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Abstract. In this work we comprehensively categorize image qual-
ity measures, extend measures defined for gray scale images to
their multispectral case, and propose novel image quality measures.
They are categorized into pixel difference-based, correlation-based,
edge-based, spectral-based, context-based and human visual sys-
tem (HVS)-based measures. Furthermore we compare these mea-
sures statistically for still image compression applications. The sta-
tistical behavior of the measures and their sensitivity to coding
artifacts are investigated via analysis of variance techniques. Their
similarities or differences are illustrated by plotting their Kohonen
maps. Measures that give consistent scores across an image class
and that are sensitive to coding artifacts are pointed out. It was
found that measures based on the phase spectrum, the multireso-
lution distance or the HVS filtered mean square error are computa-
tionally simple and are more responsive to coding artifacts. We also
demonstrate the utility of combining selected quality metrics in build-
ing a steganalysis tool. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1455011]

1 Introduction

Image quality measures~IQMs! are figures of merit used
for the evaluation of imaging systems or of coding/
processing techniques. In this study we consider several
image quality metrics and study their statistical behavior
when measuring various compression and/or sensor arti-
facts.

A good objective quality measure should reflect the dis-
tortion on the image well due to, for example, blurring,
noise, compression, and sensor inadequacy. One expects
that such measures could be instrumental in predicting the
performance of vision-based algorithms such as feature ex-
traction, image-based measurements, detection, tracking,
and segmentation, etc., tasks. Our approach is different

from companion studies in the literature that focused on
subjective image quality criteria, such as those in Refs.
1–3. In a subjective assessment measures characteristics of
human perception become paramount, and image quality is
correlated with the preference of an observer or the perfor-
mance of an operator for some specific task.

In the image coding and computer vision literature, the
most frequently used measures are deviations between the
original and coded images,4–6 with varieties of the mean
square error~MSE! or signal to noise ratio~SNR! being the
most common measures. The reasons for their widespread
popularity are their mathematical tractability and the fact
that it is often straightforward to design systems that mini-
mize the MSE. Raw error measures such as the MSE work
best when the distortion is due to additive noise contami-
nation. However they do not necessarily correspond to all
aspects of the observer’s visual perception of the errors,7,8

nor do they correctly reflect structural coding artifacts.
For multimedia applications and for very low bit rate

coding, there has been an increase in the use of quality
measures based on human perception.9–14 Since a human
observer is the end user in multimedia applications, an im-
age quality measure that is based on a human vision model
seems to be more appropriate for predicting user accep-
tance and for system optimization. This class of distortion
measure in general gives a numerical value that will quan-
tify the dissatisfaction of the viewer in observing the repro-
duced image in place of the original~although Daly’s VPD
map13 is an example opposite to this!. The alternative is the
use of subjective tests in which subjects view a series of
reproduced images and rate them based on the visibility of
the artifacts.15,16 Subjective tests are tedious, time consum-
ing and expensive, and the results depend on various fac-
tors such as the observer’s background, motivation, etc.,
and really actually only the display quality is being as-
sessed. Therefore an objective measure that accurately pre-
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dicts the subjective rating would be a useful guide when
optimizing image compression algorithms.

Recently there have been efforts by the International
Telecommunications Union~ITU! to establish an objective
measurement of video quality. Thus within the context of
the distribution of multimedia documents, video program-
ming, in particular, in-service continuous evaluation of
video quality, is needed. This continuous video quality in-
dicator would be input to the network management, which
must guarantee a negotiated level of quality of service. Ob-
viously such quality monitoring can only be realized with
objective methods.17,18 It must be pointed out, however,
that subjective assessment, albeit costly and time consum-
ing, if not impractical, is accurate. Objective methods, on
the other hand, can at best try to emulate the performance
of subjective methods, and utilize knowledge of the human
visual system.

Similarly for computer vision tasks, prediction of the
algorithmic performance in terms of imaging distortions is
of great significance.19,20 In the literature the performance
of feature extraction algorithms, like lines and corners,19

propagation of covariance matrices,20 and quantification of
target detection performance and ideal observer
performance,21–23 have been studied under additive noise
conditions. It is of great interest to correlate coding and
sensor artifacts with this kind of algorithmic performance.
More specifically, one would like to identify image quality
metrics that can accurately and consistently predict the per-
formance of computer vision algorithms that operate on
distorted image records, the distortions being due to com-
pression, sensor inadequacy, etc. An alternative use of im-
age quality metrics is in inverse mapping from metrics to
the nature of distortions.24 In other words, given the image
quality metrics, one tries to reconstruct the distortions~e.g.,
the amount of blur, noise, etc., in distortion coordinates!
that could have resulted in the measured metric values.

In this paper we study objective measures of image qual-
ity and investigate their statistical performance. Their sta-
tistical behavior is evaluated first, in terms of how discrimi-
nating they are to distortion artifacts when tested on a
variety of images using the analysis of variance method.
The measures are then investigated in terms of their mutual
correlation or similarity in the form of Kohonen maps.

Twenty-six image quality metrics are listed and de-
scribed in Appendix A and summarized in Table 1. These
quality metrics are categorized into six groups according to
the type of information they use. The categories used are:

1. pixel difference-based measures such as mean square
distortion;

2. correlation-based measures, that is, correlation of
pixels, or of the vector angular directions;

3. edge-based measures, that is, displacement of edge
positions or their consistency across resolution levels;

4. spectral distance-based measures, that is, the Fourier
magnitude and/or phase spectral discrepancy on a
block basis;

5. context-based measures, that is, penalties based on
various functionals of the multidimensional context
probability;

6. human visual system~HVS!-based measures, that is,

measures either based on the HVS-weighted spectral
distortion measures or~dis!similarity criteria used in
image base browsing functions.

We define several distortion measures in each category.
The specific measures are denoted byD1, D2, etc. in Ap-
pendix A, in the pixel difference category, asC1, C2, etc.
in Appendix B, in the correlation category and so on for
ease of reference in the results and discussion sections.

The paper is organized as follows: The methodology and
data sets are given in Sec. 2. The descriptions of the spe-
cific measures used are relegated to the Appendix and its
six subsections. The results of the experiments and statisti-
cal analyses are presented in Sec. 3. We discuss the main
conclusions and related future work in Sec. 4.

2 Goals and Methods

2.1 Quality Attributes

Objective video quality model attributes were reported in
Refs. 17 and 18. These attributes can be directly translated
to the still image quality measures as ‘‘IQM desiderata’’ in
multimedia and computer vision applications.

• Prediction accuracy: The accurate prediction of distor-

Table 1 List of symbols and equation numbers of the quality met-
rics.

Symbol Description Equation

D1 Mean square error (A1)

D2 Mean absolute error (A2)

D3 Modified infinity norm (A3)

D4 L* a* b* perceptual error (A4)

D5 Neighborhood error (A5)

D6 Multiresolution error (A6)

C1 Normalized cross correlation (A7)

C2 Image fidelity (A8)

C3 Czekonowski correlation (A9)

C4 Mean angle similarity (A10)

C5 Mean angle-magnitude similarity (A11)

E1 Pratt edge measure (A12)

E2 Edge stability measure (A13)

S1 Spectral phase error (A14)

S2 Spectral phase-magnitude error (A15)

S3 Block spectral magnitude error (A16)

S4 Block spectral phase error (A17)

S5 Block spectral phase-magnitude error (A18)

Z1 Rate distortion measure (A19)

Z2 Hellinger distance (A20)

Z3 Generalized Matusita distance (A21)

Z4 Spearman rank correlation (A22)

H1 HVS absolute norm (A23)

H2 HVS L2 norm (A24)

H3 Browsing similarity (A25)

H4 DCTune
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tion, whether for algorithmic performance and subjec-
tive assessment. For example, when quality metrics
are shown in box plots, like in Fig. 1, an accurate
metric will possess a small scatter plot.

• Prediction monotonicity: The objective image quality
measure’s scores should be monotonic in their rela-
tionship to the performance scores.

• Prediction consistency: This attribute relates to the ob-
jective quality measure’s capability to provide consis-
tently accurate predictions for all types of images and
not to fail badly for a subset of images.

These desired characteristics are captured in the statisti-
cal measures such as theF scores of the quality metrics, as
detailed in Tables 1–3.

2.2 Test Image Sets and Rates

All the image quality measures are calculated in their
multiband versions. In the current study of the quality mea-
sures in image compression, we used two well-known com-
pression algorithms: the popular DCT based JPEG25 and
wavelet zero-tree method ‘‘set partitioning in hierarchical
trees’’ ~SPIHT! formulated by Said and Pearlman.26 The
other types of image distortions are generated by the use of
blurring filters of various support sizes and by the addition
of white Gaussian noise at various levels.

The rate selection scheme was based on the accepted
rate ranges of JPEG. It is known that the JPEG quality
factor Q between 80 and 100 corresponds to visually im-
perceptible impairment,Q between 60 and 80 corresponds
to perceptible but not annoying distortion, forQ between
40 and 60 the impairment becomes slightly annoying, forQ

between 20 and 40 the impairment is annoying, and, finally,
for Q less than 20 the degradation is very annoying. Thus
each image class was compressed with 5 JPEGQ factors of
90, 70, 50, 30, and 10. For each quality class the average
length of compressed files was calculated and the corre-
sponding bit rate~bit/pixel! was accepted as the class’ rate.
The same rate as that obtained from the JPEG experiment
was also used in the SPIHT algorithm.

The test material consisted of the following image sets:
~1! 10 three-band remote sensing images, which contained
a fair amount of variety, i.e., edges, textures, plateaus,
and contrast range,~2! 10 color face images from
the Purdue University Face Image database27 at
rvl1.ecn.purdue.edu/aleix/Aleix–face–DB.html, and~3! 10
texture images from the MIT Texture Database~VISTEX!
at www-white.media.edu/vismod/imagery/VisionTexture/
vistex.html.

2.3 Analysis of Variance

Analysis of variance~ANOVA !28 was used as a statistical
tool to evaluate the merits of the quality measures. In other
words, ANOVA was used to show whether variation in the
data could be accounted for by the hypothesized factor, for
example, the factor of image compression type, the factor
of image class, etc. The output of the ANOVA is the iden-
tification of those image quality measures that are most
consistent and discerning of the distortion artifacts due to
compression, blur, and noise.

Recall that ANOVA is used to compare the means of
more than two independent Gaussian distributed groups. In
our case each ‘‘compression group’’ consists of quality
scores from various images at a certain bit rate, and there
are k55 groups corresponding to the five bit rates tested.
Each group had 30 sample vectors since there were 30 mul-
tispectral test images~10 remote sensing, 10 faces, 10 tex-
tures!. In a similarly way three ‘‘blur groups’’ were created
by low-pass filtering the images with two-dimensional~2D!
Gaussian-shaped filters with increasing support. Finally
three ‘‘noise groups’’ were created by contaminating the
images with Gaussian noise with variance set at~s2

5200, 600, and 1700!. This range of noise values spans the
noisy image quality from just noticeable distortion to an-
noying degradation. In a concomitant experiment57 images
were watermarked at four different insertion strengths.

Since we have two coders~i.e., JPEG and SPIHT algo-
rithms! two-way ANOVA is appropriate. The hypotheses
for the comparison of independent groups are

H0 : m15m25...5mk

mean values of all groups are equal,

HA : m i Þm j

mean values of two or more groups

are not equal.

It should be noted that the test statistic is anF test withk– l
andN–k degrees of freedom, whereN is the total number
of compressed images. A lowp-value ~high F value! for
this test indicates one should reject the null hypothesis in

Fig. 1 Box plots of quality measure scores: (a) good measure, (b)
moderately good measure, (c) poor measure.
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favor of the alternative. Recall that the null hypothesis cor-
responds to a situation in which all samples are drawn from
the same set and there is no significant difference between
their means. A low value ofp ~correspondingly, a high
value ofF! casts doubt on the null hypothesis and provides
strong evidence that at least one of the means is signifi-
cantly different. In other words, there is evidence that at
least one pair of means is not equal. We have opted to carry
out multiple comparison tests at the 0.05 significance level.
Thus any test resulting of ap value under 0.05 would be
significant, and, therefore, one would reject the null hy-
pothesis in favor of the alternative hypothesis. This is done
to assert that the difference in quality metric arises from
image coding artifacts and not from random fluctuations in
the image content.

To find out whether the variation of the metric scores
arises predominantly from image quality, and not from the
image set, we considered the interaction between the image
set and distortion artifacts~i.e., compression bit rate, blur,
etc.!. To this end we considered theF scores with respect to
the image set as well. As will be discussed in Sec. 3 and
shown in Tables 2 and 3, metrics that were sensitive to
distortion artifacts were naturally sensitive to variations in
the image set as well. However for the ‘‘good’’ measures
identified, the sensitivity to image set variation was always
less to the distortion sensitivity.

A graphical comparison based on box plots, where each
box is centered on the group median and sized to the upper
and lower 50 percentiles, allows one to see the distribution
of the groups. If theF value is high, there will be little
overlap between two or more groups. If theF value is not
high, there will be a fair amount of overlap among all of the
groups. In the box plots, a steep slope and little overlap
between boxes, as illustrated in Fig. 1, are both indicators
of a good quality measure. In order to quantify the dis-
criminative power of a quality measure, we have normal-
ized the difference between two successive group means by
their respective variances, i.e.,

Qr ,r 115
m r2m r 11

As rs r 11

,

~1!
Q5ave$Qr ,r 11% r 51, . . .k21,

wherem r denotes the mean value of the image quality mea-
sure for the images compressed at rater and s r is the
standard deviation;k is the number of different bit rates at
which quality measures are calculated. A good image qual-
ity measure should have a highQ value, which implies
little overlap between groups and/or large jumps between
them hence a highly discriminative power of the quality
measure. It should be noted that theQ values and theF
scores yielded identical results in our experiments.

In Fig. 1 we give box plot examples of a good, a mod-
erate, and a poor measure. For the box plot visualization the
data have been appropriately scaled without any loss of
information.

2.4 Visualization of Quality Metrics

The visualization of the IQMs in a 2D display is potentially
helpful to observe the clustering behavior of the quality

metrics, and conversely to deduce how differently they re-
spond to distortion artifacts arising from compression, blur
and noise. The output of self-organizing map~SOM! visu-
alization is a set of qualitative arguments showing their
similarity or dissimilarity. To see this we organized them as
vectors and fed them to a SOM algorithm. The elements of
the vectors are simply the measured quality scores. For
example, consider the MSE error (D1) for a specific com-
pression algorithm~e.g., JPEG! at a specific rate. The cor-
responding vectorD1 is M dimensional, whereM is the
number of images, and it reads

D1~JPEG,bitrate!

5@D1~1uJPEG,bitrate!, . . . ,D1~M !u JPEG,bitrate#T.

There will be five such vectors, one for each bit rate con-
sidered. We used a total of 30 images35 bit rates
32 compressors326 metrics57800 vectors to train the
SOM.

Recall that the SOM is a tool for visualization of high
dimensional data. It maps complex, nonlinear high dimen-
sional data into simple geometric relationships on a low
dimensional array and thus serves to produce abstractions.
Among the important applications of the SOM one can cite
the visualization of high dimensional data, as a case in
point, and the discovery of categories and abstractions from
raw data.

Let the data vectors be denoted asX5@x1 , . . . ,xM#T

PRM, whereM is the number of images considered~M
530 in our case!. With each element in the SOM array, a
parametric real vectormi5@m i1 , . . . ,m iM #TPRM that is
associated. The location of an input vectorX in the SOM
array is defined by the decoder functiond(X,mi), where
d(.,.) is ageneral measure of distance. The location of the
input vector will have the array indexc defined asc
5argmin

i
d(X,mi). A critical part of the algorithm is defin-

ing mi in such a way that the mapping is ordered and de-
scriptive of the distribution ofX. Finding such a set of
values that minimizes the distance measure resembles the
standard vector quantization~VQ! problem. In contrast, the
indexing of these values is arbitrary, whereby the mapping
is unordered. However, if minimization of the objective
functional based on the distance function is implemented
under the conditions described in Ref. 29, then one can
obtain ordered values ofmi , almost as ifmi were lying at
the nodes of an elastic net. With the elastic net analogy in
mind, the SOM algorithm can be constructed as

mi~ t11!5mi~ t !1a~ t !@X~ t !2mi~ t !#,

wherea(t) is a small scalar, if the distance between unitsc
and i in the array is smaller than or equal to a specified
limit ~radius!, anda(t)50 otherwise. During the course of
the ordering process,a(t) is decreased from 0.05 to 0.02,
while the radius of the neighborhood is decreased from 10
to 3. Furthermore scores are normalized with respect to the
range.
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The component planesj of the SOM, i.e., the array of
scalar valuesm i j representing thej th components of the
weight vectorsmi and having the same format as the SOM
array, are displayed as shades of gray.

3 Statistical Analysis of Image Quality Measures

Our first goal is to investigate the sensitivity of quality
measures to distortions that arise from image compression
schemes, in other words, to find the degree to which a
quality measure can discriminate the coding artifacts and
translate it into a meaningful score. We similarly establish
the response sensitivity of the measures to other causes of
distortion such as blur and noise. Our second goal is to
establish how various quality measures are related to each
other and to show the degree to which measures respond
~dis!similarly to coding and sensor artifacts. As the out-
come of these investigations we intend to extract a subset
of measures that satisfies the image quality measure desid-
erata.

3.1 ANOVA Results

The two-way ANOVA results of the image quality mea-
sures of the data obtained from all image classes~fabrics,
faces, remotes! are listed in Table 2. In Table 2 the symbols
of quality measuresD1, D2, . . . ,H3, H4 are listed in the
first column while theF scores of JPEG compression, of
SPIHT compression, of blur and of noise distortions are
given, respectively, in the remaining four columns.

The metric that responds most strongly to one distortion
type is called the ‘‘fundamental metric’’ of that distortion
type.24 Note that there could be more than one fundamental
metric. Similarly, the metric that responds adequately to all
sorts of distortion effects is denoted as the ‘‘global metric.’’
One notices the following.

• The fundamental metrics for JPEG compression are
H2, H1, S2, andE2, which is the human visual sys-
tem ~HVS! L2 norm, the HVS absolute norm, the

Table 2 ANOVA results (F scores) for the JPEG and SPIHT compression distortions as well as for
additive noise and blur artifacts. For each distortion type the variation due to the image set is also
established. For compression the degrees of freedom are 4 (bit rate) and 2 (image class) while they
are 2 for both the blur and noise experiments.

ANOVA2

JPEG SPIHT Blur Noise

Bit rate Image set Bit rate Image set Blur Image set Noise Image set

D1 104.6 42.59 39.23 13.28 43.69 2.06 9880 17.32

D2 108.5 67.45 29.56 15.93 33.94 17.76 6239 20.4

D3 63.35 29.37 53.31 48.53 38.55 24.13 1625 11.15

D4 89.93 1.99 13.75 3.71 27.87 0.96 166.4 9.88

D5 20.26 80.71 14.09 68.22 6.32 55.11 1981 43.51

D6 76.73 5.94 37.52 11.22 412.9 45.53 44.61 4.38

C1 1.35 124.6 12.05 325.5 5.61 107.2 3.82 6.17

C2 12.26 93.83 15.18 82.87 11.19 39.77 58.04 45.63

C3 82.87 83.06 24.96 22.42 30.92 1.71 567.5 52.01

C4 45.65 47.36 7.91 5.94 16.48 0.77 198.8 19.03

C5 91.42 38.17 27.51 5.28 52.57 2.44 704 10.8

E1 26.24 3.64 77.86 137 125.8 21.09 87.76 27.87

E2 176.3 92.75 212.5 200.4 768.7 23.41 158.5 24.84

S1 150.5 102.2 104 68.17 1128 60.04 47.29 38.42

S2 191.3 98.42 161 101.8 572.2 17.95 107.1 4.83

S3 145.6 56.39 38.58 26.97 24.28 6.39 2803 8.59

S4 129.1 63.26 128 46.85 215 11.17 56.04 55.1

S5 146.1 71.03 144.1 61.65 333.6 27.84 78.04 26.53

Z1 1.69 141.8 21.36 14 35.9 62.5 44.89 110.9

Z2 7.73 114.7 11.41 77.68 10.17 1.80 3.03 11.36

Z3 17.63 223 23.22 181.4 17.26 8.31 14.71 21.12

Z4 9.4 23.58 9.84 32.41 8.45 14.74 24.99 3.31

H1 371.9 0.09 107.2 40.05 525.6 69.98 230.7 19.57

H2 2291 5.46 132.9 22.82 47.28 101.7 624.3 21.32

H3 123 1.2 27.45 7.6 67.31 6.77 117.3 0.50

H4 78.83 7.14 25.2 95.72 12.55 2.11 29.06 6.69
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spectral phase magnitude, and edge stability measures.
These measures are listed in decreasing order of theF
score.

• The fundamental metrics for SPIHT compression are
E2, S2, S5, and H2, that is, edge stability, spectral
phase magnitude, block spectral phase magnitude, and
the HVSL2 norm.

• The fundamental metrics for the blur effect areS1,
E2, S2, andH1, that is, spectral phase, edge stability,
spectral phase magnitude, and the HVS absolute
norm. Notice the similarity of the metrics between
SPIHT and blur. This is due to the fact that we prima-
rily encounter blur artifacts in wavelet-based compres-
sion.

• The fundamental metric for the noise effect is, as ex-
pected,D1, the mean square error.

• Finally the image quality metrics that are sensitive to
all distortion artifacts are, in rank of order,E2, H1,
S2, H2, andS5, that is, edge stability, the HVS abso-
lute norm, spectral phase magnitude, the HVSL2
norm, and block spectral phase magnitude. To estab-
lish the global metrics, we gave rank numbers from 1
to 26 to each metric under the four types of distortion
in Table 2. For example, for JPEG the metrics are
ordered asH2, H1, S2, E2, etc., if we take into con-
sideration theirF scores. Then we summed their rank
numbers, and the metrics for which the sum of the
scores were the smallest were declared the global met-
ric, that is, the ones that qualify well in all discrimi-
nation tests. These results must still be taken with
some caution since, for example, none of the five win-
ning scores is as sensitive to additive noise as theD1
andD2 scores.

• The metrics that were the least sensitive to image set
variation areD4, H3, C4, C5, D6, etc. It can be ob-
served that these metrics in general also show poor
performance in discriminating distortion effects. On
the other hand, for the distortion sensitive metrics,
even though their image set dependence is higher than
the so-called ‘‘image independent’’ metrics, more of
the score variability is due to distortion than to image
set changes. This can be observed based on the higher
F scores for distortion effects compared to image set
relatedF scores.

These observations are summarized in Table 3 where one-
way results are given for each image class~fabrics, faces,
remote sensing! separately, and two-way ANOVA results
are presented for the combined set. In the two bottommost

Table 3 Classification of metrics according to their sensitivity for different types of distortion on indi-
vidual and combined image sets. The bottom two rows indicate the metrics that are least sensitive to
the image set and to the coder type.

One-way
ANOVA

Image set JPEG SPIHT Blur Noise

Fabrics H4, H2, E2, S4 E1, S1, E2, S2 S1, S5, E2, S4 D1, D2, D5, D3

Faces H2, D1, S3, H1 H4, D3, H2, C1 S2, H1, S1, E2 D1, S3, D2, D3

Remote sensing H2, H4, S4, S5 S2, S5, S4, S1 D6, S5, S4, S1 D1, D2, C3, C5

Two-way
ANOVA

Combined set H2, H1, S2, E2 E2, S2, S5, H2 S1, E2, S2, H1 D1, D2, S3, D5

Image set independence H1, H3 D4, C5 C4, D4 H3, Z4

Coder type independence D2, D1, Z4, D3

Table 4 ANOVA results for the effect of bit rate (pooled data from
JPEG and SPIHT) and of coder type. The degrees of freedom are 4
(bit rate) and 1 (coder type).

ANOVA2 JPEG1SPIHT

Metric Bit rate Coder

D1 89.79 0.75

D2 74.98 2.72

D3 71.55 1.21

D4 70.52 43.85

D5 17.07 0.0005

D6 85.22 118.8

C1 2.66 45.47

C2 12.28 18.27

C3 56.48 1.56

C4 31.3 2.43

C5 78.98 2.23

E1 42.69 11.61

E2 122.4 26.28

S1 99.12 5.29

S2 140.1 12.37

S3 92.99 9.27

S4 115.5 39.1

S5 124.8 43.09

Z1 4.28 41.6

Z2 9.54 0.83

Z3 12.87 0.56

Z4 9.39 6.64

H1 278.6 52.87

H2 493 87.21

H3 97.94 16.19

H4 21.13 57.72
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rows of Table 3 the metrics that are least sensitive to the
coder type and to the image set are given. The criteria for
omitting and entering the metrics in Table 3 were the out-
come of theF scores.

We also investigated the metrics with respect to their
capability to respond to bit rate and coder type. For this
analysis the scores of the JPEG and SPIHT compressors
were combined. The following can be observed in Table 4.

• The metrics that were best in discriminating compres-
sion distortion as parameterized by the bit rate, what-
ever the coder type, that is JPEG or SPIHT, wereH2,
H1, S2, andS5 ~the HVSL2 norm, the HVS absolute
norm, spectral phase magnitude, block spectral phase
magnitude, etc.

• The metrics that were capable of discriminating the
coder type~JPEG versus SPIHT! were similar in the
sense that they all belong to the human vision system
inspired types, namely,D6, H2, H4, andH1 ~multi-
resolution error, the HVSL2 norm, DCTune, and the
HVS L1 norm!.

• Finally, the metrics that were most sensitive to distor-
tion artifacts, but at the same time least sensitive to
image set variation, wereC5, D1, D3, S3, D2, C4,
etc. ~mean angle-magnitude similarity, mean square
error, modified infinity norm, block spectral magni-
tude error, mean absolute error, mean angle similarity,
etc.!. These metrics were identified by summing the
two rank scores of the metrics, the first being the ranks
in ascending order of distortion sensitivity, the second
in descending order of the image set sensitivity. Inter-
estingly enough almost all of them are related to a
variety of mean square error. Despite its many criti-
cisms, this may explain why mean square error or
signal-to-noise ratio measures have proven to be so
resilient over time. Again this conclusion should be
accepted with some caution. For example, common
experience indicates that MSE measures do not neces-
sarily reflect all the objectionable coding artifacts es-
pecially at low bit rates.

As expected the metrics that are responsive to distor-
tions are also almost always responsive to the image set.
Conversely, the metrics that do not respond to variation of
the image set are also not very discriminating with respect
to distortion types. The fact that the metrics are sensitive, as
would be expected, to both the image content and distortion
artifacts does not eclipse their potential as quality metrics.
Indeed, when the metrics were tested in more homogeneous
image sets~that is, only within face images or remote sens-
ing images, etc.! the same high-performance metrics scored
consistently higher. Furthermore, when one compares theF
scores of the metrics with respect to bit rate variation and
image set variation, even though there is a non-negligible
interaction factor, theF score due to bit rate is always
larger than theF score due to image sets.

3.2 Self-Organizing Map of Quality Measures

Our second investigation was of the mutual relationship
between measures. It is obvious that the quality measures
must be correlated with each other since most of them must

respond to compression artifacts in similar ways. On the
other hand, one can conjecture that some measures must be
more sensitive to blurring effects, while others respond to
blocking effects, while still others reflect additive noise.

The SOM29 is a pictorial method by which to display
similarities and differences between statistical variables,
such as quality measures. We have therefore obtained spa-
tial organization of these measures via Kohonen’s self-
organizing map algorithm. The input to the SOM algorithm
was vectors whose elements are the scores of the measure
resulting from different images. More explicitly, consider
one of the measures, let us say,D1, and a certain compres-
sion algorithm, e.g., JPEG. The instances of this vector will
be 60 dimensional, one for each of the images in the set.
The first 30 components consist of 30 images compressed
with JPEG, the next 30 juxtaposed components of the same
images compressed with SPIHT. Furthermore there will be
five such vectors, one for each of the bit rates.

The SOM organization of the measures in 2D space for
pooled data from JPEG and SPIHT coders is shown in Fig.
2. These maps are useful for visual assessment of any pos-
sible correlation present in the measures. One would expect
that measures with similar trends and which respond in
similar ways to artifacts would cluster together spatially.
The main conclusions from observation of the SOM and
the correlation matrix are the following.

• The clustering tendency of pixel difference based
measures (D1,D2,D4,D5) and the spectral magnitude
based method (S3) is obvious in the center portion of
the map, a reflection of the Parseval relationship.
However notice that spectral phase-magnitude mea-
sures (S2,S5) stay distinctly apart from these mea-
sures. In a similar vein purely spectral phase measures
also form a separate cluster.

• The human visual system based measures
(H2,H3,H4), multiresolution pixel-difference mea-

Fig. 2 SOM map of distortion measures for JPEG and SPIHT.
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sure (D6), E2 ~edge stability measure!, and C5
~mean angle-magnitude measure! are clustered on the
right side of the map. The correlation of the multireso-
lution distance measure,D6, with HVS based mea-
sures (H2,H3,H4) is not surprising since the idea be-
hind this measure is to mimic an image comparison by
eye more closely by assigning a larger weight to low
resolution components and a lesser weight to the de-
tailed high frequency components.

• The three correlation based measures (C1,C2,C3) are
together in the lower part of the map while the two
spectral phase error measures (S2,S5) are concen-
trated separately in the upper part of the map.

• It is interesting to note that all the context-based mea-
sures (Z1,Z2,Z3,Z4) are grouped in the upper left re-
gion of the map together withH1 ~the HVS filtered
absolute error!.

• The proximity of the Pratt measure (E1) and the
maximum difference measures (D3) is meaningful,
since the maximum distortions in reconstructed im-
ages are near the edges. The constrained maximum
distance or sorted maximum distance measures can be
used in codec designs to preserve the two-dimensional
features, such as edges, in reconstructed images.

In conclusion the relative positioning of measures in the
two-dimensional map was in agreement with one’s intuitive
grouping and with the ANOVA results. We would like to
emphasize here that in the above SOM discussions it is
only the relative position of the measures that is significant,
while their absolute positioning is arbitrary. Furthermore,
the metrics that behave in an uncorrelated way in the SOM
display are conjectured to respond to different distortion
artifacts and are used as an additional criterion for the se-
lection of ‘‘good’’ measure subsets.

3.3 Combination of Quality Measures: Supermetrics

It was conjectured that a judicious combination of image
quality metrics could be more useful in image processing
tasks. We present two instances of the application of an
IQM combination, namely, in steganalysis and in predicting
subjective quality measures.

Steganography refers to the art of secret communication
while steganalysis is the ensemble of techniques that can
detect the presence of watermarks and differentiate ste-
godocuments. For this digital watermarking is used, which
consists of an imperceptible and cryptographically secure
message added to the digital content, to be extracted only
by the recipient. However, if digital watermarks are to be
used in steganography applications, detection of their pres-
ence by an unauthorized agent defeats their very purpose.
Even in applications that do not require hidden communi-
cation, but only watermarking robustness, we note that it
would be desirable to first detect the possible presence of a
watermark before trying to remove or manipulate it.

The underlying idea of watermarking is to create a new
document, e.g., an image, which isperceptually identical
but statistically differentfrom the host signal. Watermark
decoding uses this statistical difference in order to extract
the stegomessage. However, the very same statistical differ-
ence that is created could potentially be exploited to deter-

mine if a given image is watermarked or not. The answer to
this conjecture is positive in that we show that watermark-
ing leaves unique artifacts, which can be detected using
image quality measures~IQMs!.57,58

In order to identify specific quality measures that prove
useful in steganalysis, that is, distinguishing the water-
marked images from the nonwatermarked ones, we again
use the ANOVA test. Twenty-six quality measures are sub-
jected to a statistical test to determine if the fluctuations of
the measures result from image variety or whether they
arise due to treatment effects, that is, watermarking and
stego-message embedding. Thus any test resulting in ap
value under 0.05 would be significant, and, therefore, one
would accept the assertion that the difference in quality
metric arises from the ‘‘strength’’ parameter of the water-
marking or steganography artifacts, and not from variations
in the image content. The idea of employing more than one
IQM in the steganalyzer is justified since different water-
marking algorithms mark different features of the image,
such as global discrete Fourier transform~DFT! coeffi-
cients, block discrete cosine transform~DCT! coefficients,
pixels directly, etc.

We performed ANOVA tests for several watermarking
and steganography algorithms. For example, the most dis-
criminating IQMs for the pooled steganography and water-
marking algorithms were found to be the mean absolute
errorD2 , mean square errorD1 , Czekonowsky correlation
measureC3 , angle meanC4 , spectral magnitude distance
S2 , median block spectral phase distanceS4 , median block
weighted spectral distanceS5 , and normalized mean square
HVS error H2 . The implication here is twofold: One is
that, by using these features, a steganalyzer can be designed
to detect the watermarked or stegoed images using multi-
variate regression analysis, as we showed in Refs. 57–59.
This linear combination of IQMs for steganalysis purposes
is denoted as the ‘‘supermetric’’ for steganalysis. It was
shown in Ref. 57 that the steganalysis supermetric can de-
tect the presence of watermarking with 85% accuracy and
can even predict whose watermark it is.58 The other impli-
cation is that current watermarking or steganographic algo-
rithms should exercise more care in those statistically sig-

Fig. 3 Plot of the mean opinion score and image quality supermetric
data.

Statistical evaluation of image quality

Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 213



nificant image features to eschew detection.59

For the second supermetric we searched for a correlation
between the subjective opinions and an objective measure
derived from a combination of our IQMs. The subjective
image quality experiment was conducted with a group of
17 subjects~students that first took a course in image pro-
cessing! who noted their image quality opinion scores in
the 1–5 range, 1 being no distortion could be observed and
5 meaning very annoying quality. The time of observation
was unlimited. The images used were all 5123512 red–
green–blue~RGB! color images from the Purdue Univer-
sity face database, and were viewed at 43 the image
height. The results reported are based on 850 quality evalu-
ations of 50 encoded images~10 images compressed with
JPEG at five different quality scales,Q510, 30, 50, 70, and
90! by the pool of 17 subjects. The supermetric of image
quality for compression artifacts was built using global
metricsE2, H1, S2, H2, andS5, that is, the edge stability,
HVS absolute norm, spectral phase magnitude, HVSL2
norm, and block spectral phase magnitude! for the image
distortions due to compression. The supermetric was built
by regressing them against the mean opinion scores~MOS!.
The plot of this supermetric and MOS data are given in Fig.
3, where a high value of the correlation coefficient was
determined: 0.987. The correlation coefficients of the indi-
vidual metrics, shown in Table 5, were all lower, as ex-
pected.

4 Conclusions

In this work we have presented collectively a comprehen-
sive set of image quality measures and categorized them.
Using statistical tools we were able to classify more than
two dozen measures based on their sensitivity to different
types of distortions.

Statistical investigation of 26 different measures using
ANOVA analyses has revealed that local phase-magnitude
measures~S2 or S5!, HVS-filteredL1 andL2 norms~H1
and H2!, and the edge stability measure (E2) are most
sensitive to coding and blur artifacts, while the mean square
error (D1) remains the best measure for additive noise.
These ‘‘winning’’ metrics were selected on the basis of the
sum of the rank scores over four artifacts: JPEG-
compression/SPIH-compression, blur, and noise. This pre-
selection of theE2, S2, S5, H1, andH2 subset was based,
on the one hand, on their superiorF scores and, on the
other hand, on the fact they appeared to behave in an un-
correlated way in their SOM maps.

These metrics satisfied, in their category of distortion,
the IQM desiderata given in Sec. 2.1, namely, accuracy,
monotonicity, and consistency. TheH1, H2, S2, S5, and

D1 metrics were accurate in that they responded predomi-
nantly to the type of distortion stated than to any other
factor. They responded monotonically to the level of distor-
tion, that is, the metric versus distortion parameter plotted
monotonically~graph not shown!. Finally their consistency
was shown when they were tested on widely differing im-
age classes~faces, textures, remote sensing!.

Ideally speaking, one would like to have a quality mea-
sure that is able to give accurate results for different levels
of performance of a given compression scheme, and across
different compression schemes. It appears that, as shown in
Sec. 3.3, a combination of spectral phase-and-magnitude
measures and of the HVS-filtered error norm comes closest
to satisfying such a measure, because it is sufficiently sen-
sitive to a variety of artifacts. The Kohonen map of the
measures has been useful in depicting measures that behave
similarly or in an uncorrelated way. The correlation be-
tween various measures as are depicted in Kohonen’s self-
organizing map.

In conclusion, the subsets of theE2, S2, S5, H1, and
H2 metrics are the prominent image quality measures, as
shown from both ANOVA analysis and MOS scores points
of view. The implication is that more attention should be
paid to the spectral phase and HVS-filtered quality metrics
in the design of coding algorithms and sensor evaluation.
We have also shown the validity of the ANOVA methodol-
ogy in an alternate application, that is, when we applied it
to the selection of IQMs for the construction of a stegana-
lyzer.

In future work we will address extension of the subjec-
tive experiments. Note that we have only shown in one
experiment that the IQMs selected regress well in the mean
opinion scores. However this experiment must be repeated
on yet unseen data to understand how well it predicts a
subjective opinion. In a similar vein the database for detec-
tion experiments will be extended to cover a larger variety
of watermarking and steganography tools.
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Appendix

Here in the Appendix we define and describe the multitude
of image quality measures considered. In these definitions
the pixel lattices of imagesA andB will be referred to as
A( i , j ) and B( i , j ), i, j 51, . . . ,N, since the lattices are
assumed to have dimensions ofN3N. The pixels can take

Table 5 Image quality metrics and their correlation coefficients with MOS data.

D1 0.893 C1 0.501 E2 0.890 Z1 0.502 H3 0.936

D2 0.895 C2 0.810 S1 0.929 Z2 0.543 H4 0.982

D3 0.720 C3 0.926 S2 0.903 Z3 0.609 Supermetric 0.987

D4 0.901 C4 0.912 S3 0.930 Z4 0.517

D5 0.381 C5 0.917 S4 0.883 H1 0.890

D6 0.904 E1 0.833 S5 0.865 H2 0.938
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values from the set$0, . . . ,G% in any spectral band. The
actual color images we considered had G5255 in each
band. Similarly we will denote the multispectral compo-
nents of an image at pixel positionsi andj, and in bandk as
Ck( i , j ), wherek51, . . . ,K. The boldface symbolsC( i , j )

and Ĉ( i , j ) will indicate the multispectral pixel vectors at
position~i,j!. For example, for the color images in the RGB
representation one hasC( i , j )5@R(i , j ) G(i , j ) B( i , j )#T.
All these definitions are summarized in the following:

Ck( i , j ) ( i , j )th pixel of thekth band of im-
ageC
C( i , j ) ( i , j !th multispectral~with K bands!
pixel vector
C multispectral image
Ck kth band of a multispectral imageC

«k5Ck2Ĉk error over all the pixels in the
kth band of a multispectral imageC

Thus, for example, the power in thekth band can be
calculated assk

25( i , j 50
N21 Ck( i , j )

2. All the quantities with a

caret, i.e.,Ĉk( i , j ), Ĉ, etc., will correspond to distorted
versions of the same original image. As a case in point, the
expression iC( i , j )2Ĉ( i , j )i25(k51

K @Ck( i , j )2Ĉk( i , j )#2

will denote the sum of errors in the spectral components at
given pixel positionsi,j . In a similar way the error in the
last row of the above minitable expands as«k

2

5( i 51
N ( j 51

N @Ck( i , j )2Ĉk( i , j )#2. In the specific case of
RGB color images we will occasionally revert back to no-
tations$R, G, B% and$R̂,Ĝ,B̂%.

A Measures Based on Pixel Differences

The measures here calculate the distortion between two im-
ages on the basis of their pixelwise differences or certain
moments of the difference~error! image.

A.1.1 Minkowsky metrics

The Lg norm of the dissimilarity of two images can be
calculated by taking the Minkowsky average of pixel dif-
ferences spatially and then chromatically~that is, over the
bands!:

«g5
1

K (
k51

K H 1

N2 (
i , j 50

N21

uCk~ i , j !2Ĉk~ i , j !ugJ 1/g

. ~A1!

Or, the Minkowsky average can first be carried over the
bands and then spatially, as in the following expression:

«g5
1

N2 H (
i , j 50

N21 F 1

K (
k51

K

uCk~ i , j !2Ĉk~ i , j !uGgJ 1/g

.

In what follows we have used the pixelwise difference in
the Minkowsky sum given in Eq.~A1!. For g52, one ob-
tains the well-known mean square error expression, de-
noted asD1:

D15
1

K

1

N2 (
i , j 50

N21

iC~ i , j !2Ĉ~ i , j !i25
1

K (
k51

K

«k
2. ~A2!

An overwhelming number of quality results in the literature
is in fact given in terms of the SNR or the peak SNR
~PSNR!, which are obtained, respectively, by dividing the
image power byD1 and by dividing the peak powerG2 by
D1. Although the SNR and the PSNR are very frequently
used in quantifying coding distortions, their shortcomings
have been pointed out in various studies.13 However, de-
spite these oft cited criticisms of MSE-based quality mea-
sures there has been a recent resurgence of SNR/PSNR
metrics.17,18 For example, studies of the video quality ex-
pert Group~VQEG!17 have shown that the PSNR measure
is a very good indicator of subjective preference in video
coding.

For g51 one obtains the absolute difference, denoted as
D2. For g5` power in the Minkowski average the maxi-
mum difference measure,

«`5max
i , j

(
k51

K
1

K
uCk~ i , j !2Ĉ~ i , j !u5max

i , j
iC~ i , j !2Ĉ~ i , j !i ,

is obtained. Recall that in signal and image processing the
maximum difference or the infinity norm is very commonly
used.6 However given the noise-prone nature of the maxi-
mum difference, this metric can be made more robust by
considering the ranked list of pixel differencesD l(C2Ĉ),
l 51, . . .N2, resulting in a modified Minkowski infinity

metric, calledD3. HereD l(C2Ĉ) denotes thel th largest

deviation among all pixels.31 ThusD l(C2Ĉ) is simply the
error expression«` above. Similarly,D2 corresponds to the
second largest term, etc. Finally a modified maximum dif-
ference measure using the firstr of Dm terms can be con-
structed by computing the root mean square value of the
ranked largest differences,D l , . . . ,D r .

D35A1

r (
m51

r

Dm
2 ~CÀĈ!. ~A3!

A.1.2 MSE in L*a*b* space

The choice of color space for measuring image similarity is
important, because the color space must be uniform, so the
intensity difference between the two colors must be consis-
tent with the color difference estimated by a human ob-
server. Since the RGB color space is not well suited to this
task two color spaces are defined: 1976 CIEL* u* v* and
1976 CIE L* a* b* color spaces.32 One recommended
color-difference equation for the Lab color space is given
by the Euclidean distance.33 Let

DL* ~ i , j !5L* ~ i , j !2L̂* ~ i , j !,

Da* ~ i , j !5a* ~ i , j !2â* ~ i , j !,

Db* ~ i , j !5b* ~ i , j !2b̂* ~ i , j !,

denote the color component differences inL* a* b* space.
Then the Euclidean distance is
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D45
1

N2 (
i , j 50

N21

@DL* ~ i , j !21Da* ~ i , j !21Db* ~ i , j !2#.

~A4!

Note that Eq.~A4! is intended to yield a perceptually uni-
form spacing of colors that exhibit color differences greater
than the just-noticeable difference~JND! threshold but
smaller than those in the Munsell book of color.33 This
measure applies obviously to color images only and cannot
be generalized to arbitrary multispectral images. Therefore

it has been used only for the face images and texture im-
ages, not the satellite images.

A.1.3 Difference over a neighborhood

Image distortion on a pixel level can arise from differences
in the gray level of the pixels and/or from displacements of
the pixel. A distortion measure that penalizes in a graduated
way spatial displacements in addition to gray level differ-
ences, and that allows therefore some tolerance for pixel
shifts can be defined as follows:34,35

D55A 1

2~N2w!2 (
i , j 5w/2

N2w/2

S min
l ,mPwi , j

$d@C~ i , j !,Ĉ~ l ,m!#% D 21 S min
l ,mPwi , j

$d@Ĉ~ i , j !,C~ l ,m!#% D 2, ~A5!

whered(•,•) is some appropriate distance metric. Notice
that for w51 this metric reduces to the mean square error
like in D1.

Thus for any given pixelC( i , j ), we search for the best
matching pixel in thed distance sense in thewxwneighbor-
hood of pixelĈ( i , j ), denoted asĈw( i , j ). The size of the
neighborhood is typically small, e.g., 333 or 535, and
one can consider a square or a cross-shaped support. Simi-
larly, one calculates the distance fromĈ( i , j ) to Cw( i , j )
where againCw( i , j ) denotes the pixels in thewxw neigh-
borhood of coordinates~i,j! of C( i , j ). Note that in general

d@C( i , j ),Ĉw( i , j )# is not equal tod@Ĉ( i , j ),Cw( i , j )#. As
for the distance measured(•,•), a city metric or a chess-
board metric can be used. For example, a city block metric
becomes

dcity@C~ i , j !,Ĉ~ l ,m!#5
~ u i 21u1u j 2mu!

N

1
iC~ i , j !2Ĉ~ l ,m!i

G
,

where i•i denotes the norm of the difference between

C( i , j ) andĈ( i , j ) vectors. Thus both the pixel color differ-
ence and search displacement are considered. In this ex-
pressionN and G are one possible set of normalization
factors with which to tune deviations due to pixel shifts and
pixel spectral differences, respectively. In our measure-
ments we have used the city block distance with a 333
neighborhood size.

A.1.4 Multiresolution distance measure

One limitation of standard objective measures of distance
between images is that the comparison is conducted at full
image resolution. Alternative measures can be defined that
resemble image perception in the human visual system
more closely by assigning larger weights to low resolutions
and smaller weights to the detail image.36 Such measures
are also more realistic for machine vision tasks that often
use local information only.

Consider the various levels of resolution denoted byr
>1. For each value ofr the image is split into blocksb1 to
bn wheren depends on scaler. For example, forr 51, at
the lowest resolution, only one block covers the whole im-
age characterized by its average gray levelg. For r 52 one
has four blocks eachN/23N/2 with average gray levels of
g11, g12, g21, and g22. For the r th resolution level one
would then have 22r 22 blocks of sizeN/2r 213N/2r 21,
characterized by the block average gray levelsgi j , i, j
51, . . . ,22r 22. Thus for each blockbi j of imageC, take
gi j as its average gray level andĝi j to correspond to its

component in imageĈ ~for simplicity a third index that
denotes the resolution level was omitted!. The average dif-
ference in gray level at resolutionr has weight of 1/2r .
Therefore the distortion at this level is

dr5
1

2r

1

22r 22 (
i , j 51

2r 21

ugi j 2ĝi j u,

where 2r 21 is the number of blocks along either thei andj
indices. If one considers a total ofR resolution levels, then
a distance function can be found simply by summing over
all the resolution levels,r 51, . . . ,R, that is, D(C,Ĉ)
5( r 51

R dr . The actual value ofR ~the number of resolution
levels! will be set by the initial resolution of the digital
image. For example, for a 5123512 image one hasR59.
Finally, for multispectral images one can extend this defi-
nition in two ways. In a straightforward extension, one
sums the multiresolution distancesdr

k over the bands,

D65
1

K (
k51

K

(
r 51

R

dr
k , ~A6!

where dr
k is the multiresolution distance in thekth band.

This is the multiresolution distance definition that we used
in the experiments. As an alternative, a Burt pyramid was
constructed to obtain a multiresolution representation.
However in the tests it did not perform as well as the pyra-
mid described in Ref. 36.
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A different way in which to define the multiresolution
distance would be to consider the vector difference of pix-
els:

D~C,Ĉ!5(
r 51

R

dr8 , with

dr5
1

2r

1

22r 22 (
i , j 51

2r 21

@~gi j
R2ĝi j

R!21~gi j
G2ĝi j

G!2

1~gi j
B2ĝi j

B !2#1/2,

where, for example,gi j
R is the average gray level of the

i , j th block in the ‘‘red’’ component of the image at~im-
plicit! resolution levelr. Notice that in the latter equation
the Euclidean norm of the differences of the block average
color components R, G, and B have been utilized.

Notice also that the last two measures, that is, the neigh-
borhood distance measure and the multiresolution distance
measure, have not been previously used in evaluating com-
pressed images.

B Correlation-Based Measures

B.1 Image Correlation Measures

The similarity between two digital images can also be
quantified in terms of the correlation function.5 These mea-
sures measure the similarity between two images, hence in
this sense they are complementary to the difference-based
measures: Some correlation based measures are the follow-
ing.

Structural content:

C15
1

K
(
k51

K
( i , j 50

N21 Ck~ i , j !2

( i , j 50
N21 Ĉk~ i , j !2

. ~A7!

normalized cross-correlation measure:

C25
1

K (
k51

K
( i , j 50

N21 Ck~ i , j !Ĉk~ i , j !

( i , j 50
N21 Ck~ i , j !2 . ~A8!

Czenakowski distance: A metric that is useful for com-
paring vectors with strictly non-negative components, like
in the case of color images, is given by the Czenakowski
distance:37

C35
1

N2 (
i , j 50

N21 S 12
2(k51

K min@Ck~ i , j !,Ĉk~ i , j !#

(k51
K @Ck~ i , j !1Ĉk~ i , j !#

D . ~A9!

The Czenakowski coefficient38 ~also called the percentage
of similarity! measures the similarity among different
samples, communities, and quadrates.

Obviously as the difference between two images tends
towards zero«5C2Ĉ→0, all the correlation-based mea-
sures tend towards 1, while as«2→G2 they tend towards 0.
Recall also that distance measures and correlation measures

are complementary, so that under certain conditions, mini-
mizing distance measures is tantamount to maximizing the
correlation measure.39

B.1.2 Moments of the angles

A variant of correlation-based measures can be obtained by
considering the statistics of the angles between the pixel
vectors of the original and coded images. Similar ‘‘colors’’
will result in vectors pointing in the same direction, while
significantly different colors will point in different direc-
tions inC space. Since we deal with positive vectorsC, Ĉ,
we are constrained to one quadrant of Cartesian space.
Thus the normalization factor of 2/p is related to the fact
that the maximum difference attained will bep/2. The
combined angular correlation and magnitude difference
between two vectors can be defined as37,40

x i j 512F12
2

p
cos21

^C~ i , j !,Ĉ~ i , j !&

iC~ i , j !iiĈ~ i , j !i
G

3F12
iC~ i , j !2Ĉ~ i , j !i

A332552 G .

We can use the moments of the spectral~chromatic! vector
differences as distortion measures. To this end we have
used the mean of the angle difference (C4) and the mean
of the combined angle-magnitude difference (C5) in the
following two measures:

C45mx512
1

N2 (
i , j 51

N X2

p
cos21 ^C~ i , j !,Ĉ~ i , j !&

iC~ i , j !iiĈ~ i , j !i
C,

~A10!

C55
1

N2 (
i , j 51

N

x i j , ~A11!

where mx is the mean of the angular differences. These
moments have previously been used to assess the direc-
tional correlation among color vectors.

C Edge Quality Measures

According to the contour-texture paradigm of images, the
edges form the most informative part of the image. For
example, in the perception of scene content by the human
visual system, edges play a major role. In a similar way,
machine vision algorithms often rely on feature maps ob-
tained from the edges. Thus, task performance in vision,
whether by humans or machines, is highly dependent on the
quality of the edges and other two-dimensional features
such as corners.9,41,42 Some examples of edge degradation
are discontinuities at the edge, a decrease in edge sharpness
by smoothing effects, offset of the edge position, missing
edge points, falsely detected edge points, etc.39 Notice,
however, that all the above degradations are not necessarily
observed since edge and corner information in images is
rather well preserved by most compression algorithms.

Since we do not possess the ground-truth edge map, we
have used the edge map obtained from the original uncom-
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pressed images as a reference. Thus to obtain edge-based
quality measures we have generated edge fields from both
the original and compressed images using a Canny
detector.43 We have not used any multiband edge detector;
instead a separate edge map from each band has been ob-
tained. The outputs of the derivative of the Gaussians of
each band are averaged, and the resulting average output is
interpolated, thresholded, and thinned in a manner similar
to that in Ref. 12. The parameters are set like those in Ref.
43 at robotics.eecs.berkeley.edu/;sastry/ee20/cacode.html.

In summary, for each bandk51, . . .K, horizontal and
vertical gradients and their norms,Gx

k , Gy
k and Nk

5AGx
k2

1Gy
k2

are found. Their average over bands is cal-
culated and thresholded withT5a(Tmax2Tmin)1Tmin ,
where Tmax51/K(

k
max(Nk) and Tmin51/K(

k
min(Nk), a

50.1. Finally they are thinned by interpolation to find the
pixels in which the norms of gradient constitute the local
maxima.

C.1 Pratt Measure

A measure introduced by Pratt39 considered both the accu-
racy of the edge location and missing/false alarm edge el-
ements. This measure is based on knowledge of an ideal
reference edge map, in which the reference edges should
preferably have a width of one pixel. The figure of merit is
defined as

E15
1

max$nd ,nt%
(
i 51

nd 1

11adi
2 , ~A12!

wherend and nt are the number of detected and ground-
truth edge points, respectively, anddi is the distance to the
closest edge possible for thei th edge pixel detected. In our
study the binary edge field obtained from the uncompressed
image is considered the ‘‘ground truth,’’ or the reference
edge field. The factor max$nd ,nt% penalizes the number of
false alarm edges or, conversely, missing edges.

This scaling factor provides the relative weighting be-
tween smeared edges and thin but offset edges. The terms
in the sum penalize possible shifts from the correct edge
positions. In summary the smearing and offset effects are
both included in the Pratt measure, which provides an im-
pression of overall quality.

C.2 Edge Stability Measure

Edge stability is defined as the consistency of edge that is
evident across different scales in both the original and
coded images.44 Edge maps at different scales have been
obtained from the images using the Canny43 operator for
different scale parameters~with standard deviation of the
Gaussian filter assuming values ofsm51.19, 1.44, 1.68,
2.0, and 2.38!. The output of this operator at scalem is
decided at the thresholdTm, whereTm50.1(Cmax2Cmin)
1Cmin . In this expressionCmax and Cmin denote, respec-
tively, the maximum and minimum values of the norm of
the gradient output in that band. Thus the edge map at scale
sm of imageC is obtained as

E~ i , j ,sm!5H 1 Cm~ i , j !.Tm at ~ i , j !,

0 otherwise,

whereCm( i , j ) is the output of the derivative of the Gauss-
ian operator at themth scale. In other words, using a con-
tinuous function notation one has Cm(x,y)
5C(x,y)** Gm(x,y) where

Gm~x,y!5
1

2psm
4 xy expH 2

x21y2

2sm
2 J .

An edge stability mapQ( i , j ) is obtained by considering
the longest subsequenceE( i , j ,sm), . . . ,E( i , j ,sm1 l 21) of
edge images such that

Q~ i , j !5 l ,

where

l 5arg max
l

ù
sm<sk<m1 l 21

E~ i , j ,sk!51.

The edge stability index calculated from the distorted im-
age at pixel positioni,j will be denoted byQ̂( i , j ). We have
used five scales to obtain the edge maps of five band-pass
filtered images. Then a fidelity measure called the edge
stability mean square error~ESMSE! can be calculated by
summing the differences in the edge stability indices over
all edge pixel positions,nd , that is, the edge pixels of the
ground-truth~undistorted! image at full resolution.

E25
1

nd
(

i , j 50

nd

@Q~ i , j !2Q̂~ i , j !#2. ~A13!

For multispectral images the index in Eq.~A13! can simply
be averaged over the bands. Alternatively, a single edge
field from multiband images45,46 can be obtained and the
resulting edge discrepancies measured like in Eq.~A13!.

A property that is complementary to edge information
could be surface curvature,47 which is a useful feature for
scene analysis, feature extraction, and object recognition.
Estimates of local surface types,48 based on the signs of the
mean and Gaussian curvatures, have been widely used for
image segmentation and classification algorithms. If one
models a gray level image as a three-dimensional~3D! to-
pological surface, then one can analyze this surface locally
using differential geometry. A measure based on the dis-
crepancy of mean and Gaussian curvatures between an im-
age and its distorted version was used in Ref. 49. However
this measure was not pursued further due to the subjective
assignment of weights to the surface types and the fact that
this measure did not perform particularly well in prelimi-
nary tests.

D Spectral Distance Measures

In this category we consider the distortion penalty functions
obtained from the complex Fourier spectrum of images.10,30
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D.1 Magnitude and Phase Spectrum

Let the DFT of thekth band of the original and coded

images be denoted byGk(u,v) and Ĝk(u,v), respectively.
The spectra are defined as

Gk~u,v !5 (
m,n50

N21

Ck~m,n!expF22p im
u

NG
3expF22p in

v
NG , k51, . . . ,K.

Spectral distortion measures, using difference metrics like,
for example, those given in Eqs.~A1!–~A3!, can be ex-
tended to multispectral images. To this end considering the
phase and magnitude spectra, that is,

w~u,v !5arctan@G~u,v !#,

M ~u,v !5uG~u,v !u,

the distortion that occurs in the phase and magnitude spec-
tra can be calculated and weighted separately. Thus one can
define the spectral magnitude distortion,

S5
1

N2 (
u,v50

N21

uM ~u,v !2M̂ ~u,v !u2,

the spectral phase distortion,

S15
1

N2 (
u,v50

N21

uw~u,v !2ŵ~u,v !u2, ~A14!

and the weighted spectral distortion,

S25
1

N2 S l (
u,v50

N21

uw~u,v !2ŵ~u,v !u21~12l!

3 (
u,v50

N21

uM ~u,v !2M̂ ~u,v !u2D , ~A15!

wherel is chosen to attach commensurate weights to the
phase and magnitude terms. These ideas can be extended in
a straightforward manner to multiple band images by sum-
ming over all band distortions. In the following computa-
tions, l is chosen so as to render the contributions of the
magnitude and phase terms commensurate, so thatl52.5
31025.

Due to the localized nature of distortion and/or the non-
stationary image field, Minkowsky averaging of block
spectral distortions may be more advantageous. An image
is divided into nonoverlapping or overlappingL blocks of
b3b, say, 16316, and blockwise spectral distortions like
those in Eqs.~A14! and ~A15! can be computed. Let the
DFT of the l th block of thekth band imageCk

l (m,n) be
Gk

l (u,v):

Gk
l ~u,v !5 (

m,n50

b21

Ck
l ~m,n!expF22p im

u

bGexpF22p in
v
bG ,

where u, v52b/2, . . . ,b/2 and l 51, . . . ,L, or in
magnitude-phase form

Gk
l ~u,v !5uGk

l ~u,v !ueifk
l
~u,v !5mk

l ~u,v !efk
l
~u,v !.

Then the following measures can be defined in the trans-
form domain over thel th block:

JM
l 5

1

K (
k51

K S (
u,v50

b21

@ uGk
l ~u,v !u2uĜk

l ~u,v !u#gD 1/g

,

Jw
l 5

1

K (
k51

K S (
u,v50

b21

@ ufk
l ~u,v !u2uf̂k

l ~u,v !u#gD 1/g

,

Jl5lJM
l 1~12l!Jw

l ,

with l the relative weighting factor of the magnitude and
phase spectra. Obviously the measures of Eqs.~A16!–
~A18! are special cases of the above definitions for block
sizeb that cover the whole image. Various rank order op-
erations of the block spectral differencesJM and/orJw can
prove useful. Thus letJ(1), . . . ,J(L) be the rank ordered
block distortions, such that, for example,J(L)5max

l
$Jl%.

Then one can consider the following rank order averages:
median block distortion,12(J

L/21J(L11/2)), maximum block
distortion,J(L), and average block distortion, 1/L( i 51

L J( i ).
We have found that the median of the block distortions is
the most effective averaging of rank ordered block spectral
distortions and we have thus used

S35median
l

Jm
l , ~A16!

S45median
l

Jf
l , ~A17!

S55median
l

Jl . ~A18!

In this study we have averaged the block spectra withg
52 and for the choice of block size we have found that
block sizes of 32 and 64 yield better results than sizes in the
lower or higher range.

E Context Measures

Most of the compression algorithms and computer vision
tasks are based on neighborhood information of the pixels.
In this sense any loss of information in the pixel neighbor-
hoods, that is, damage to the pixel context, could be a good
measure of overall image distortion. Since such statistical
information lies in the context probabilities, that is, the
joint probability mass function~PMF! of pixel neighbor-
hoods, changes in the context probabilities should be in-
dicative of image distortion.

A major hurdle in the computation of context distortion
is the requirement to calculate the high dimensional joint
probability mass function. Typical PMF dimensions would
be of the order ofs510 at least. Consequently one incurs
the ‘‘curse of dimensionality problems.’’ However, as de-
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tailed in Refs. 50 and 51, this problem can be solved by
judicious usage of kernel estimation and cluster analysis.
One modification of the kernel method is to identify the
important regions in as-dimensional spaceXs by cluster
analysis and to fit region-specific kernels to these locations.
The result is a model that represents both mode and tail
regions of PMFs well, while combining the summarizing
strength of histograms with the generalizing property of
kernel estimates.

In what follows we have used a causal neighborhood of
pixels, i.e., Ck( i , j ), Ck( i 21,j ), Ck( i , j 21), Ck( i 21,j
21), k51, 2, 3. Hence we have deriveds512 dimen-
sional PMF’s obtained from four-pixel neighborhoods in
the three bands.

E.1 Rate-Distortion Based Distortion Measure

A method by which to quantify the changes in context
probabilities is the relative entropy,52 defined as

D~pi p̂!5 (
xPXs

p~x!log
p~x!

p̂~x!
,

where Xs denotes an s-pixel neighborhood andx
5@x1 , . . . ,xs# a random vector. Furthermore,p and p̂ are
the PMFs of the original image context and that of the
distorted~e.g., blurred, noisy, compressed, etc.! image. The
relative entropy is directly related to the efficiency in com-
pression and the error rate in classification. Recall also that
the optimal average bit rate is the entropy ofx,

H~X!52 (
XPXs

p~X!log p~X!5R~p!.

If, instead of the true probability, a perturbed versionp̂,
that is, the PMF of the distorted image, is used, then the
average bit rateR( p̂) becomes

R~ p̂!52 (
XPXs

p~X!log2 p̂~X!5H~X!1D~pi p̂!.

The increase in the entropy rate is also indicative of how
much the context probability differs from the original due
to coding artifacts. However we do not know the true PMF
p nor, hence, its rate. We can bypass this problem by com-
paring two competing compression algorithms in terms of
the resulting context probabilitiesp̂1 and p̂2 . If p̂1 and p̂2
are the PMFs that result from the two compressed images,
then their difference in relative entropy,

Z15D~pi p̂1!2D~pi p̂2!5R~ p̂1!2R~ p̂2!, ~A19!

is easily and reliably estimated from a moderate-size
sample by subtracting the sample average of2 log p̂2 from
that of 2 log p̂1.51 The comparison can be carried out for
more than two images compressed to different bit rates in a
similar way, that is, by comparing them two by two since
the unknown entropy term is common to all of them.

As a quality measure for images we have calculatedZ1
for each image when they were compressed at two con-
secutive bit rates, for example,R( p̂1) at the bit rate of

quality factor 90 andR( p̂2) at the bit rate of quality factor
70, etc. As an alternative, the distortion was calculated for
an original image and its blurred or noise contaminated
version.

E.2 f Divergences

Once the joint PMF of a pixel context is obtained, several
information theoretic distortion measures53 can be used.
Most of these measures can be expressed in the following
general form:

d~p,p̂!5gH EpF f S p̂

pD G J ,

where p̂/p is the likelihood of the ratio ofp̂, the context
PMF of the distorted image, and ofp the PMF function of
the original image, andEp is the expectation with respect to
p. Some examples follows.

Hellinger distance:f (x)5(Ax21)2, g(x)5 1
2x,

Z25
1

2 E ~Ap̂2Ap!2dl. ~A20!

Generalized Matusita distance:f (x)5u12x1/r ur , g(x)
5x1/r ,

Z35AE up1/r2 p̂1/r urdl, r>1. ~A21!

Notice that integration in Eqs.~A20! and ~A21! is carried
out in s-dimensional space. Also, we have found according
to ANOVA analysis that the choice ofr 55 in the Matusita
distance yields good results. Despite the fact that the PMFs
do not directly reflect the structural content or the geometri-
cal features in an image, they perform sufficiently well to
differentiate artifacts between the original and test images.

E.3 Local Histogram Distances

In order to reflect the differences between two images at the
local level, we calculated the histograms of the original and
distorted images on the basis of 16316 blocks. To this end
we considered both the Kolmogorov–Smirnov~KS! dis-
tance and the Spearman rank correlation~SRC!.

For the KS distance we calculated the maximum devia-
tion between the respective cumulatives. For each of the
16316 blocks of the image, the maximum of the KS dis-
tances over theK spectral components was found and these
local figures were summed over all the blocks to yield
(u51

b maxk51, . . . ,K$KSu
k% where KSb

k denotes the
Kolmogorov–Smirnov distance of block numberu and of
the kth spectral component. However the KS distance did
not turn out to be effective in the ANOVA tests. Instead the
SRC measure had better performance. We again considered
the SRC on a 16316 block basis and we took the maxi-
mum over the three spectral bands. The block SRC measure
was computed by computing the rank scores of the ‘‘gray’’
levels in the bands and for each pixel the largest of the
three scores was selected. Then the correlation of the block
ranks of the original and distorted images was calculated:
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Z45 (
u51

b

max$SRCu
k%

k51, . . . ,K

, ~A22!

where SRCu
k denotes the Spearman rank correlation for the

uth block number and thekth spectral band.

F Human Visual System Based Measures

Despite the search for an objective image distortion mea-
sure it is intriguing to learn the role of HVS-based mea-
sures. The HVS is too complex to be fully understood with
the present psychophysical means, but the incorporation of
even a simplified HVS model into objective measures
reportedly7,10,14,54leads to a better correlation with the sub-
jective ratings. It is conjectured therefore that in machine
vision tasks HVS-based measures may have some rel-
evance as well.

F.1 HVS Modified Spectral Distortion

In order to obtain a closer relation with the assessment by
the human visual system, both the original and coded im-
ages can be preprocessed via filters that simulate the HVS.
One of the models for the human visual system is given as
a band-pass filter with a transfer function in polar
coordinates:54

H~r!5H 0.05er0.554
, r,7,

e29@ u log10 r2 log10 9u#2.3
, r>7,

wherer5(u21v2)1/2. An image processed through such a
spectral mask and then inverse discrete cosine transformed
can be expressed via theU$•% operator, i.e.,

U$C~ i , j !%5DCT21$H~Au21v2!V~u,v !%,

where V(u,v) denotes the 2D DCT of the image and
DCT21 is the 2D inverse DCT. Some possible measures5,49

for the K component multispectral image are
normalized absolute error:

H15
1

K (
k51

K
( i , j 50

N21 uU$Ck~ i , j !%2U$Ĉk~ i , j !%u
( i , j 50

N21 uU$Ck~ i , j !%u
, ~A23!

L2 norm:

H25
1

K (
k51

K F 1

N2 (
i , j 50

N21

uU$Ck~ i , j !%2U$Ĉk~ i , j !%u2G1/2

.

~A24!

F.2 Distance Metric for Database Browsing

The metric proposed in Refs. 14 and 55 based on a multi-
scale model of the human visual system actually brings
forth similarities between image objects for database search
and browsing purposes. This multiscale model includes
channels, which account for perceptual phenomena such as
color, contrast, color contrast, and orientation selectivity.

From these channels, features are extracted and then an
aggregate measure of similarity using a weighted linear
combination of the feature differences is found. The choice
of features and weights is made to reflect objects similarly.

We have adopted this database search algorithm to mea-
sure discrepancies between an original image and its dis-
torted version. In other words, an image similarity metric
that was conceived for browsing and searching in image
databases was adapted to measure the similarity~or the
difference! between an image and its distorted version.

More specifically, we exploit a vision system designed
for image database browsing and object identification to
measure image distortion. The image similarity metric in
Ref. 14 used 102-dimension feature vectors extracted at
different scales and orientations both in luminance and in
color channels. The final~dis!similarity metric is

H35(
i 51

102

v idi , ~A25!

wherev i are the weights of the component features stated
in Ref. 55 anddi are the individual feature discrepancies.
We call this metric a ‘‘browsing metric’’ for lack of a better
name. For example, the color contrast distortion at scalel is
given by

dm5
1

NlNl
(

i , j 50

Nl

@K~ i , j !2K̂~ i , j !#2,

whereNl3Nl is the size of the image at scalel. K( i , j ) and

K̂( i , j ) denote any color or contrast channel of the original
image and of the coded image at a certain levell. The
lengthy details of the algorithm and its adaptation to our
problem are summarized in Refs. 14 and 55. Finally, note
that this measure was used only for color images, and not in
the case of satellite three-band images.

The last quality measure we used that reflects the prop-
erties of the human visual system was the DCTune
algorithm.56 DCTune is in fact a technique for optimizing
JPEG still image compression. DCTune calculates the best
JPEG quantization matrices to achieve the maximum pos-
sible compression for a specified perceptual error, given a
particular image and a particular set of viewing conditions.
DCTune also allows the user to compute the percepted er-
ror between two images in units of JNDs between a refer-
ence image and a test image~http://vision.arc.nasa.gov/
dctune/dctune2.0.html!. This JND measure was used as the
last metric (H4) in Table 1.
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49. İ. Avcibaşand B. Sankur, ‘‘Statistical analysis of image quality mea-
sures,’’European Signal Processing Conf., EUSIPCO-2000, Tampere,
Finland, pp. 2181–2184~2000!.

50. R. O. Duda and P. E. Hart,Pattern Recognition and Scene Analysis,
Wiley, New York ~1973!.

51. K. Popat and R. Picard, ‘‘Cluster based probability model and its
application to image and texture processing,’’IEEE Trans. Image Pro-
cess.6~2!, 268–284~1997!.

52. T. M. Cover and J. A. Thomas,Elements of Information Theory,
Wiley, New York ~1991!.

53. M. Basseville, ‘‘Distance measures for signal processing and pattern
recognition,’’Signal Process.18, 349–369~1989!.

54. N. B. Nill, ‘‘A visual model weighted cosine transform for image
compression and quality assessment,’’IEEE Trans. Commun.33~6!,
551–557~1985!.

55. T. Frese, C. A. Bouman and J. P. Allebach, ‘‘A methodology for de-
signing image similarity metrics based on human visual system mod-
els,’’ Technical Report TR-ECE 97-2, Purdue University, West Lafay-
ette, IN ~1997!.

56. A. B. Watson, ‘‘DCTune: A technique for visual optimization of DCT
quantization matrices for individual images,’’SID Dig. XXIV , 946–
949 ~1993!.
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