

In this section we suppose that the vector field U is tangent to Mn.

Theorem 4.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of
an (2m + 1)-dimensional a cosymplectic space form N2m+1(c) of constant
φ-sectional curvature c endowed with a semi-symmetric metric connection
∇̃ such that the vector field U is tangent to Mn. Then we have

(4.1) ∥H∥2 ≥ 2τ

n(n− 1)
+

2

n
λ− c

4
− 3c

4n(n− 1)
∥P∥2 + c

2n
∥ξ⊤∥2.

Proof. Let x ∈ Mn and {e1, e2, ..., en} and orthonormal basis of TxM
n.

The relation (3.7) is equivalent with

(4.2) n2 ∥H∥2 = 2τ+∥h∥2+2(n−1)λ−(n2−n)
c

4
−3c

4
∥P∥2+ c

2
(n−1)∥ξ⊤∥2.
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We choose an orthonormal basis {e1, ..., en, en+1, ..., en+p} at x such that
en+1 is parallel to the mean curvature vector H(x) and e1, ..., en diagonalize
the shape operator Aen+1 . Then the shape operators take the forms

Aen+1


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

 ,

Aer = (hrij), i, j = 1, ..., n; r = n+ 2, ..., 2m+ 1, trace Aer = 0.

From (4.2), we get

n2 ∥H∥2 = 2τ +
n∑

i=1

a2i +
2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2 + 2(n− 1)λ

− (n2 − n)
c

4
− 3c

4
∥P∥2 + c

2
(n− 1)∥ξ⊤∥2.(4.3)

Since
∑n

i=1 a
2
i ≥ n ∥H∥2 , hence we obtain

n2 ∥H∥2 ≥ 2τ +n ∥H∥2+2(n−1)λ− (n2−n)
c

4
− 3c

4
∥P∥2+ c

2
(n−1)∥ξ⊤∥2.

Last inequality represents (4.1). �
Using Theorem 4.1, we obtain the following result:

Theorem 4.2. Let Mn, n ≥ 3, be an n-dimensional submanifold of
an (2m+ 1)-dimensional cosymplectic space form N2m+1(c) of constant φ-
sectional curvature c endowed with a semi-symmetric metric connection ∇̃,
such that the vector field U is tangent to Mn. Then, for any integer k,
2 ≤ k ≤ n, and any point x ∈ Mn, we have

(4.4) ∥H∥2 (x) ≥ Θk(x) +
2

n
λ− c

4
− 3c

4n(n− 1)
∥P∥2 + c

2n
∥ξ⊤∥2.

Proof. Let {e1, ...en} be an orthonormal basis of TxM . Denote by
Li1...ik the k-plane section spanned by ei1 , ..., eik . By the definitions, one
has

τ(Li1...ik) =
1

2

∑
i∈{i1,...,ik}

RicLi1...ik
(ei),(4.5)

τ(x) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ(Li1...ik).(4.6)
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From (4.1), (4.5) and (4.6), one derives τ(x) ≥ n(n−1)
2 Θk(x), which implies

(4.4). �
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