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from companion studies in the literature that focused on

Abstract. In this work we comprehensively categorize image qual- subjective image quality criteria, such as those in Refs.

ity measures, extend measures defined for gray scale images to

their multispectral case, and propose novel image quality measures. 1-3.Ina SUbJe.Ct'Ve assessment measures PharaCter'St}CS. of
They are categorized into pixel difference-based, correlation-based, human perception become paramount, and image quality is
edge-based, spectral-based, context-based and human visual sys- correlated with the preference of an observer or the perfor-
tem (HVS)-based measures. Furthermore we compare these mea-  mance of an operator for some specific task.

sures statistically for still image compression applications. The sta- . . .. .

tistical behavior of the measures and their sensitivity to coding In the image coding and computer vision literature, the

artifacts are investigated via analysis of variance techniques. Their most frequently used measures are deviations between the
similarities or differences are illustrated by plotting their Kohonen original and coded imagé§,6 with varieties of the mean
maps. Measures that give consistent scores across an image class square errofMSE) or signal to noise ratiéSNR) being the

and that are sensitive to coding artifacts are pointed out. It was t Th for their wid d
found that measures based on the phase spectrum, the multireso- MOst common measures. € reasons tor their widesprea

lution distance or the HVS filtered mean square error are computa- popularity are their mathematical tractability and the fact
tionally simple and are more responsive to coding artifacts. We also that it is often straightforward to design systems that mini-
demonstrate the utility of combining selected quality metrics in build- mize the MSE. Raw error measures such as the MSE work

ing a steganalysis tool. © 2002 SPIE and IS&T.

[DOI: 10.1117/1.1455011] best when the distortion is due to additive noise contami-

nation. However they do not necessarily correspond to all
aspects of the observer’s visual perception of the efrbrs,
1 Introduction nor do they correctly reflect structural coding artifacts.
For multimedia applications and for very low bit rate
/ coding, there has been an increase in the use of quality
measures based on human perceptidfi.Since a human
observer is the end user in multimedia applications, an im-
when measuring various compression and/or sensor arti29€ guality measure that is based on a human vision model
facts. seems to be more appropriate for predicting user accep-
A good objective quality measure should reflect the dis- tance anq for system optimization. This class of d|§tort|on
tortion on the image well due to, for example, blurring, Measure in general gives a numerical value that will quan-
the dissatisfaction of the viewer in observing the repro-

noise, compression, and sensor inadequacy. One expec . ; - ;
that such measures could be instrumental in predicting theduced image in place of the originalithough Daly’s VPD

performance of vision-based algorithms such as feature ex/@P " is an example opposite to thihe alternative is the
traction, image-based measurements, detection, trackingS€ Of subjective tests in which subjects view a series of

and segmentation, etc., tasks. Our approach is different&produced Ln;glges.anc_i rate them based on the visibility of
the artifacts->® Subjective tests are tedious, time consum-

ing and expensive, and the results depend on various fac-
tors such as the observer’'s background, motivation, etc.,

Image quality measuredQMs) are figures of merit used
for the evaluation of imaging systems or of coding
processing techniques. In this study we consider several
image quality metrics and study their statistical behavior

Paper JEI 99022 received Apr. 28, 1999; revised manuscripts received Nov. 16, 200

0 . . . .
and Aug. 27, 2001; accepted for publication Oct. 19, 2001. and reaIIy aCtua“y Only_the_ dlsplay qua“ty IS bemg as-
1017-9909/2002/$15.00 © 2002 SPIE and IS&T. sessed. Therefore an objective measure that accurately pre-
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Statistical evaluation of image quality

dicts the subjective rating would be a useful guide when Table 1 List of symbols and equation numbers of the quality met-
rics.

optimizing image compression algorithms.

Recently there have been efforts by the International

Telecommunications UniofiTU) to establish an objective ~ >Y™P°! Description Equation
measurement of video quality. Thus within the context of ,, Mean square error (A1)
the distribution of multimedia documents, video program-

. . . . . . . D2 Mean absolute error (A2)
ming, in particular, in-service continuous evaluation of o
video quality, is needed. This continuous video quality in- 03 Modified infinity norm (A3)
dicator would be input to the network management, which D4 L*a*b* perceptual error (A4)
must guarantee a negotiated level of quality of service. Ob-D5 Neighborhood error (A5)
viously such qualit;/ monitoring can only be realized with pg Multiresolution error (A6)
objective method$’*® It must be pointed out, however, ; Normalized cross correlation A7)
that subjective assessment, albeit costly and time consum- Image fidelity (A8)
ing, if not impractical, is accurate. Objective methods, on i )
the other hand, can at best try to emulate the performancé3 Czekonowski correlation (A9)
of subjective methods, and utilize knowledge of the human €4 Mean angle similarity (A10)
visual system. C5 Mean angle-magnitude similarity (A11)

Similarly for computer vision tasks, prediction of the g1 Pratt edge measure (A12)
algorithmic pg_rform%ngje in terms of imaging distortions is £, Edge stability measure (A13)
of great S|gn|f|can_cé.' In t_he Ilterature_ the performance Spectral phase error (A14)
of feature extraction algorithms, like lines and cornérs, .
propagation of covariance matricEsand quantification of Spectral phase'magh'IUde eror (A15)
target detection performance and ideal observerS3 Block spectral magnitude error (A16)
performanceé’~2% have been studied under additive noise S4 Block spectral phase error (A17)
conditions. It is of great interest to correlate coding and ss Block spectral phase-magnitude error (A18)
sensor artifacts with this kind of algorithmic performance. >, Rate distortion measure (A19)
MortnT specifically, one would like to |c_jent|fy image quality Hellinger distance (A20)
metrics that can accurate_ly_ and cons_|stently predict the per- Generalized Matusita distance (A21)
formance of computer vision algorithms that operate on _
distorted image records, the distortions being due to com-%4 Spearman rank correlation (A22)
pression, sensor inadequacy, etc. An alternative use of im-H1 HVS absolute norm (A23)
age quality metrics is in inverse mapping from metrics to H2 HVS L2 norm (A24)
the nature of distortion&. In other words, given the image 3 Browsing similarity (A25)

quality metrics, one tries to reconstruct the distorti¢ag., Ha DCTune
the amount of blur, noise, etc., in distortion coordinates
that could have resulted in the measured metric values.

In this paper we study objective measures of image qual-
ity and investigate their statistical performance. Their sta-
tistical behavior is evaluated first, in terms of how discrimi-
nating they are to distortion artifacts when tested on a
variety of images using the analysis of variance method.
The measures are then investigated in terms of their mutual We define several distortion measures in each category.
correlation or similarity in the form of Kohonen maps. The specific measures are denotedily, D2, etc. in Ap-

Twenty-six image quality metrics are listed and de- pendix A, in the pixel difference category, 84, C2, etc.
scribed in Appendix A and summarized in Table 1. These j3 Appendix B, in the correlation category and so on for
quality metrics are categorized into six groups according t0 ease of reference in the results and discussion sections.
the type of information they use. The Categories used are: The paper is Organized as follows: The methodo|ogy and
. . data sets are given in Sec. 2. The descriptions of the spe-
1. pixel difference-based measures such as mean squalgfic measures used are relegated to the Appendix and its

distortion; six subsections. The results of the experiments and statisti-
2. correlation-based measures, that is, correlation ofcal analyses are presented in Sec. 3. We discuss the main

pixels, or of the vector angular directions; conclusions and related future work in Sec. 4.

3. edge-based measures, that is, displacement of edge
positions or their consistency across resolution levels;2 Goals and Methods

4. spectral distance-based measures, that is, the Fourieé 1 Quality Attributes

magnitude and/or phase spectral discrepancy on a_ =~ ° ! _ ) _
block basis: Objective video quality model attributes were reported in

5. context-based measures, that is, penalties based ORefs. 17 and 18. These attributes can be directly translated

various functionals of the multidimensional context t the siil image quality measures as *IQM desiderata” in
probability: multimedia and computer vision applications.

6. human visual systerfHVS)-based measures, that is,

measures either based on the HVS-weighted spectral
distortion measures ddis)similarity criteria used in
image base browsing functions.

 Prediction accuracy: The accurate prediction of distor-
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between 20 and 40 the impairment is annoying, and, finally,
for Q less than 20 the degradation is very annoying. Thus
each image class was compressed with 5 JBHEEctors of
90, 70, 50, 30, and 10. For each quality class the average
length of compressed files was calculated and the corre-
sponding bit ratébit/pixel) was accepted as the class’ rate.
The same rate as that obtained from the JPEG experiment
was also used in the SPIHT algorithm.

The test material consisted of the following image sets:

a} An example of good measure: the H2

5 (1) 10 three-band remote sensing images, which contained
a fair amount of variety, i.e., edges, textures, plateaus,
and contrast range(2) 10 color face images from

b) An example of mediocre measure: the
D1 measure with JPEG compression
achieving F=104.6 score

measure with JPEG compression
achieving F=2291 score.

1
09
08
0.7
0.6
05
0.4
0.3
02

i

"

the Purdue University Face Image dataBaset
rvll.ecn.purdue.edu/aleix/Aleixace_DB.html, and(3) 10
texture images from the MIT Texture Databa84STEX)

at  www-white.media.edu/vismod/imagery/VisionTexture/
vistex.html.

2.3 Analysis of Variance

Analysis of varianc§f ANOVA)? was used as a statistical
tool to evaluate the merits of the quality measures. In other

Fig.

moderately good measure, (C) poor measure.

words, ANOVA was used to show whether variation in the
data could be accounted for by the hypothesized factor, for
example, the factor of image compression type, the factor
of image class, etc. The output of the ANOVA is the iden-
tification of those image quality measures that are most
consistent and discerning of the distortion artifacts due to
compression, blur, and noise.

Recall that ANOVA is used to compare the means of
tion, whether for algorithmic performance and subjec- more than two independent Gaussian distributed groups. In
tive assessment. For example, when quality metricsour case each “compression group” consists of quality
are shown in box plots, like in Fig. 1, an accurate scores from various images at a certain bit rate, and there
metric will possess a small scatter plot. arek=>5 groups corresponding to the five bit rates tested.
Prediction monotonicity: The objective image quality Each group had 30 sample vectors since there were 30 mul-
measure’'s scores should be monotonic in their rela-tispectral test imaged0 remote sensing, 10 faces, 10 tex-
tionship to the performance scores. tures. In a similarly way three “blur groups” were created
Prediction consistency: This attribute relates to the ob- PY low-pass filtering the images with two-dimensiofiD)
jective quality measure’s capability to provide consis- Gauss‘!an.-shaped f|I",[ers with increasing support.. Finally
tently accurate predictions for all types of images and three “noise groups” were created by contaminating the
=200, 600, and 1700This range of noise values spans the

1 2 3 4 5
c) An example of poor measure: the C4
measure with SPIHT compression
achieving F=7.91 score.

1 Box plots of quality measure scores: (a) good measure, (b)

These desired characteristics are captured in the statistinoisy image quality from just noticeable distortion to an-
cal measures such as tRescores of the quality metrics, as noying degradation. In a concomitant experiméitages

detailed in Tables 1-3.

2.2
All

were watermarked at four different insertion strengths.
Since we have two codefse., JPEG and SPIHT algo-
Test Image Sets and Rates rithms) two-way ANOVA is appropriate. The hypotheses

the image quality measures are calculated in their for the comparison of independent groups are

multiband versions. In the current study of the quality mea-

sures in image compression, we used two well-known com-H,:
pression algorithms: the popular DCT based JPE&hd

M= M= ... = pg
mean values of all groups are equal,

wavelet zero-tree method “set partitioning in hierarchical
trees” (SPIHT) formulated by Said and Pearlm&hThe

other types of image distortions are generated by the use offa:
blurring filters of various support sizes and by the addition

Mi 7
mean values of two or more groups

of white Gaussian noise at various levels.

The rate selection scheme was based on the accepted

are not equal.

rate ranges of JPEG. It is known that the JPEG quality
factor Q between 80 and 100 corresponds to visually im- It should be noted that the test statistic isFatest withk—|
perceptible impairment) between 60 and 80 corresponds andN—k degrees of freedom, wheklis the total number

to perceptible but not annoying distortion, f@r between
40 and 60 the impairment becomes slightly annoying(Jor

of compressed images. A lop-value (high F value for
this test indicates one should reject the null hypothesis in

208 / Journal of Electronic Imaging / April 2002/ Vol. 11(2)
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favor of the alternative. Recall that the null hypothesis cor- metrics, and conversely to deduce how differently they re-
responds to a situation in which all samples are drawn fromspond to distortion artifacts arising from compression, blur
the same set and there is no significant difference betweerand noise. The output of self-organizing m&OM) visu-
their means. A low value op (correspondingly, a high alization is a set of qualitative arguments showing their
value ofF) casts doubt on the null hypothesis and provides similarity or dissimilarity. To see this we organized them as
strong evidence that at least one of the means is signifi-vectors and fed them to a SOM algorithm. The elements of
cantly different. In other words, there is evidence that at the vectors are simply the measured quality scores. For
least one pair of means is not equal. We have opted to carryexample, consider the MSE errdd{) for a specific com-
out multiple comparison tests at the 0.05 significance level.pression algorithnte.g., JPEGat a specific rate. The cor-
Thus any test resulting of p value under 0.05 would be  responding vectoD1 is M dimensional, wheréM is the
significant, and, therefore, one would reject the null hy- humber of images, and it reads
pothesis in favor of the alternative hypothesis. This is done
to assert that the difference in quality metric arises from
image coding artifacts and not from random fluctuations in D1(JPEG, bitrate
the image content. . . . T

To find out whether the variation of the metric scores =[D1(1|JPEG,bitratp, ... . DL(M)| JPEG,bitratg'.
arises predominantly from image quality, and not from the
image set, we considered the interaction between the imagahere will be five such vectors, one for each bit rate con-
set and distortion artifact§.e., compression bit rate, blur, sidered. We used a total of 30imageSbit rates

etc). To this end we considered titescores with respectto 2 compressors 26 metrics= 7800 vectors to train the
the image set as well. As will be discussed in Sec. 3 andgop.

shown in Tables 2 and 3, metrics that were sensitive 10 Recal| that the SOM s a tool for visualization of high
distortion artifacts were naturally sensitive to variations in gimensional data. It maps complex, nonlinear high dimen-
the image set as well. However for the “good” measures gjgna| data into simple geometric relationships on a low
identified, the sensitivity to image set variation was always gimensional array and thus serves to produce abstractions.

less to the distortion sensitivity. Among the important applications of the SOM one can cite
A graphical comparison based on box plots, where eachiye yisualization of high dimensional data, as a case in

box is centered on the group median and sized to the UPP€hoint, and the discovery of categories and abstractions from
and lower 50 percentiles, allows one to see the distribution 5., data.

of the groups. If theF value is high, there will be little
ﬁyerlap betw_een two or more groups. If thevalue is not eRM, whereM is the number of images consideréd

igh, there will be a fair amount of overlap among all of the — . :
groups. In the box plots, a steep slope and little overlap_30 ih our casp With each element in tf}e SaM array, a
between boxes, as illustrated in Fig. 1, are both indicatorsParametric real vectom; =[xy, ... ,uim] €R" that is
of a good quality measure. In order to quantify the dis- assoc[ated..The location of an input veclbnn the SOM
criminative power of a quality measure, we have normal- a&rray is defined by the decoder functid(X,m;), where
ized the difference between two successive group means byl(.,.) is ageneral measure of distance. The location of the
their respective variances, i.e., input vector will have the array index defined asc
=argmind(X,m;). A critical part of the algorithm is defin-

I

Let the data vectors be denoted ¥s[x, ... Xu]"

My My +1
Qrr1=—F/—, ing m; in such a way that the mapping is ordered and de-
VO Oy+1 :

scriptive of the distribution ofX. Finding such a set of
(1) values that minimizes the distance measure resembles the

Q=aveQ,, 1} r=1,...k—-1, standard vector quantizatigh'Q) problem. In contrast, the

] ) indexing of these values is arbitrary, whereby the mapping
whereu, denotes the mean value of the image quality mea-js unordered. However, if minimization of the objective
sure for the images compressed at ratand o, is the  functional based on the distance function is implemented
standard deviatiork is the number of different bit rates at under the conditions described in Ref. 29, then one can
which quality measures are calculated. A good image qual-obtain ordered values a@h;, almost as ifm; were lying at
ity measure should have a higd value, which implies  the nodes of an elastic net. With the elastic net analogy in

little overlap between groups and/or large jumps betweenmind, the SOM algorithm can be constructed as
them hence a highly discriminative power of the quality

measure. It should be noted that t@evalues and thé-

scores yielded identical results in our experiments. m;(t+1)=m;(t) +a(t)[X(t) —m;(t)],
In Fig. 1 we give box plot examples of a good, a mod-

erate, and a poor measure. For the box plot visualization the

data have been appropriately scaled without any loss ofWhe.re.“(t) is asma}ll scalar, if the distance between un_its
information andi in the array is smaller than or equal to a specified

limit (radiug, anda(t) =0 otherwise. During the course of

. L ) . the ordering process(t) is decreased from 0.05 to 0.02,
2.4 Visualization of Quality Metrics while the radius of the neighborhood is decreased from 10
The visualization of the IQMs in a 2D display is potentially to 3. Furthermore scores are normalized with respect to the
helpful to observe the clustering behavior of the quality range.

Journal of Electronic Imaging / April 2002/ Vol. 11(2) / 209
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Table 2 ANOVA results (F scores) for the JPEG and SPIHT compression distortions as well as for
additive noise and blur artifacts. For each distortion type the variation due to the image set is also
established. For compression the degrees of freedom are 4 (bit rate) and 2 (image class) while they
are 2 for both the blur and noise experiments.

JPEG SPIHT Blur Noise

ANOVA2 Bitrate Image set Bitrate Image set Blur Image set  Noise Image set

D1 104.6 42.59 39.23 13.28 43.69 2.06 9880 17.32
D2 108.5 67.45 29.56 15.93 33.94 17.76 6239 20.4

D3 63.35 29.37 53.31 48.53 38.55 24.13 1625 11.15
D4 89.93 1.99 13.75 3.71 27.87 0.96 166.4 9.88
D5 20.26 80.71 14.09 68.22 6.32 55.11 1981 4351
D6 76.73 5.94 37.52 11.22 412.9 45.53 44.61 4.38
c1 1.35 124.6 12.05 325.5 5.61 107.2 3.82 6.17
c2 12.26 93.83 15.18 82.87 11.19 39.77 58.04 45.63
Cc3 82.87 83.06 24.96 22.42 30.92 1.71 567.5 52.01
C4 45.65 47.36 7.91 5.94 16.48 0.77 198.8 19.03
C5 91.42 38.17 27.51 5.28 52.57 2.44 704 10.8

El 26.24 3.64 77.86 137 125.8 21.09 87.76 27.87
E2 176.3 92.75 2125 200.4 768.7 23.41 158.5 24.84
S1 150.5 102.2 104 68.17 1128 60.04 47.29 38.42
S2 191.3 98.42 161 101.8 572.2 17.95 107.1 4.83
S3 145.6 56.39 38.58 26.97 24.28 6.39 2803 8.59
S4 129.1 63.26 128 46.85 215 11.17 56.04 55.1

S5 146.1 71.03 144.1 61.65 333.6 27.84 78.04 26.53
Z1 1.69 141.8 21.36 14 35.9 62.5 44.89 110.9

z2 7.73 114.7 11.41 77.68 10.17 1.80 3.03 11.36
Z3 17.63 223 23.22 181.4 17.26 8.31 14.71 21.12
Z4 9.4 23.58 9.84 32.41 8.45 14.74 24.99 3.31
H1 371.9 0.09 107.2 40.05 525.6 69.98 230.7 19.57
H2 2291 5.46 132.9 22.82 47.28 101.7 624.3 21.32
H3 123 1.2 27.45 7.6 67.31 6.77 117.3 0.50
H4 78.83 7.14 25.2 95.72 12.55 211 29.06 6.69

The component plangsof the SOM, i.e., the array of 3.1 ANOVA Results
scalar valuesu;; representing thgth components of the
weight vectoram; and having the same format as the SOM
array, are displayed as shades of gray.

The two-way ANOVA results of the image quality mea-
sures of the data obtained from all image clagsalsrics,
faces, remotesare listed in Table 2. In Table 2 the symbols
of quality measure®1, D2, ... H3, H4 are listed in the
first column while theF scores of JPEG compression, of
SPIHT compression, of blur and of noise distortions are
ngiven, respectively, in the remaining four columns.

3 Statistical Analysis of Image Quality Measures

Our first goal is to investigate the sensitivity of quality

measures to distortions that arise from image COMPIESSION” rhe metric that responds most strongly to one distortion
schemes, in other words, to find the degree to which a

quality measure can discriminate the coding artifacts andYP€ IS called the “fundamental metric” of that distortion
translate it into a meaningful score. We similarly establish YP&: Note that there could be more than one fundamental
the response sensitivity of the measures to other causes dhetric. Similarly, the metric that responds adequately to all
distortion such as blur and noise. Our second goal is tosorts of distortion effects is denoted as the “global metric.”
establish how various quality measures are related to eaclone notices the following.

other and to show the degree to which measures respond

(dis)similarly to coding and sensor artifacts. As the out- * The fundamental metrics for JPEG compression are
come of these investigations we intend to extract a subset H2, H1, S2, andE2, which is the human visual sys-

of measures that satisfies the image quality measure desid-  tem (HVS) L2 norm, the HVS absolute norm, the
erata.

210/ Journal of Electronic Imaging / April 2002/ Vol. 11(2)



Statistical evaluation of image quality

Table 3 Classification of metrics according to their sensitivity for different types of distortion on indi-
vidual and combined image sets. The bottom two rows indicate the metrics that are least sensitive to

the image set and to the coder type.

One-way Image set JPEG
ANOVA  pabrics H4, H2, E2, S4
Faces H2, D1, S3, H1
Remote sensing H2, H4, S4, S5
Two-way Combined set H2, H1, S2, E2
ANOVA Image set independence H1, H3

SPIHT
E1l, S1, E2, S2
H4, D3, H2, C1
S2, S5, 54, 51

E2, S2, S5, H2
D4, C5

Blur
S1, S5, E2, S4
S2, H1, S1, E2
D6, S5, S4, S1

S1, E2, S2, H1
C4, D4

Noise
D1, D2, D5, D3
D1, S3, D2, D3
D1, D2, C3, C5

D1, D2, S3, D5
H3, Z4

Coder type independence D2, D1, Z4, D3

spectral phase magnitude, and edge stability measuresThese observations are summarized in Table 3 where one-
These measures are listed in decreasing order dfthe way results are given for each image clé&drics, faces,
score. remote sensingseparately, and two-way ANOVA results
The fundamental metrics for SPIHT compression are aré presented for the combined set. In the two bottommost

E2, S2, S5, andH2, that is, edge stability, spectral

phase magnitude, block spectral phase magnitude, and ,

the HVSL?2 norm Table 4 ANOVA results for the effect of bit rate (pooled data from
: JREG and SPIHT) and of coder type. The degrees of freedom are 4

The fundamental metrics for the blur effect 8@, (bit rate) and 1 (coder type).

E2, S2, andH1, that is, spectral phase, edge stability,

spectral phase magnitude, and the HVS absolute ANOVA2 JPEG+SPIHT
norm. Notice the similarity of the metrics between . _

SPIHT and blur. This is dug to the fact that we prima- Metric Bit rate Coder
rily encounter blur artifacts in wavelet-based compres- D1 89.79 0.75
sion. D2 74.98 2.72
The fundamental metric for the noise effect is, as ex- D3 71.55 1.21
pected,D1, the mean square error. D4 70.52 43.85
Finally the image quality metrics that are sensitive to D5 17.07 0.0005
all distortion artifacts are, in rank of ordeE2, H1, D6 85.22 118.8
S2, H2, andS5h, that is, edge stability, the HVS abso-

lute norm, spectral phase magnitude, the HUS c1 2.66 45.47
norm, and block spectral phase magnitude. To estab- c2 12.28 18.27
lish the global metrics, we gave rank numbers from 1 c3 56.48 1.56
to 26 to each metric under the four types of distortion ca 313 243
in Table 2. For example, for JPEG the metrics are 5 78.98 293
ordered a#H2, H1, S2, E2, etc., if we take into con-

sideration theilF scores. Then we summed their rank E1l 42.69 11.61
numbers, and the metrics for which the sum of the E2 122.4 26.28
scores were the smallest were declared the global met-

ric, that is, the ones that qualify well in all discrimi- s1 99.12 529
nation tests. These results must still be taken with S2 140.1 12.37
some caution since, for example, none of the five win- S3 92.99 9.27
ning scores is as sensitive to additive noise asihe sS4 115.5 30.1
andD?2 scores. S5 124.8 43.09
The metrics that were the least sensitive to image set

variation areD4, H3, C4, C5, D6, efc. It can be ob- 21 428 416
served that these metrics in general also show poor z2 9.54 0.83
performance in discriminating distortion effects. On Z3 12.87 0.56
the other hand, for the distortion sensitive metrics, zZ4 9.39 6.64
even though their image set dependence is higher than

the so-called “image independent” metrics, more of H1 278.6 52.87
the score variability is due to distortion than to image H2 493 87.21
set changes. This can be observed based on the higher H3 97.94 16.19
F scores for distortion effects compared to image set Ha 21.13 57.72

relatedF scores.
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rows of Table 3 the metrics that are least sensitive to the
coder type and to the image set are given. The criteria for e
omitting and entering the metrics in Table 3 were the out- S5
come of theF scores.

We also investigated the metrics with respect to their
capability to respond to bit rate and coder type. For this :
analysis the scores of the JPEG and SPIHT compressors
were combined. The following can be observed in Table 4. ;4

* The metrics that were best in discriminating compres-
sion distortion as parameterized by the bit rate, what- .
ever the coder type, that is JPEG or SPIHT, wdi2 i
H1, S2, andS5 (the HVSL2 norm, the HVS absolute
norm, spectral phase magnitude, block spectral phase
magnitude, etc.

« The metrics that were capable of discriminating the &
coder type(JPEG versus SPIHTwere similar in the w33 T
sense that they all belong to the human vision system s
inspired types, namel\p6, H2, H4, andH1 (multi-
resolution error, the HV& 2 norm, DCTune, and the
HVS L1 norm.

° Fina”y' _the metrics that were mo_st sensitive to ,d.iStor' Fig. 2 SOM map of distortion measures for JPEG and SPIHT.
tion artifacts, but at the same time least sensitive to
image set variation, wer€5, D1, D3, S3, D2, C4,

etc. (mean angle-magnitude similarity, mean square respond to compression artifacts in similar ways. On the
error, modified infinity norm, block spectral magni- other hand, one can conjecture that some measures must be
tude error, mean absolute error, mean angle similarity, more sensitive to blurring effects, while others respond to
etc). These metrics were identified by summing the pjocking effects, while still others reflect additive noise.

two rank scores of the metrics, the first being the ranks  The SOM? is a pictorial method by which to display

in ascending order of distortion sensitivity, the second gjmijlarities and differences between statistical variables,
in descending order of the image set sensitivity. Inter- sych as quality measures. We have therefore obtained spa-
estingly enough almost all of them are related t0 a tjg| organization of these measures via Kohonen's self-
variety of mean square error. Despite its many criti- organizing map algorithm. The input to the SOM algorithm
cisms, this may explain why mean square error or yas vectors whose elements are the scores of the measure
S|gnal-to—n0|se.rat|o measures have proven to be SOresulting from different images. More explicitly, consider
resilient over time. Again this conclusion should be gne of the measures, let us sBy, and a certain compres-
accepted with some caution. For example, COmMMON gjgn gigorithm, e.g., JPEG. The instances of this vector will
experience indicates that MSE measures do not necespe go dimensional, one for each of the images in the set.
sarily reflect all the objectionable coding artifacts es- The first 30 components consist of 30 images compressed
pecially at low bit rates. with JPEG, the next 30 juxtaposed components of the same

As expected the metrics that are responsive to distor-images compressed with SPIHT. Furthermore there will be
five such vectors, one for each of the bit rates.

tions are also almost always responsive to the image set. The SOM organization of the measures in 2D space for

Conversely, the metrics that do not respond to variation of . .
the image set are also not very discriminating with respectpomed data from JPEG and SPIHT coders is shown in Fig.

to distortion types. The fact that the metrics are sensitive, aséi'b-lrehﬁi?renl];[?osnarfeEZﬁ?ier]f;?]rev:ﬁgglsﬁrsessesgr?:woﬂlc??;( pé);—
would be expected, to both the image content and distortion,[hat measures vsith similar trends and which res ondpin
artifacts does not eclipse their potential as quality metrics. imilar wavs to artifacts would cluster toaether spatiall
Indeed, when the metrics were tested in more homogeneouﬁihe main )cl:onclusions from observation gf the SSM ar¥d
image setsthat is, only within face images or remote sens- the correlation matrix are the followin

ing images, etg.the same high-performance metrics scored 9-

consistently higher. Furthermore, when one compare§ the
scores of the metrics with respect to bit rate variation and
image set variation, even though there is a non-negligible
interaction factor, the= score due to bit rate is always
larger than thé= score due to image sets.

e The clustering tendency of pixel difference based
measures1,D2D4,D5) and the spectral magnitude
based methodS3) is obvious in the center portion of
the map, a reflection of the Parseval relationship.
However notice that spectral phase-magnitude mea-
sures §2,S5) stay distinctly apart from these mea-

3.2 Self-Organizing Map of Quality Measures sures. In a similar vein purely spectral phase measures

Our second investigation was of the mutual relationship also form a separate cluster.
between measures. It is obvious that the quality measures ¢ The human visual system based measures
must be correlated with each other since most of them must (H2H3,H4), multiresolution pixel-difference mea-
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sure D6), E2 (edge stability measuye and C5 mine if a given image is watermarked or not. The answer to
(mean angle-magnitude measuage clustered on the this conjecture is positive in that we show that watermark-

right side of the map. The correlation of the multireso- ing leaves unique artifacts, which can be detected using
lution distance measur®6, with HVS based mea- image quality measurggQMs).>"**

sures H2,H3,H4) is not surprising since the idea be- In order to identify specific quality measures that prove

hind this measure is to mimic an image comparison by Useful in steganalysis, that is, distinguishing the water-

eye more closely by assigning a larger weight to low marked images from the nonwatermarked ones, we again

resolution components and a lesser weight to the de-USe the ANOVA test. Twenty-six quality measures are sub-
tailed high frequency components. jected to a statistical test to determine if the fluctuations of

. the measures result from image variety or whether the
* The three_ correlation based measur@i,CZ,_C3) are arise due to treatment ef'fects,g that is,)(/vatermarking an)é
together in the lower part of the map while the tWo gieq0-message embedding. Thus any test resultinggin a
spectral phase error measureS285) are concen-  ya|ue under 0.05 would be significant, and, therefore, one
trated separately in the upper part of the map. would accept the assertion that the difference in quality
« It is interesting to note that all the context-based mea- metric arises from the “strength” parameter of the water-
sures Z1,22,73,Z4) are grouped in the upper left re- marking or steganography artifacts, and not from variations
gion of the map together withi1 (the HVS filtered ~ in the image content. The idea of employing more than one
absolute error IQMk_ln theI ste_g?]analyzerk|?:I_Jflrjst|fled]c since dlﬁfer?]nt water-
. marking algorithms mark different features of the image,

’ The_prOX|m|_ty of the Pratt measur.eEL) an_d the such ags glgobal discrete Fourier transfof@FT) coeffi- ’
maximum difference measure©§) is meaningful,  cients, plock discrete cosine transfofBCT) coefficients,
since the maximum distortions in reconstructed _'m‘nﬁjixels directly, etc.
ages are near the edges. The constrained maximum e performed ANOVA tests for several watermarking
distance or sorted maximum distance measures can bgnq steganography algorithms. For example, the most dis-
used in codec designs to preserve the two-dimensionakyiminating IQMs for the pooled steganography and water-
features, such as edges, in reconstructed images.  marking algorithms were found to be the mean absolute

In conclusion the relative positioning of measures in the €7°F D2, mean square err®,, Czekonowsky correlation
two-dimensional map was in agreement with one’s intuitive M&aSUreCs, angle mearC,, spectral magnitude distance
grouping and with the ANOVA results. We would like to Sz median block spectral phase distai$e median block
emphasize here that in the above SOM discussions it isweighted spectral distan&, and normalized mean square
only the relative position of the measures that is significant, HVS error H,. The implication here is twofold: One is
while their absolute positioning is arbitrary. Furthermore, that, by using these features, a steganalyzer can be designed
the metrics that behave in an uncorrelated way in the SOMto detect the watermarked or stegoed images using multi-
display are conjectured to respond to different distortion variate regression analysis, as we showed in Refs. 57-59.
artifacts and are used as an additional criterion for the se-This linear combination of IQMs for steganalysis purposes

lection of “good” measure subsets. is denoted as the “supermetric” for steganalysis. It was
o ' ) shown in Ref. 57 that the steganalysis supermetric can de-
3.3 Combination of Quality Measures: Supermetrics tect the presence of watermarking with 85% accuracy and

It was conjectured that a judicious combination of image ¢an even predict whose watermark iffsThe other impli-
quality metrics could be more useful in image processing cation is that current watermarking or steganographic algo-
tasks. We present two instances of the application of anfithms should exercise more care in those statistically sig-
IQM combination, namely, in steganalysis and in predicting
subjective quality measures.

Steganography refers to the art of secret communication
while steganalysis is the ensemble of techniques that can
detect the presence of watermarks and differentiate ste-
godocuments. For this digital watermarking is used, which
consists of an imperceptible and cryptographically secure
message added to the digital content, to be extracted only
by the recipient. However, if digital watermarks are to be
used in steganography applications, detection of their pres-
ence by an unauthorized agent defeats their very purpose
Even in applications that do not require hidden communi-
cation, but only watermarking robustness, we note that it
would be desirable to first detect the possible presence of a
watermark before trying to remove or manipulate it.

The underlying idea of watermarking is to create a new
document, e.g., an image, which perceptually identical
but statistically differenfrom the host signal. Watermark
decoding uses this statistical difference in order to extract
the stegomessage. However, the very same statistical differgig. 3 piot of the mean opinion score and image quality supermetric
ence that is created could potentially be exploited to deter-data.
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Table 5 Image quality metrics and their correlation coefficients with MOS data.

D1 0.893 Cc1 0.501 E2 0.890 Z1 0.502 H3 0.936
D2 0.895 c2 0.810 S1 0.929 zZ2 0.543 H4 0.982
D3 0.720 c3 0.926 S2 0.903 Z3 0.609 Supermetric 0.987
D4 0.901 C4 0.912 S3 0.930 Z4 0.517
D5 0.381 C5 0.917 S4 0.883 H1 0.890
D6 0.904 El 0.833 S5 0.865 H2 0.938

nificant image features to eschew detecfidn. D1 metrics were accurate in that they responded predomi-
For the second supermetric we searched for a correlatiomantly to the type of distortion stated than to any other
between the subjective opinions and an objective measurdactor. They responded monotonically to the level of distor-
derived from a combination of our IQMs. The subjective tion, that is, the metric versus distortion parameter plotted
image quality experiment was conducted with a group of monotonically(graph not shown Finally their consistency
17 subjectgstudents that first took a course in image pro- was shown when they were tested on widely differing im-
cessing who noted their image quality opinion scores in age classeffaces, textures, remote sensing
the 1-5 range, 1 being no distortion could be observed and |deally speaking, one would like to have a quality mea-
5 meaning very annoying quality. The time of observation sure that is able to give accurate results for different levels
was unlimited. The images used were all 5212 red—  of performance of a given compression scheme, and across
green—blug(RGB) color images from the Purdue Univer- different compression schemes. It appears that, as shown in
sity face database, and were viewed at 4he image  Sec. 3.3, a combination of spectral phase-and-magnitude
height. The results reported are based on 850 quality evalumeasures and of the HVS-filtered error norm comes closest
ations of 50 encoded imagé$0 images compressed with to satisfying such a measure, because it is sufficiently sen-
JPEG at five different quality scale®=10, 30, 50, 70, and  sitive to a variety of artifacts. The Kohonen map of the
90) by the pool of 17 subjects. The supermetric of image measures has been useful in depicting measures that behave
quality for compression artifacts was built using global similarly or in an uncorrelated way. The correlation be-
metricsE2, H1, S2, H2, andS5, that is, the edge stability, tween various measures as are depicted in Kohonen’s self-

HVS absolute norm, spectral phase magnitude, H\&S ~ Organizing map.

norm, and block spectral phase magnitutte the image In conclusion, the subsets of t2, S2, S5, H1, and
distortions due to compression. The supermetric was builtH2 metrics are the prominent image quality measures, as
by regressing them against the mean opinion scdi€xS). shown from both ANOVA analysis and MOS scores points

The plot of this supermetric and MOS data are given in Fig. of view. The implication is that more attention should be
3, where a high value of the correlation coefficient was paid to the spectral phase and HVS-filtered quality metrics
determined: 0.987. The correlation coefficients of the indi- in the design of coding algorithms and sensor evaluation.
vidual metrics, shown in Table 5, were all lower, as ex- We have also shown the validity of the ANOVA methodol-

pected. ogy in an alternate application, that is, when we applied it
to the selection of IQMs for the construction of a stegana-
4 Conclusions lyzer.

In this work we have presented collectively a comprehen- . In future work we will address extension of the subjec-
tive experiments. Note that we have only shown in one

sive set of image quality measures and categorized them. : g
Using statistical tools we were able to classify more than experiment that the IQMs selected regress well in the mean

two dozen measures based on their sensitivity to different®Pinion scores. However this experiment must be repeated
types of distortions. on yet unseen data to understand how well it predicts a

Statistical investigation of 26 different measures using subjective opinion. In a similar vein the database for detec-

ANOVA analyses has revealed that local phase—magnitudet'on experiments will be extended to cover a larger variety

measuresS2 or S5), HVS-filteredL1 andL2 norms(H1 of watermarking and steganography tools.

and H2), and the edge stability measur&2) are most Acknowledgments

sensitive to coding and blur artifacts, while the mean square )

error (D1) remains the best measure for additive noise. The authors would like to thank H. Brett@NST, Francg
These “winning” metrics were selected on the basis of the A-_Eskicioglu (Thompson Communication, Indianapolis,
sum of the rank scores over four artifacts: JPEG- USA), as well as an anonymous reviewer for their invalu-
compression/SPIH-compression, blur, and noise. This pre-2Ple help in improving this paper.

selection of theE2, S2, S5, H1, andH2 subset was based, di
on the one hand, on their superibrscores and, on the Appendix

other hand, on the fact they appeared to behave in an unHere in the Appendix we define and describe the multitude

correlated way in their SOM maps. of image quality measures considered. In these definitions
These metrics satisfied, in their category of distortion, the pixel lattices of imageé and B will be referred to as
the IQM desiderata given in Sec. 2.1, namely, accuracy,A(i,j) and B(i,j), i, j=1,... N, since the lattices are

monotonicity, and consistency. Thel, H2, S2, S5, and assumed to have dimensionsMK N. The pixels can take
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values from the sef0, ... G} in any spectral band. The
actual color images we considered had- 265 in each
band. Similarly we will denote the multispectral compo-
nents of an image at pixel positionandj, and in banck as
Cy(i,j), wherek=1, ... K. The boldface symbol€(i,j)

and C(i,j) will indicate the multispectral pixel vectors at

position(i,j). For example, for the color images in the RGB

representation one ha€(i,j)=[R(i,j) G(i,j) B(i,j)]".

All these definitions are summarized in the following:
Cy(i, j) (i, j)th pixel of thekth band of im-

ageC
C(i, j) (i, j)th multispectral(with K band$
pixel vector

C multispectral image
Cy kth band of a multispectral image

sk=Ck—Ck error over all the pixels in the
kth band of a multispectral image

Thus, for example, the power in thgh band can be
calculated asr;= 3", Z,Cy(i,j)2. All the quantities with a
caret, i.e.,Cy(i,j), C, etc., will correspond to distorted

versions of the same original image. As a case in point, the,

expression ||C(i,j) = C(i,j) 2= Zi_4[ C(i.j) — Ci(i.i) 1

An overwhelming number of quality results in the literature
is in fact given in terms of the SNR or the peak SNR
(PSNR), which are obtained, respectively, by dividing the
image power byD1 and by dividing the peak pow&? by
D1. Although the SNR and the PSNR are very frequently
used in quantifying coding distortions, their shortcomings
have been pointed out in various studi2dsdowever, de-
spite these oft cited criticisms of MSE-based quality mea-
sures there has been a recent resurgence of SNR/PSNR
metrics!’'8 For example, studies of the video quality ex-
pert Group(VQEG)!” have shown that the PSNR measure
is a very good indicator of subjective preference in video
coding.

For v=1 one obtains the absolute difference, denoted as
D2. For y=c power in the Minkowski average the maxi-
mum difference measure,

K
e“=max>,
i k=1

w [CL1) = C (i, [=may|C(i,j) — C(i )],

i
is obtained. Recall that in signal and image processing the
maximum difference or the infinity norm is very commonly
used® However given the noise-prone nature of the maxi-
mum difference, this metric can be made more robust by

will denote the sum of errors in the spectral components atconsidering the ranked list of pixel differencag(C—C),

given pixel positions,j. In a similar way the error in the
last row of the above minitable expands as
=3, 20 [C(i,j) —Ci(i,j) 1% In the specific case of
RGB color images we will occasionally revert back to no-
tations{R, G, B and{R,G,B}.

A Measures Based on Pixel Differences

The measures here calculate the distortion between two imranked largest differences, , . .
ages on the basis of their pixelwise differences or certain

moments of the differenceerror image.

A.1.1 Minkowsky metrics

The L, norm of the dissimilarity of two images can be
calculated by taking the Minkowsky average of pixel dif-
ferences spatially and then chromaticaitat is, over the
bands:

N—-1

1 K 1 ) 1y
K [migolcku,j)—ck(i,jw} .

1

87:

(A1)

I=1,...N?, resulting in a modified Minkowski infinity
metric, calledD3. HereA,(C—C) denotes theth largest

deviation among all pixel& ThusA,(C—C) is simply the
error expressios ™ above. SimilarlyA, corresponds to the
second largest term, etc. Finally a modified maximum dif-
ference measure using the firsof A, terms can be con-
structed by computing the root mean square value of the
AL

D3= (A3)

\/3 > AL(C-0C).
Nm=1

A.1l.2 MSE in L*a*b* space

The choice of color space for measuring image similarity is
important, because the color space must be uniform, so the
intensity difference between the two colors must be consis-
tent with the color difference estimated by a human ob-
server. Since the RGB color space is not well suited to this

Or, the Minkowsky average can first be carried over the @Sk two color spaces are defined: 1976 CHEI*v* and

bands and then spatially, as in the following expression:

7] Uy

18 .
€2 G =Cy(ip
k=1

1 N-1
Sy:m[ 2

ij=o

In what follows we have used the pixelwise difference in

the Minkowsky sum given in EqAl). For y=2, one ob-

1976 CIE L*a*b* color space$? One recommended
color-difference equation for the Lab color space is given
by the Euclidean distancé.Let

AL*(i,j)=L*(i,j)—L*(,j),

Aa*(i,j)=a*(i,j)—a*(i,j),

tains the well-known mean square error expression, de-

noted asdD1:

1N

-1 i 1 K
N2 2, ICiD-CinP= 2 ek (A2

x|~

D1=

Ab*(i,j)=b*(i,j)—b*(i,j),

denote the color component differenced.iha* b* space.
Then the Euclidean distance is

Journal of Electronic Imaging / April 2002/ Vol. 11(2) / 215



Avcibas, Sankur, and Sayood

N-1 it has been used only for the face images and texture im-
D4= > [AL*(i,j)2+Aa*(i,j)2+Ab*(i,j)?]. ages, not the satellite images.
ij=0
(A4) A.1.3 Difference over a neighborhood

Note that Eq.(A4) is intended to yield a perceptually uni- Image distortion on a pixel level can arise from differences
form spacing of colors that exhibit color differences greater in the gray level of the pixels and/or from displacements of
than the just-noticeable differenc@ND) threshold but  the pixel. A distortion measure that penalizes in a graduated
smaller than those in the Munsell book of cotdrThis way spatial displacements in addition to gray level differ-

measure applies obviously to color images only and cannotences, and that allows therefore some tolerance for pixel
be generalized to arbitrary multispectral images. Thereforeshifts can be defined as follow$3°

N—w/2
D5 \/; S, [, min (e, Sm || min {o(G.0).C.m (AS)

—w)2. .
2(N—=wW)“j S L mew; | lmew; ;

whered(-,-) is some appropriate distance metric. Notice  Consider the various levels of resolution denotedrby
that forw=1 this metric reduces to the mean square error =1. For each value af the image is split into blockb; to
like in D1. b, wheren depends on scale For example, for =1, at
Thus for any given pixeC(i,j), we search for the best the lowest resolution, only one block covers the whole im-
matching pixel in thal distance sense in thvexwneighbor- age characterized by its average gray leydforr=2 one
hood of pixelC(i,j), denoted a€,(i,j). The size of the  has four blocks eacN/2X N/2 with average gray levels of
neighborhood is typically small, e.g.,x3 or 5x5, and 911, 912, 921, @andgy,. For therth resolution level one
one can consider a square or a cross-shaped support. Simwould then have 22 blocks of sizeN/2""1xN/2" 1,
larly, one calculates the distance fro@{i,j) to C,(i,j) characterized by the block average gray levgls, i, |
where agairC,(i,j) denotes the pixels in thexwneigh- =1 ---.2" 2. Thus for each block;; of imageC, take
borhood of coordinate§,j) of C(i,j). Note that in general ~ Jij as its average gray level arg; to correspond to its
d[C(i,}),E.(i,))] is not equal tod[E(i,}),Cy(i,j)]. As  component in image (for simplicity a third index that
for the distance measud-,-), a city metric or a chess- denotes _the resolution level was omll):eﬂhe_average dif-
board metric can be used. For example, a city block metricference in gray level at resolution has weight of 1/2

becomes Therefore the distortion at this level is
r-1

o 1) ¢ (i=1f+[i=m) 11 ¢ .

dB[C(i, ), Cllm) ] = —— d=gr g7z, 10,0,

+ Icd.p—cd.m] , where 21 is the number of blocks along either thand]
G indices. If one considers a total Bfresolution levels, then

) a distance function can be found simply by summing over
where |-|| denotes the norm of the difference between . o resolution levelsy =1, ... R, that is, D(C,&)

C(i,}) andC(i,j) vectors. Thus both the pixel color differ- —sR d . The actual value oR (the number of resolution
ence and search displacement are considered. In this eXgyelg will be set by the initial resolution of the digital
pressionN and G are one possible set of normalization jage For example, for a 5%512 image one haR=9.
factors with which to tune deviations due to pixel shifts and Finally, for multispectral images one can extend this defi-
pixel spectral differences, respectively. In our measure-piion"in two ways. In a straightforward extension, one

ments we have used the city block distance with>a33 g, s the multiresolution distancd$ over the bands,
neighborhood size.

. . . K R
A.1.4 Multiresolution distance measure De=_> > d',‘, (A6)
k=1r=1

1
One limitation of standard objective measures of distance K
between images is that the comparison is conducted at full
image resolution. Alternative measures can be defined thawhere d¥ is the multiresolution distance in theth band.
resemble image perception in the human visual systemThis is the multiresolution distance definition that we used
more closely by assigning larger weights to low resolutions in the experiments. As an alternative, a Burt pyramid was
and smaller weights to the detail imatfeSuch measures constructed to obtain a multiresolution representation.
are also more realistic for machine vision tasks that often However in the tests it did not perform as well as the pyra-
use local information only. mid described in Ref. 36.

216/ Journal of Electronic Imaging / April 2002/ Vol. 11(2)



Statistical evaluation of image quality

A different way in which to define the multiresolution are complementary, so that under certain conditions, mini-
distance would be to consider the vector difference of pix- mizing distance measures is tantamount to maximizing the
els: correlation measur®.

R

. B.1.2 Moments of the angles
D(C,C)=2, d!, with
r=1

A variant of correlation-based measures can be obtained by
considering the statistics of the angles between the pixel

or-1 vectors of the original and coded images. Similar “colors”
drzi L E [(gR— )2+ (gC—§%)? WI|| rgsult in vectors pointing in the'sar'ne Q|rectlon, _Whlle
2r 22r—2, =, LMY F i Vi significantly different colors will point in different direc-
B AB\211/2 tions inC space. Since we deal with positive vect@sC,
+(9ij = 8i) 175 we are constrained to one quadrant of Cartesian space.

Thus the normalization factor of 2/is related to the fact
where, for exampleg] is the average gray level of the that the maximum difference attained will be/2. The
i,jth block in the “red” component of the image &im- combined angular correlation and magnitude difference
plicit) resolution levelr. Notice that in the latter equation petween two vectors can be defined’48
the Euclidean norm of the differences of the block average
color components R, G, and B have been utilized. 2 (c(i :J),é(i,i»

Notice also that the last two measures, that is, the neigh-XiJ. =1-|1-—cos \—— —— =
borhood distance measure and the multiresolution distance m ICa, pHIca, il
measure, have not been previously used in evaluating com- .
pressed images. x{l ||C(i,j)—C(i,J')||l

\J3X 255

We can use the moments of the spectcalromatig¢ vector
B.1 Image Correlation Measures differences as distortion measures. To this end we have
used the mean of the angle differenc&4( and the mean

B Correlation-Based Measures

The similarity between two digital images can also be : . : X
quantified in terms of the correlation functidhese mea- of the combined angle-magnitude differend@s) in the

sures measure the similarity between two images, hence ii°/loWing two measures:
this sense they are complementary to the difference-based

measures: Some correlation based measures are the follow- 1 (2 _, (Ci 0),C30L)))
ing. Ca=py=1-- 2, |—cos ——————|,
Structural content: NTi=1 \m Ica,piica,pli
K N—1 HEAYA
Cl—i 2 =0Ck(iy]) (A7) 1 N
- IFIPY = . All
Kk=1 30 0C(,0)? 5 N%,,—Z‘l Xij (AL1)
normalized cross-correlation measure: where u, is the mean of the angular differences. These
A moments have previously been used to assess the direc-
oo 1 EK: SN ZoCk(i. 1) Ciling) ”8) tional correlation among color vectors.
K& 20 0Ck(i,))?

C Edge Quality Measures

Czenakowski distance: A metric that is useful for com- According to the contour-texture paradigm of images, the
paring vectors with strictly non-negative components, like €dges form the most informative part of the image. For

in the case of color images, is given by the Czenakowski€xample, in the perception of scene content by the human
distance’’ visual system, edges play a major role. In a similar way,

machine vision algorithms often rely on feature maps ob-
N—1 K ) A tained from the edges. Thus, task performance in vision,
C3— 1 S |- 22y min[Cy(i,]),Cy(i,]) ] (A9) whether by humans or machines, is highly dependent on the
NZ2ii=o K Ci ih+¢ (i1 ' quality of the edges and other two-dimensional features
k=1l &kl K1) such as corner¥**?2Some examples of edge degradation
are discontinuities at the edge, a decrease in edge sharpness
by smoothing effects, offset of the edge position, missing
edge points, falsely detected edge points,tblotice,

The Czenakowski coefficieift (also called the percentage
of similarity) measures the similarity among different

sarg[ka)le_s, c?mmu?]meds_,ﬁand quatslrates. . Jshowever, that all the above degradations are not necessarily
viously as the difference between two images tends,psaryed since edge and corner information in images is

towards zeree=C—C—0, all the correlation-based mea- rather well preserved by most compression algorithms.
sures tend towards 1, while aé— G? they tend towards 0. Since we do not possess the ground-truth edge map, we
Recall also that distance measures and correlation measurdsave used the edge map obtained from the original uncom-
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pressed images as a reference. Thus to obtain edge-based 1 C"™i,j)>T™ at (i,j),
quality measures we have generated edge fields from botHE(i,j, o) = herwi
the original and compressed images using a Canny 0 otherwise,

detectof”® We have not used any multiband edge detector;

instead a separate edge map from each band has been ohereC™(i,j) is the output of the derivative of the Gauss-
tained. The outputs of the derivative of the Gaussians ofian operator at thenth scale. In other words, using a con-
each band are averaged, and the resulting average output thuous  function  notation one  has C™(x,y)
interpolated, thresholded, and thinned in a manner similar=c(x,y)** G,,(x,y) where

to that in Ref. 12. The parameters are set like those in Ref.

43 at robotics.eecs.berkeley.edsastry/ee20/cacode.html. 1 X2+ 2
In summary, for each banki=1, .. .K, horizontal and G, (x,y)= XY exﬂ’ - )
vertical gradients and their norms3, G¥ and N* 2w 207,

= VGY +GY are found. Their average over bands is cal-
culated and thresholded witllT = a(T max— Tmin) + Tmins
where Tpa=1/KE maxN) and Tpin=1/K= min(N¥), «

k k

An edge stability mapQ(i,j) is obtained by considering
the longest subsequengéi,j,or,), . .. .E(i,j,0ms1—1) Of
edge images such that

=0.1. Finally they are thinned by interpolation to find the C
pixels in which the norms of gradient constitute the local Qli,j=l,

maxima.

where
C.1 Pratt Measure | = arg max N E(i,j,o0=1.
A measure introduced by Pritconsidered both the accu- b om=SokSmei-1

racy of the edge location and missing/false alarm edge el-

ements. This measure is based on knowledge of an ideallhe edge stability index calculated from the distorted im-
reference edge map, in which the reference edges shouldge at pixel positionj will be denoted byO(i,j). We have
preferably have a width of one pixel. The figure of meritis ysed five scales to obtain the edge maps of five band-pass

defined as filtered images. Then a fidelity measure called the edge
. stability mean square errédESMSE can be calculated by

1 d 1 summing the differences in the edge stability indices over
E1= maxng,n} 1 1+ad?’ (A12) all edge pixel positionspy, that is, the edge pixels of the

ground-truth(undistorted image at full resolution.

whereny and n; are the number of detected and ground- |
truth edge points, respectively, addis the distance to the 1 4 A
closest edge possible for ti#h edge pixel detected. In our E2= n_d”E:O [QM.1)—Q(L]I™ (A13)
study the binary edge field obtained from the uncompressed

image is considered the “ground truth,” or the reference

edge field. The factor mém,,n} penalizes the number of For multispectral images the index in H&13) can simply

be averaged over the bands. Alternatively, a single edge

false alarm edges or, conversely, missing edges. field from multiband imagé8“® can be obtained and the
This scaling factor provides the relative weighting be- resulting edge discrepancies measured like in(B4.3).

tween smeared edges and thin but offset edges. The terms 5 property that is complementary to edge information

in the sum penalize possible shifts from the correct edgecq 4 pe surface curvatuf‘g,which is a useful feature for

positions. In summary the smearing and offset effects aregcene analysis, feature extraction, and object recognition.

both included in the Pratt measure, which provides an im- ggiimates of local surface typ&based on the signs of the
pression of overall quality. mean and Gaussian curvatures, have been widely used for

image segmentation and classification algorithms. If one
. models a gray level image as a three-dimensi¢88) to-

C.2  Edge Stability Measure pological surface, then one can analyze this surface locally
Edge stability is defined as the consistency of edge that isusing differential geometry. A measure based on the dis-
evident across different scales in both the original and crepancy of mean and Gaussian curvatures between an im-
coded image$! Edge maps at different scales have been age and its distorted version was used in Ref. 49. However
obtained from the images using the Cafthgperator for  this measure was not pursued further due to the subjective
different scale parametefsvith standard deviation of the assignment of weights to the surface types and the fact that
Gaussian filter assuming values of,=1.19, 1.44, 1.68, this measure did not perform particularly well in prelimi-
2.0, and 2.38 The output of this operator at scafe is nary tests.

decided at the threshold™, where T"=0.1(Cax— Cmin)

+Cpin- In this expressiorC,,,, and C,,, denote, respec- )

tively, the maximum and minimum values of the norm of D Spectral Distance Measures

the gradient output in that band. Thus the edge map at scalén this category we consider the distortion penalty functions
om Of imageC is obtained as obtained from the complex Fourier spectrum of imaje¥.
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D.1 Magnitude and Phase Spectrum

Let the DFT of thekth band of the original and coded

images be denoted by, (u,v) and fk(u,v), respectively.
The spectra are defined as

fraon

k=1,...

N—-1
I'(up)= > Cg(mn)ex
m,n=0

v

N 1 5K-

xex;{ —2min

Spectral distortion measures, using difference metrics like,
for example, those given in EqsAl)—(A3), can be ex-

tended to multispectral images. To this end considering the

phase and magnitude spectra, that is,
¢(u,v)=arctafl'(u,v)],
(u,v)=|T'(u,)l,

the distortion that occurs in the phase and magnitude spec-

tra can be calculated and weighted separately. Thus one can

define the spectral magnitude distortion,
1 N—1

S=z 2 IM(up)=M(up)f?,
N u,v=0

the spectral phase distortion,

N—1
1
Sl=7 2 le(uv)—d(uv)? (A14)
N u,v=0
and the weighted spectral distortion,
N—1
S2=p | A 2 fe(u,) = duv)P+(1-))
u,v=0
N—1
X > [M(u,v)—M(u,v)|?], (A15)

u,v=0

where\ is chosen to attach commensurate weights to the=
phase and magnitude terms. These ideas can be extended
a straightforward manner to multiple band images by sum-
ming over all band distortions. In the following computa-
tions, \ is chosen so as to render the contributions of the
magnitude and phase terms commensurate, sonth&.5
X 10°°,

Due to the localized nature of distortion and/or the non-
stationary image field, Minkowsky averaging of block

of image quality

where u, v=—b/2,... p/2 and I=1,... L, in

magnitude-phase form

or

| |
Th(u,0) = [Tl(u,0) €900 = ml (u,0)ekbo),

Then the following measures can be defined in the trans-
form domain over théth block:
) 1ly

.
X

LS,

=
with X\ the relative weighting factor of the magnitude and
phase spectra. Obviously the measures of H446)—
(A18) are special cases of the above definitions for block
sizeb that cover the whole image. Various rank order op-
erations of the block spectral differencég and/orJ, can
prove useful. Thus leg™, ... J) be the rank ordered
block distortions, such that, for exampl@{")=maxJ'}.

|

b-1

> [Tu0)| =T (u,0)[]”

v=0

1 K
M=k 2
b—1

2 Uguo)l=1diuo)l]

|
<P

J=a3+ (103,

Then one can consider the following rank order averages:
median block distortioni(J“/?+ J(- ")) maximum block
distortion,J™), and average block distortion, LT, 3.

We have found that the median of the block distortions is
the most effective averaging of rank ordered block spectral
distortions and we have thus used

S3=median J},, (A16)
|

S4=median J',, (A17)
|

S5=median J'. (A18)

In this study we have averaged the block spectra with

2 and for the choice of block size we have found that
ock sizes of 32 and 64 yield better results than sizes in the
lower or higher range.

E Context Measures

Most of the compression algorithms and computer vision
tasks are based on neighborhood information of the pixels.
In this sense any loss of information in the pixel neighbor-
hoods, that is, damage to the pixel context, could be a good

spectral distortions may be more advantageous. An imageneasure of overall image distortion. Since such statistical

is divided into nonoverlapping or overlappingblocks of
bXb, say, 16<16, and blockwise spectral distortions like
those in Eqs(A14) and (A15) can be computed. Let the
DFT of thelth block of thekth band imageC'k(m,n) be

FL(u,v):
b—1
o u
F{ ! b

I 1%
= E Ci(m,n)ex
m,n=0

ex;{—ZTrin— ,

b

I (u,0)

information lies in the context probabilities, that is, the
joint probability mass functiofPMF) of pixel neighbor-
hoods, changes in the context probabilities should be in-
dicative of image distortion.

A major hurdle in the computation of context distortion
is the requirement to calculate the high dimensional joint
probability mass function. Typical PMF dimensions would
be of the order o6=10 at least. Consequently one incurs
the “curse of dimensionality problems.” However, as de-
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tailed in Refs. 50 and 51, this problem can be solved by quality factor 90 andR(p,) at the bit rate of quality factor
judicious usage of kernel estimation and cluster analysis.70, etc. As an alternative, the distortion was calculated for
One modification of the kernel method is to identify the an original image and its blurred or noise contaminated
important regions in a-dimensional spac&® by cluster  version.
analysis and to fit region-specific kernels to these locations.
The result is a model that represents both mode and tall .
regions of PMFs well, while c%mbining the summarizing E.2 fDivergences
strength of histograms with the generalizing property of Once the joint PMF of a pixel context is obtained, several
kernel estimates. information theoretic distortion measurésan be used.
In what follows we have used a causal neighborhood of Most of these measures can be expressed in the following

pixels, i.e., Cy(i,j), Ce(i—1,j), Ck(i,j—1), Ce(i—1, general form:
—1), k=1, 2, 3. Hence we have derivexk12 dimen- .
sional PMF’s obtained from four-pixel neighborhoods in d(p f))=g[E %(E) ]
the three bands. ' Pliip)l)?
E1 Rate-Distortion Based Distortion Measure where p/p is the likelihood of the ratio of, the context

PMF of the distorted image, and pfthe PMF function of

the original image, ang,, is the expectation with respect to

p. Some examples follows.

(x) Hellinger distancef (x)=(yx—1)?, g(x)= x,

. P
D(pllp)—g(s p(xlog s

A method by which to quantify the changes in context
probabilities is the relative entropy,defined as

1
z2=5 f (Vp—Vp)Zd\. (A20)
where X° denotes ans-pixel neighborhood andx
=[Xq, ... Xs] @ random vector. Furthermorp,andp are Generalized Matusita distancef(x)=|1—x|", g(x)
the PMFs of the original image context and that of the Y
distorted(e.g., blurred, noisy, compressed, gtmage. The '
relative entropy is directly related to the efficiency in com-
pression and the error rate in classification. Recall also thaty3— \/J |pY —pYdN, r=1. (A21)
the optimal average bit rate is the entropyxof

Notice that integration in EqgA20) and (A21) is carried
H(X)=— 2 p(X)logp(X)=R(p). out in s-dimensional space. Also, we have found according
XeX® to ANOVA analysis that the choice of=5 in the Matusita
distance yields good results. Despite the fact that the PMFs

If, instead of the true probability, a perturbed versfan 44 ot directly reflect the structural content or the geometri-
that is, the PMF of the distorted image, is used, then thecy) features in an image, they perform sufficiently well to

average bit rat&k(p) becomes differentiate artifacts between the original and test images.
R(P)=— 2 p(X)log, p(X)=H(X)+D(p[p). E.3 Local Histogram Distances
XeXS

In order to reflect the differences between two images at the
The increase in the entropy rate is also indicative of how local level, we calculated the histograms of the original and
much the context probability differs from the original due distorted images on the basis of>1@6 blocks. To this end
to coding artifacts. However we do not know the true PMF we considered both the Kolmogorov—Smirn@sS) dis-
p nor, hence, its rate. We can bypass this problem by com-ance and the Spearman rank correlatiBRO.
paring two competing compression algorithms in terms of ~ For the KS distance we calculated the maximum devia-
the resulting context probabilitifs, andp,. If p; andp, tion between the respective cumulatives. For each of the
are the PMFs that result from the two compressed images16x 16 blocks of the image, the maximum of the KS dis-
then their difference in relative entropy, tances over th& spectral components was found and these
local figures were summed over all the blocks to yield
21=D(p||p1) — D(plP2)=R(P1) ~R(P2), (A19) S maxcq,  «{KS]} where KSj denotes the
_ _ _ _ ~ Kolmogorov—Smirnov distance of block numberand of
is easily and reliably estimated from a moderate-size the kth spectral component. However the KS distance did
sample by subtracting the sample average-&gg p, from not turn out to be effective in the ANOVA tests. Instead the
that of —logp,.>* The comparison can be carried out for SRC measure had better performance. We again considered
more than two images compressed to different bit rates in athe SRC on a 18 16 block basis and we took the maxi-
similar way, that is, by comparing them two by two since mum over the three spectral bands. The block SRC measure
the unknown entropy term is common to all of them. was computed by computing the rank scores of the “gray”
As a quality measure for images we have calcul@&d |evels in the bands and for each pixel the largest of the
for each image when they were compressed at two con-three scores was selected. Then the correlation of the block
secutive bit rates, for exampl®(p,) at the bit rate of  ranks of the original and distorted images was calculated:
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b From these channels, features are extracted and then an
2422 max{SRCﬁ}, (A22) aggregate measure of similarity using a weighted linear
u=l gk=1,...K combination of the feature differences is found. The choice

of features and weights is made to reflect objects similarly.
where SRE denotes the Spearman rank correlation for the ~ We have adopted this database search algorithm to mea-
uth block number and thkth spectral band. sure discrepancies between an original image and its dis-

torted version. In other words, an image similarity metric

that was conceived for browsing and searching in image
F Human Visual System Based Measures databases was adapted to measure the similéoitythe
difference between an image and its distorted version.

Despite the search for an objective image distortion mea- More specifically, we exploit a vision system designed

:3:2S't.|'.iéng{?§'ggtgg L%?;nléietgogz %(IIH\L{E(;Q?:'[%% dmvSi?r; for image database browsing and object identification to

: omp y url : easure image distortion. The image similarity metric in
the present psy_chophysmal means, but t.h e Incorporation Oglef. 14 used 102-dimension feature vectors extracted at
even a %'%eufg'fd HVS model into obpctwg measures different scales and orientations both in luminance and in
reportedly~**>"leads to a better correlation with the sub-

jective ratings. It is conjectured therefore that in machine color channels. The fingHlig)similarity metric is

vision tasks HVS-based measures may have some rel- 102
evance as well. H3=Y wd;, (A25)
=1
F1 HVS Modified Spectral Distortion wherew; are the weights of the component features stated

In order to obtain a closer relation with the assessment byin Ref. 55 andd; are the individual feature discrepancies.
the human visual system, both the original and coded im-We call this metric a “browsing metric” for lack of a better
ages can be preprocessed via filters that simulate the HVSname. For example, the color contrast distortion at dciale
One of the models for the human visual system is given asgiven by

a band-pass filter with a transfer function in polar

coordinate$* 1 g P
d=m 2, (KD =R T,
0.0$p0.554 p<17, IN1i,j=0
H(p)= e~ 9lllogiop—logo9l1?% =7 whereN,; X N; is the size of the image at scadleK(i,j) and

K(i,j) denote any color or contrast channel of the original
wherep=(u?+0v?)¥2. An image processed through such a image and of the coded image at a certain leveThe
spectral mask and then inverse discrete cosine transformetengthy details of the algorithm and its adaptation to our

can be expressed via th_{:;{} operator, i.e., problem are summarized in Refs. 14 and 55. Finally, note
that this measure was used only for color images, and not in
U{C(i,))}=DCT YH(VuZ+v2)Q(u,v)}, the case of satellite three-band images.

The last quality measure we used that reflects the prop-

where Q(u,v) denotes the 2D DCT of the image and erties of the human visual system was the DCTune

DCT-® is the 2D inverse DCT. Some possible measif®s algorithm>® DCTune is in fact a technique for optimizing
for the K component multispe-ctral image are JPEG still image compression. DCTune calculates the best

: ) JPEG quantization matrices to achieve the maximum pos-
normalized absolute error: sible compression for a specified perceptual error, given a
K <N-1 . A particular image and a particular set of viewing conditions.
H1— 1 =i —olU{Cu(i, )} = W{C(i. D} (A23) DCTune also allows the user to compute the percepted er-
K=t Zi’\‘j’=10|u{ck(i )} ' ror between two images in units of JNDs between a refer-
' ence image and a test imaghttp://vision.arc.nasa.gov/
L2 norm: dctune/dctune2.0.htmlThis JND measure was used as the
last metric H4) in Table 1.

K N—-1 1/2
1 - A
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